Tarea 6 Propiedades eléctricas y magnéticas de la materia

Alejandro Kunold

Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco (Dated: 26 de febrero del 2020)

- 1. Estados excitados de triplete. Muchas moléculas orgánicas tienen un estado excitado de triplete (S=1) a una energía $k_B\Delta$ por encima del estado base de singulete (S=0).
 - a) Encuentra el momento magnético $\langle \boldsymbol{m} \rangle$ como función del campo magnético.
 - b) Muestra que la polarizabilidad magnética para $T\gg \Delta$ no depende de $\Delta.$
- 2. Encuentra el potencial de Helmholtz para un material ferroeléctrico. Puedes partir de la primera ley de la termodinámica dada por dU = TdS + EdP.
- 3. Calcula el trabajo W que se debe hacer para llevar un dipolo magnético m desde la orientación en la que es paralelo a un campo magnético B hasta otra en la que forma un ángulo θ con B.

- 4. Precesión de un dipolo magnético alrededor de un campo magnético. Considera que el campo magnético se encuentra a lo largo del eje z, es decir $\mathbf{B} = B\hat{\mathbf{k}}$, y que el dipolo inicialmente está dado por el vector $\mathbf{m} = m(\hat{\mathbf{i}}/\sqrt{2} + \hat{\mathbf{k}}/\sqrt{2})$.
 - a) Escribe las tres ecuaciones de movimiento que salen de $\dot{\boldsymbol{L}} = \boldsymbol{\tau} = \boldsymbol{m} \times \boldsymbol{B}$ recordando que $\boldsymbol{m} = -\gamma \boldsymbol{L}$.
 - b) Resuelve el sistema de ecuaciones diferenciales.
 - c) Encuentra la velocidad angular a la que precede el momento magnético al rededor del campo magnético.