Tercer Examen Parcial de Introducción al Cálculo

Profesor Carlos Barrón Romero

martes 31 de marzo de 2015, trimestre 15I

Solución

Las preguntas del examen suman 12 puntos, seleccionar y contestar 10 puntos para obtener 10 de calificación.

1. Dada la función

$$f(x) = \frac{2x^2 - 7x + 3}{4x^2 - 4x + 1}.$$

Obtener:

RESPUESTA.

Factorizando la función:

$$f(x) = \frac{2x^2 - 7x + 3}{4x^2 - 4x + 1} = \frac{(2x - 1)(x - 3)}{(2x - 1)^2} = \frac{(x - 3)}{2x - 1}$$

(a) [1.0] El dominio, raíces o ceros y la paridad de la función.

RESPUESTA.

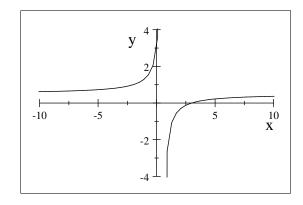
Dominio de f(x): $\mathbb{R}\setminus\left\{\frac{1}{2}\right\}$.

Raices de f(x): $x_1 = 3$.

Paridad:
$$f(-x) = \frac{((-x)-3)}{2(-x)-1} = \frac{-(x+3)}{-(2x+1)} = \frac{(x+3)}{(2x+1)} \neq -f(x)$$
 y

 $\frac{(x+3)}{(2x+1)} \neq f(x)$. No es par, ni impar.

(d) [1.0] La gráfica de la función



(b) [1.0] Los intervalos de continuidad y clasificar sus discontinuidades.

RESPUESTA.

La función
$$f(x)$$
 es continua en $\left(-\infty, \frac{1}{2}\right) \cup \left(\frac{1}{2}, \infty\right)$.
Como $f(x) = \frac{2x^2 - 7x + 3}{4x^2 - 4x + 1} = \frac{(2x - 1)(x - 3)}{(2x - 1)^2} = \frac{(x - 3)}{(2x - 1)}$.

El punto $\frac{1}{2}$ es una discontinuidad fija y removible.

(c) [1.0] Las ecuaciones de las asíntotas horizontales y verticales.

RESPUESTA.

Como $\lim_{x\to\infty}\frac{1}{2x-1}\left(x-3\right)=\frac{1}{2},\ \lim_{x\to-\infty}\frac{1}{2x-1}\left(x-3\right)=\frac{1}{2},\ \text{la recta}\ y=\frac{1}{2},x\in\mathbb{R}$ es una asíntota

Como $\lim_{x \to \frac{1}{2}^-} \frac{1}{2x-1} (x-3) = \infty$ y $\lim_{x \to \frac{1}{2}^+} \frac{1}{2x-1} (x-3) = -\infty$, la recta $x = \frac{1}{2}, y \in \mathbb{R}$ es una asíntota vertical.

(e) [1.0] El rango, los intervalos de monotonía y los intervalos donde $f\left(x\right)>0$. RESPUESTA.

De la gráfica se nota que el rango de f(x) es $\mathbb{R}\setminus\left\{\frac{1}{2}\right\}$.

La función f(x) es creciente en los intervalos $\left(-\infty, \frac{1}{2}\right)$ y $\left(\frac{1}{2}, \infty\right)$.

El intervalo donde f(x) > 0 es $\left(-\infty, \frac{1}{2}\right)$ y $(3, \infty)$.

- 2. Sea la función: $d(t) = 2t t^2$.
 - (a) [1.0] Encontrar la ecuación de la recta secante que pasa por los puntos (2, d(2)) y (3, d(3)). RESPUESTA.

$$m = \frac{d(3) - d(2)}{3 - 2} = \frac{2(3) - 3^2 - (2(2) - 2^2)}{3 - 2} = -3.$$

 $m = \frac{y-0}{x-2} = \frac{y}{x-2}$. Por tanto la recta secante es y = -3x + 6.

(b) [1.0] Determinar la tasa de cambio instántanea en x=2 a través de su definición por límites. RESPUESTA.

RESPUESTA.
$$\lim_{h\to 0} \frac{d(2+h)-d(2)}{h} = \lim_{h\to 0} \frac{2(2+h)-(2+h)^2-\left(2(2)-(2)^2\right)}{h} = \lim_{h\to 0} \frac{4+2h-\left(4+4h+h^2\right)}{h} = \lim_{h\to 0} \frac{-2h-h^2}{h} = \lim_{h\to 0} \frac{-2h-h^2}{h}$$

(c) [1.0] Determinar la ecuación de la normal en el punto $(2,d\left(2\right))$.

RESPUESTA.

La pendiente de la normal en x=2 es $n=-\frac{1}{m}$, donde m es tasa ce cambio instantanea en x=2. Del inciso anterior m=-2, por tanto $n=-\frac{1}{-2}=\frac{1}{2}$.

La recta normal se obtiene de $\frac{1}{2} = \frac{y-0}{x-2}$. La recta normal en x=2 es $y = \frac{1}{2}x - 1$.

3. Sea la función:

$$g(x) = \begin{cases} -3x^2 + x + A & x < -2, \\ x & |x| \le 2 \\ \frac{2-x}{x} + B & x > 2. \end{cases}$$

(a) [1.0] Determinar valores de A y B para que la función sea continua .

RESPUESTA.

Usando que $\lim_{x\to -2^+} g(x) = \lim_{x\to -2^+} x = -2$ y $\lim_{x\to 2^-} g(x) = \lim_{x\to 2^-} x = 2$. Tenemos $\lim_{x\to -2^-} g(x) = -3(-2)^2 + (-2) + A = -2$, -12 + (-2) + A = -2, A = 12.

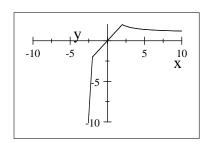
$$\lim_{x\to 2^+} g(x) = \frac{2-(2)}{2} + B = 2.$$
 $B = 2.$

(b) [1.0] Determinar dominio y rango de g(x).

RESPUESTA.

El dominio es R.

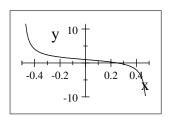
El rango es $(-\infty, 2]$. Esto se puede corroborar de la grafica:



4. [2.0] Encontrar un intervalo de longitud $\frac{1}{4}$ que contenga una solución de la ecuación $1 - \tan(\pi x) = 0$. RESPUESTA.

Como $\tan\left(\frac{\pi}{4}\right)=1$, la función $1-\tan\left(\pi x\right)$ tiene un cero en $x=\frac{1}{4}$ y es monotona decreciente en $\left(-\frac{1}{2},\frac{1}{2}\right)$.

La grafica de $1 - \tan(\pi x)$ es



En el intervalo $\left[\frac{1}{8},\frac{3}{8}\right]$ se tiene que $1-\tan\left(\pi\frac{1}{8}\right)>0$ y $1-\tan\left(\pi\frac{3}{8}\right)<0$ y $\frac{3}{8}-\frac{1}{8}=\frac{1}{4}$.