4.4 Concavidad y trazado de curvas

Definición La gráfica de una función derivable y = f(x) es

- (a) concava hacia arriba en un intervalo abierto (a,b) si $f'(x) = \frac{d}{dx}f(x)$ es creciente en (a,b). (b) concava hacia abajo (convexa) en un intervalo abierto (a,b) si $f'(x) = \frac{d}{dx}f(x)$ es decreciente en (a,b).

Criterio de la segunda derivada para concavidad

Sea y = f(x) dos veces derivable en el intervalo I.

- 1. Si $f'' = \frac{d^2}{dx^2} f > 0$ en I, la gráfica de f en I es concava hacia arriba.
- 2. Si $f'' = \frac{d^2}{dx^2} f < 0$ en I, la gráfica de f en I es convexa (concava hacia abajo).

Intervalo	$(-\infty,0)$	$(0,\infty)$
Comportamiento de $f' = \frac{d}{dx}f$	decrece	crece
	y x	y / x
signo de $f'' = \frac{d^2}{dx^2}f$	negativo	positivo
	y y	y
Comportamiento de f	concava hacia abajo	concava hacia arriba
	x y	y

Puntos de inflexión

Definición. Un punto donde la gráfica de una función tiene derivada y cambia la concavidad de arriba a abajo o viceversa es un punto de inflexión.

En un punto de inflexión (c, f(c)) de la gráfica de f, se tiene f''(c) = 0 o no existe f''(c).

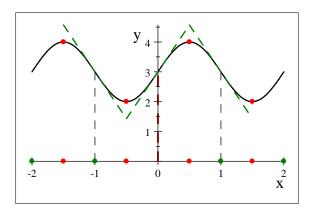
Teorema 5. Criterio de la segunda derivada para extremos locales

Suponga que f'' continua en un intevalo que contenga x = c.

- 1. Si f'(c) = 0 y $f''(c) = \frac{d^2}{dx^2} f(c) < 0$, entonces f tiene un máximo local en x = c.
- 2. Si f'(c) = 0 y $f''(c) = \frac{d^2}{dx^2} f(c) > 0$, entonces f tiene un mínimo local en x = c.
- 3. Si f'(c) = 0 y $f''(c) = \frac{d^2}{dx^2} f(c) = 0$, entonces la prueba no es concluyente. La función f puede tener un extremo local o no tenerlo en x = c.

Ejemplos. Caracterice los puntos de inflexión, es decir, describa como se comporta la primera, la segunda derivada respecto al cambio de curvatura. E identifique los intervalos de concavidad y convexidad.

$$f_0\left(x\right) = \sin\left(\pi x\right) + 3$$



Respuesta.

$$\frac{d}{dx}f_0(x) = \pi \cos \pi x \cdot \pi \cos (\pi(-1)) = -3.141592654$$

$$\frac{d^2}{dx^2} f_0(x) = -\pi^2 \sin \pi x$$

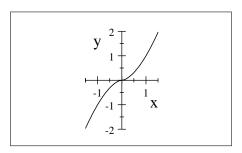
En
$$x = -2$$
, $\frac{d}{dx} f_0(-2) \neq 0$ y $f''(-2) = 0$. Asi en -1,0,1,2

Los puntos de inflexión se obtienen de $f_0''(x) = 0$, $\frac{d}{dx}f_0(x) = \pi\cos\pi x. \pi\cos(\pi(-1)) = -3.141592654$ $\frac{d^2}{dx^2}f_0(x) = -\pi^2\sin\pi x.$ $\frac{d^2}{dx^2}f_0(x) = 0$, las soluciones en el intervalo [-2,2] son x = -2, -1, 0, 1, 2.
En $x = -2, \frac{d}{dx}f_0(-2) \neq 0$ y f''(-2) = 0. Asi en -1,0,1,2.
En el intervalo (-2, -1), hay punto extremo x = -1.5, f_0 tiene un máximo, concavidad hacia abajo y f''(-1.5) < 0.

En el intervalo (-1,0), hay punto extremo $x=-0.5,\ f_0$ tiene un mínimo, concavidad hacia arriba y f''(-0.5) > 0.

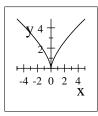
En el intervalo (0,1), hay punto extremo x=0.5, f_0 tiene máximo, concavidad hacia abajo y f''(0.5) < 0. En el intervalo (1,2), hay punto extremo x = 1.5, f_0 tiene mínimo, concavidad hacia arriba y f''(1.5) > 0.

$$f_1(x) = \sqrt[3]{x^5}$$



Respuesta.

Primera deriva $\frac{d}{dx}\sqrt[3]{x^5} = \frac{5}{3x}\sqrt[3]{x^5} = \frac{5}{3}\sqrt[3]{x^2}$



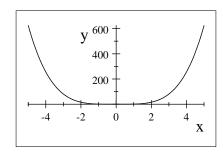
Segunda derivada $\frac{d^2}{dx^2}\sqrt[3]{x^5} = \frac{10}{9x^2}\sqrt[3]{x^5} = \frac{10}{9\sqrt[3]{x}}$. No existe la segunda derivada en x=0 porque $\lim_{x\to 0^+} \frac{10}{9\sqrt[3]{x}} = -\infty$ y $\lim_{x\to 0^+} \frac{10}{9\sqrt[3]{x}} = \infty$.

Entonces aplico el criterio de creciente y decreciente de la primera derivada.

Como $f_1'(x)$ decreciente en $(-\infty,0)$, f es concava hacia abajo.

Como $f'_1(x)$ dereciente en $(0, \infty)$, f es concava hacia arriba.

$$f_2(x) = x^4$$



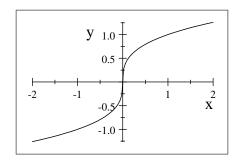
RESPUESTA.

$$f'(x) = 4x^3$$

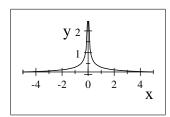
$$f''(x) = 12x^2.$$

La función f_2 es concava hacia arriba porque f''(x) > 0 para toda $x \neq 0$. Y además en x = 0 se tiene un mínimo local y global.

$$f_3(x) = \sqrt[3]{x}$$



RESPUESTA. $f_3'(x) = \frac{1}{3}x^{-\frac{2}{3}}$



Entonces aplico el criterio de creciente y decreciente de la primera derivada.

Como $f_3'(x)$ creciente en $(-\infty, 0)$, f es concava hacia arriba.

Como $f_3'(x)$ decreciente en $(0, \infty)$, f es concava hacia abajo.