Matrícula: _

Nombre del alumno: _

Los puntos del examen son 9.

Instrucciones. El marco de sus respuestas son los objetivos de la UEA que transcribo a continuación:

- •
- Describir, interpretar e ilustrar los modelos teóricos de cómputo.
- Describir los conceptos de lenguaje formal y gramática.
- Reconocer y diferenciar las clases de lenguajes formales asociadas con cada modelo teórico de cómputo.

Responda de forma clara y concisa, que su respuesta refleje los objetivos de la UEA, use el sentido común y describa con claridad la explicación o el desarrollo de su solución. El valor de cada pregunta está entre "[", "]".

- 1. Sea Σ el alfabeto formado por los dígitos de su matrícula.
 - (a) [0.5] Escribir Σ .
 - (b) [0.5] Explicar si $\Sigma \subset \mathbf{0} + \mathbf{1} + \mathbf{3} + \mathbf{4} + \mathbf{5} + \mathbf{6} + \mathbf{7} + \mathbf{8}$.
 - (c) [0.5] Escribir su matrícula como una ER.
 - (d) [0.5] Dada la ER $\mathbf{d} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Escribir la ER del patrón o machote de las matrículas de la UAM usando \mathbf{d} .
- 2. Sea \mathbb{Q} el conjunto de los números racionales de la forma p/q donde $p \in \mathbb{Z}, q \in \mathbb{N} \setminus \{0\}$.
 - (a) [0.5] Escribir la ER de los números racionales **positivos**.
 - (b) [1.5] Diseñar un autómata finito que solo reconozca los números racionales positivos de la forma p/2.
- 3. Dado el autómata finito no determinístico, AFN= $(0, \Sigma, Q, F, \delta_N)$ donde $Q = \{0, 1, 2\}, 0 \in Q, \Sigma = \{1, 2\}, F = \{1, 2\}$ y $\delta_N : Q \times \Sigma \to 2^Q$ está dada por

\overline{Q}	Σ	2^Q
0	1	$\{\underline{1},\underline{2}\}$
1	2	{ <u>1</u> }
2	1	<u>{2</u> }
2	2	<u>{1</u> }

- (a) [1.0] Explicar con ejemplos que lenguaje acepta.
- (b) [1.5] Escribir la ER más pequeña del lenguaje que acepta.
- 4. Explicar su simplificación algebraica o dar ejemplos para responder si son o no iguales los siguientes lenguajes.
 - (a) $[1.0] (0+1)^*(0^*+1^*+2^*)^*1 = (0+1+2)^*1$
 - (b) [1.5] $\mathbf{00}^* + \mathbf{11}^* \mathbf{2} = L(AFD)$ donde $AFD = (0, \Sigma, Q, F, \delta)$ donde $Q = \{0, 1, 2, 3, 4\}, 0 \in Q, \Sigma = \{0, 1, 2\}, F = \{3, 4\}$ y $\delta: Q \times \Sigma \to Q$ está dada por

Q	Σ	Q
0	0	4
0	1	2
0	2	3
2	1	2
2	2	3
4	0	4