1112042 Introducción al Cálculo GRUPO CAT83 TRIMESTRE 23P

Miércoles 15 de agosto de 2023. Sesión 8

Clase de anterior

Aplicaciones de Introducción al cálculo.

Notas sobre la ecuación de la recta.

Designaldad: a) $ax + b \le cx + d$.

Problema: Determinar el intervalo donde se cumple la desigualdad a).

Interpretación geométrica del problema de determinar el intervalo donde se cumple la desigualdad a).

Clase de Hoy

Función valor absoluto.

En esta clase se tratan las desigualdades: d) $|ax + b| \le k$, e) $|ax + b| \ge k$ para el problema de determinar el intervalo donde se cumple cada una.

Función valor absoluto

La función valor absoluto, consiste en tomar el argumento de la función y transformarlo en un valor positivo o cero. Su definición es una función seccionada para los dos casos de que el argumento sean positivos o cero o bien sea negativo, en este ultimo caso lo multiplica por (-1) para volverlo positivo. La definición del la función valor

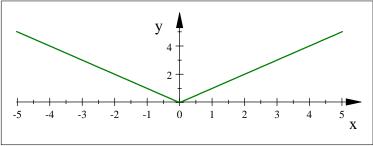
1) $|\cdot|: \mathbb{R} \to [0, \infty)$ y su regla dada por dos casos o secciones es:

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

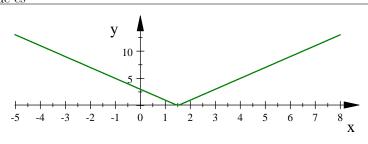
2) $|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$ Note que el dominio de la función valor absoluto es \mathbb{R} y su rango es $[0, \infty)$.

Ejemplos:
$$|5| = 5, |-3\pi| = 3\pi, \left|\frac{-3(8)}{2} + 3\pi\right| = 12 - 3\pi, \text{ etc.}$$

Se puede interpretar como que le quita lo negativo (o sea el signo -) a un número y siempre da un valor positivo o cero. La gráfica de |x| se muestra por las líneas verdes.



Cuando se aplica a una recta, esta se refleja sobre el eje X. Por ejemplo: f(x) = |-2x + 3|, su gráfica en color

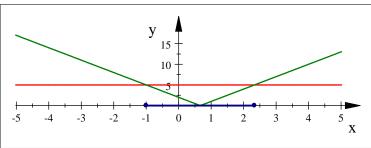


Note que las desigualdades de esta clase son casos particulares de la desigualdad a) $ax + b \le cx + d$ donde para una de las rectas se considera la recta constante y = k.

Problema: determinar el intervalo donde se cumple: d) $|ax+b| \le k$.

Una interpretación geométrica del problema: se trata de determinar el intervalo en el ejé X donde los valores $x \operatorname{de} f(x) = |ax + b|$ (del valor absoluto de la recta ax + b) están por abajo de la recta constante (y = k).

Sea |-3x+2| (aparece en verde) y k=5 (aparece en rojo)



El intervalo solución es la linea azul.

Método de solución algebraico:

- 1) Se deben evaluar los casos a) ax + b > 0 y b) -(ax + b) > 0.
- 2) Al combinar a) con k, se debe resolver $ax + b \le k$ y despejar x.
- 3) Al combinarlo b) con k, resolver $-(ax+b) \le k$ y despejar x.
- 4) El intervalo solución es la intersección de los intervalos de los casos 2) y 3).

NOTAS: El caso a) corresponde a los valores positivos o cero de la recta ax + b y no se le cambia el signo. El caso b) corresponde a los valores negativos o cero de la recta ax + b y se le cambia el signo porque la función valor absoltuo transforma lo negativo en positivo.

Ejemplo $|-3x+2| \le 5$, determinar el intervalo donde se cumple.

Como se trata de la función valor absoluto se tiene:
$$|-3x+2| = \left\{ \begin{array}{ll} \mathrm{Si} & -3x+2 \geq 0 & \mathrm{a}) - 3x + 2 \\ \mathrm{Si} & -3x+2 < 0 & \mathrm{b}) - (-3x+2) \end{array} \right.$$
 Se tienen dos rectas ambas deben pasar por debajo de $y=5$.

a) Se parte de $-3x + 2 \ge 0$ y ≤ 5 .

Se tiene el problema de determinar el intervalo donde se cumple: $-3x + 2 \le 5$.

Despejando x por la regla de la balanza, del lado izquierdo los terminos con la variable y del lado derecho los valores (solo se requiere sumar -2):

 $-3x + 2 + (-2) \le 5 + (-2)$, o sea $-3x \le 3$, se multiplica por $(-\frac{1}{3})$ en ambos lados y como es negativo se invierte la desigualdad \leq : se tiene $-3x\left(-\frac{1}{3}\right) \leq 3\left(-\frac{1}{3}\right)$.

Finalmente se tiene $x \geq -1$. El intervalo es $[-1, \infty)$.

b) $-(-3x+2) \ge 0$ y ≤ 5 .

Se tiene el problema de determinar el intervalo donde se cumple: $-(-3x+2) \le 5$, o sea $3x-2 \le 5$.

Despejando x por la regla de la balanza, del lado izquierdo los terminos con la variable y del lado derecho los valores (solo se requiere sumar 2):

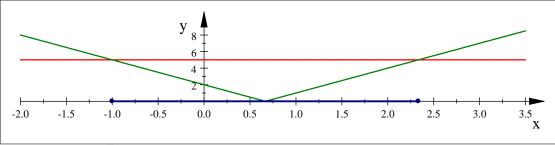
 $3x-2+(2) \le 5+(2)$, o sea $3x \le 7$, se multiplica por $\left(\frac{1}{3}\right)$ en ambos lados: $3x\left(\frac{1}{3}\right) \le 7\left(\frac{1}{3}\right)$.

Se tiene $x \leq \frac{7}{3}$. Por lo que el intervalo es $(-\infty, \frac{7}{3}]$.

Finalmente, el intervalo solución es la intersección de los intervalos de los casos anterriores: $[-1,\infty)\cap(-\infty,\frac{7}{2}]$ $[-1, \frac{7}{3}].$

Verificación por medio de la gráfica.

Las rectas positivas del problema son a) -3x + 2 (recta verde del lado izquierdo) y b) 3x - 2 (recta verde del lado derecho), la recta constante y=5 (de color rojo) y el intervalo solución $\left[-1,\frac{7}{3}\right]$ (recta azul sobre el eje X):



Note que $7/3 = 2.\overline{3}$

Usando PhotoMath: se obtiene el mismo intervalo de solución.

$$|-3x+2| \leq 5$$

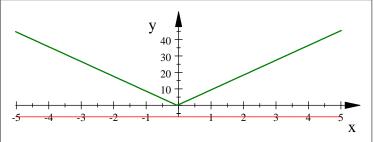
Resolver para x

$$x \in \left[-1, rac{7}{3}
ight]$$

Otro ejemplo

Problema $|9x + \frac{2}{5}| \le -7$, determinar el intervalo donde se cumple.

Por medio de la gráfica se tiene:

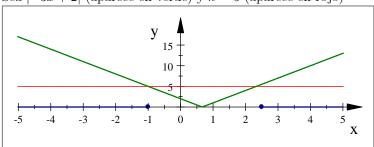


La solución es ϕ (conjunto vacio).

Problema: determinar un intervalo donde se cumple e) $|ax+b| \ge k$.

Una interpretación geométrica del problema: se trata de determinar el intervalo en el eje X donde los valores y = |ax + b| (del valor absoluto) están por arriba de la recta (y = k).

Sea |-3x+2| (aparece en verde) y k=5 (aparece en rojo)



Ejemplo $|-3x+2| \ge 5$, determinar el intervalo donde se cumple.

Respuesta.

Como se trata de la función valor absoluto se tiene:
$$|-3x+2| = \begin{cases} \text{Si } -3x+2 \geq 0 & \text{a} \\ -3x+2 = \begin{cases} \text{Si } -3x+2 \geq 0 & \text{b} \\ -3x+2 = \end{cases} -(-3x+2)$$
 En el caso a) se tiene $-3x+2 \geq 0$ y ≥ 5 .

Es decir, $-3x + 2 \ge 5$. Se tiene que despejar x.

$$-3x + 2 + 3x - 5 \ge 5 + 3x - 5$$
, se tiene

 $-3 \ge 3x$. Por tanto $-1 \ge x$ y el intervalo es $(-\infty, -1]$.

En el caso b) se tiene $-(-3x+2) \ge 0$ y ≥ 5 .

Es decir, $-(-3x+2) \ge 5$. Se tiene que despejar x.

 $3x-2 \geq 5$, se tiene $3x \geq 5+2=7$, $3x \geq 7$. Por tanto $x \geq \frac{7}{3}$ y el intervalo es $[\frac{7}{3}, \infty)$.

El intervalo resultante es la unión de los intervalos de los casos a y b:

 $(-\infty,-1]\cup \left[\frac{7}{3},\infty\right).$

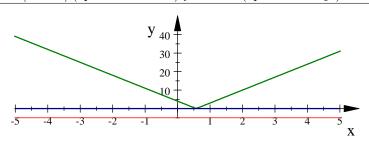
En resumen el método de resolución consiste en:

- 1) Se deben evaluar los casos a) $ax + b \ge 0$ y b) $-(ax + b) \ge 0$.
- 2) Al combinarlo con k, resolver $ax + b \ge k$ y despejar x.
- 3) Al combinarlo con k, resolver $-(ax + b) \ge k$ y despejar x.

4) El intervalo solución es la unión de los intervalos de los casos 2) y 3).

Otro ejemplo. Problema $|7x-4| \ge -5$, determinar el intervalo donde se cumple.

Sea |7x - 4| (aparece en verde) y k = -5 (aparece en rojo)



De la gráfica la solución es \mathbb{R} .

Respuesta.

El intervalo solución es \mathbb{R} , porque $|7x-4| \ge 0$ para cualquier x, o sea siempre es $\ge a-5$.

Otro ejemplo. Problema $|x-2| \geq 5$, determinar el intervalo donde se cumple.

Respuesta.

- 1) Se deben evaluar los casos a) $x 2 \ge 0$ y b) $-(x 2) \ge 0$.
- 2) Al combinarlo con 5, resolver $x-2 \ge 5$ y despejar x.

Se tiene: $x \geq 7$. El intervalo es $[7, \infty)$.

3) Al combinarlo con 5, resolver $-(x-2) \ge 5$ y despejar x.

Se tiene: $-(x-2) = -x + 2 \ge 5$. Despejando x,

 $-3 \ge x$. El intervalo es $(-\infty, -3]$.

4) El intervalo solución es la unión de los intervalos de los casos 2) y 3) y es

$$(-\infty, -3] \cup [7, \infty).$$

Verificación.

Sea |x-2| (aparece en verde) y k=5 (aparece en rojo).

El intervalo solución $(-\infty, -3] \cup [7, \infty)$ (aparece en azul).

