

División de CBI

Cálculo Diferencial

Guía del Trimestre 12P

Por

S. Arellano, J. Cruz y J. Grabinsky

Tarea de la unidad 1

"Sólo se aprende haciendo las cosas; porque aunque creas saberlas, nunca tendrás la certeza hasta que lo intentes." Sófocles (496 a. C. - 406 a. C.)

1. Calcula la derivada de las siguientes funciones:

(a)
$$y = 2x^5 - x^2 + 1$$
, (b) $y = 7x^{-5/3} - 2\sqrt[5]{x}$, (c) $y = 3\sqrt[3]{x^2} - \frac{3}{x^{2/3}}$.

2. Calcula las derivadas de las siguientes funciones usando reglas de derivación:

(a)
$$y = \sqrt[5]{x} (x^3 - 5\sqrt[3]{x})$$
, (b) $y = x^{2/3} \operatorname{sen} x$, (c) $y = \left(\sqrt{x} - \frac{3}{\sqrt{x}}\right) \left(\frac{x+1}{x+2}\right)$.

3. Calcula la primera y la segunda derivadas de las siguientes funciones:

(a)
$$y = x^3 - x^2$$
, (b) $y = \frac{t+1}{t-1}$, (c) $y = \frac{x+1}{x^2+x+1}$.

4. Encuentra la ecuación de las rectas tangente y normal a cada una de las gráficas de las siguientes funciones en los puntos dados:

(a)
$$y = 2x - x^2$$
, (1,1); (b) $y = \sqrt{x}$, (4,2).

- 5. Esboza la gráfica de cada una de las funciones del ejercicio anterior, conjuntamente con las rectas tangente y normal en el punto dado.
- 6. Calcula la primera y la segunda derivada de las siguientes funciones:

(a)
$$y = \cos \theta - 5 \sin \theta$$
, (b) $y = \sqrt{x} \tan x$; (c) $y = \frac{\cos t}{1 - \sin t}$.

7. Calcula la primera, la segunda y la tercera derivadas de las siguientes funciones:

(a)
$$y = x^3 - 5x^2 + 3x - 1$$
, (b) $y = x^2 \operatorname{sen} x$; (c) $y = \frac{\tan \theta}{\sec \theta - 1}$.

8. Utiliza las reglas de derivación para decidir, sin calcular las derivadas, en qué intervalos son derivables las siguientes funciones:

(a)
$$y = \frac{5}{x} - \sqrt{4 - x}$$
, (b) $y = \frac{\sqrt{x^2 - 1}}{9 - x^2}$; (c) $y = \frac{\sqrt{\cos t}}{\sin t}$.

9. Encuentra la ecuación de las rectas tangente y normal a cada una de las gráficas de las siguientes funciones en los puntos dados:

$$y = 4 \sin x$$
, $(\pi/4, 2\sqrt{2})$; $y = 3 \tan x$, $(\pi/4, 3)$.

- 10. ¿En qué puntos es horizontal la tangente a $y = \cos x \sin x$?
- 11. Si la posición de una partícula en el eje y está dada por y=5 sen $t\cos t$, encuentra:
 - Su posición, velocidad y aceleración en los instantes $t=0,\,t=\pi/4$ y $t=\pi.$

11

- Los instantes en los que la velocidad vale cero.
- Los instantes en los que la aceleración es nula.

Ejercicios complementarios

Si necesitas práctica adicional, te sugerimos elegir en tu libro de texto algunos de los ejercicios que te proponemos a continuación:

- \blacksquare Sección 3.3: 1, 4, 7,..., 28, 29, 32, 33, 36, 39, 40, 43, 45 y 46.
- Sección 3.5: 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, 35, 38, 47, 48, 53 y 54.

Tarea de la unidad 2

"Sólo se aprende haciendo las cosas; porque aunque creas saberlas, nunca tendrás la certeza hasta que lo intentes."

Sófocles (496 a. C. – 406 a. C.)

1. Usa la regla de la cadena para calcular las derivadas de las siguientes funciones:

(a)
$$y = (1 + 2x - x^3)^7$$
, (b) $y = \sqrt[5]{r^2 - \sqrt{r}}$.

2. Emplea la regla de la cadena para calcular las derivadas de las siguientes funciones:

(a)
$$y = \left(\frac{\sin \theta}{1 + \cos \theta}\right)^4$$
, (b) $y = \cos \left(t^2 + \frac{2}{t}\right)$.

3. Calcula las derivadas de las siguientes funciones:

(a)
$$y = 3x^2 \sqrt[4]{2 - x^3}$$
, (b) $y = \pi x \operatorname{sen}(3x^2)$.

4. Calcula las derivadas de las siguientes funciones:

(a)
$$y = (1 - \theta^2)^3 \sqrt{2\theta^3 + 1}$$
, (b) $y = \frac{5 \sin \theta^2}{1 + \cos \sqrt{\theta}}$

5. Calcula las derivadas de las siguientes funciones:

(a)
$$y = \left(\frac{1 - \sqrt{\theta}}{\operatorname{sen}(\theta^2)}\right)^2$$
, (b) $y = \sqrt[3]{\theta + \operatorname{sen}^2(\sqrt{\theta})}$.

6. Calcula las derivadas de las siguientes funciones:

$$y = \pi \operatorname{sen}^{2}(\sec(5t^{3})) - 4\tan^{2}(\cos(\sqrt[3]{5t^{2}+1})).$$

7. Utiliza derivación implícita para calcular y'.

(a)
$$x^3 + y^2 = 2xy$$
, (b) $\sqrt{x+y} = xy$.

8. Utiliza derivación implícita para calcular y'.

(a)
$$x^{2/3} + y^{2/3} = \cos(xy)$$
, (b) $xy^2 = \frac{\sin(x-y)}{\cos(x+y)}$.

9. Encuentra las ecuaciones de las rectas tangente y normal a las siguientes curvas en los puntos dados:

(a)
$$y^4 = y^2 - x^2$$
, $\left(\frac{\sqrt{3}}{4}, \frac{1}{2}\right)$; (b) $y^2(2-x) = x^3$, $(1,1)$.

10. La posición y(t) de una partícula está dada implícitamente por $t^2(t-y)^2=t^2-y^2$. Encuentra su velocidad en t=1 si se sabe que y(1)=1.

Ejercicios complementarios

Si necesitas práctica adicional, te sugerimos elegir en tu libro de texto algunos de los ejercicios que te proponemos a continuación:

14

■ Sección 3.6: 1, 4, 7,..., 76.

■ Sección 3.7: 2, 5, 8, 11,..., 44.