Tarea de Lógica formas normales cláusulas lógicas (fncl).

Profesor Carlos Barrón Romero

SOLUCIÓN. Corrección a la reducción algebraica. vista en clase.

Determine si las siguientes f
ncl son satisfacibles, encuentre una n-ada que la satisfaga y verifique que su n-ada es correcta.

1. $x_1 \lor x_2 \lor x_4$

$$\land x_1 \lor \rceil x_2$$

RESPUESTA.

Es satisfacible porque con $(x_1 = 1, x_2 = 0, x_4 = 0)$ se tiene por sustitución

$1 \lor 0 \lor 0$	=	1
\wedge 1 \vee 1	=	$\wedge 1$
		1

 $2. \quad x_1 \vee \rceil x_5 \vee x_2$

$$\land x_5 \lor \rbrack x_2$$

$$\wedge x_1$$

RESPUESTA.

Es Satisfacible porque con $(x_1 = 1, x_5 = 1, x_2 = 0)$ se tiene por sustitución

$1 \lor 0 \lor 0$		1
\wedge 1 \vee 1	=	$\wedge 1$
∧ 1	=	$\wedge 1$
		1

3. $x_1 \lor \rceil x_2 \lor x_3 \lor \rceil x_4 \lor x_5$

$$\land \exists x_1 \lor x_2$$

$$\land \exists x_3 \lor x_4$$

$$\wedge \rceil x_5$$

RESPUESTA.

Es Satisfacible porque con $(x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 1, x_5 = 0)$ se tiene por sustitución

$1 \lor 0 \lor 0 \lor 1 \lor 0$	=	1
\wedge 0 \vee 1	=	∧ 1
\wedge 1 \vee 1	=	$\wedge 1$
∧ 1	=	$\wedge 1$
		1

4. $x_1 \lor x_2 \lor \rceil x_3$

$$\wedge \rceil x_1 \vee \rceil x_2$$

RESPUESTA.

Es Satisfacible porque con $(x_1 = 1, x_2 = 0, x_3 = 0)$ se tiene por sustitución

$1 \lor 0 \lor 1$		1
\wedge 0 \vee 1	=	\wedge 1
		1

5.
$$|x_1 \lor |x_2 \lor |x_3 \lor |x_4 \lor x_5$$

$$\wedge x_1 \vee x_2$$

$$\land x_3 \lor x_4$$

$$\wedge \rceil x_5$$

Es Satisfacible porque con $(x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 1, x_5 = 0)$ se tiene por sustitución

$1 \lor 0 \lor 1 \lor 0 \lor 0$	=	1
\wedge 0 \vee 1	=	$\wedge 1$
\wedge 0 \vee 1	=	∧ 1
∧ 1	=	∧ 1
		1

NOTA. Ejemplo y simplificación de un no satisfacible:

Para simplificar se requiere una forma del estilo <A $><math>\lor x$, <A $><math>\lor \rceil v$. Por ejemplo:

	$x_1 \vee x_2 \vee \rceil x_3$
ſ	$\wedge \ x_1 \vee x_2 \vee x_3$

Aquí $\langle A \rangle \equiv x_1 \vee x_2 \vee x_3$. Esta forma se simplifica a $\langle A \rangle$. En este caso a $x_1 \vee x_2$. Porque por una tabla de verdad se tiene:

<a>	v	<a>∨v	$\langle A \rangle \forall v$	$(\langle A \rangle \lor v) \land (\langle A \rangle \lor v)$
0	0	0	1	0
0	1	1	0	0
1	0	1	1	1
1	1	1	1	1

Note que las columnas de <A> y de (<A> \lor $v) \land (<$ A> \lor v) son iguales, esto es <A> \equiv (<A> \lor $v) \land (<$ A> \lor v).

Así un ejemplo no satisfacible es el siguiente:

$$x_1 \vee x_2 \vee x_3$$
 (A)

$$\wedge x_1 \vee x_2 \vee \rceil x_3$$
 (B)

$$\wedge x_1 \vee \exists x_2 \dots (C)$$

$$\land \ \]x_1.....(D).$$

Se tiene de (A) y (B): $x_1 \vee x_2$ que combinando con (C) se tiene x_1 . Esta y (D) da ϕ .

Comprobación por tabla de verdad.

x_1	x_2	x_3	$x_1 \vee x_2 \vee x_3$ (A)	$x_1 \lor x_2 \lor \rceil x_3$ (B)	$\wedge x_1 \vee \rceil x_2$ (D)	$\wedge \rceil x_1$ (D)	$A \land B \land C \land D$
0	0	0	0	-	-	-	0
0	0	1	1	0	-	-	0
0	1	0	1	1	0	-	0
0	1	1	1	1	0	-	0
1	0	0	1	1	1	0	0
1	0	1	-	-	-	0	0
1	1	0	-	-	-	0	0
1	1	1	-	-	-	0	0

Note que - es ya no importa porque al tener un 0 en alguna columna la conjunción es 0.

Por la tabla anterior

$$x_1 \vee x_2 \vee x_3$$
 (A)

$$\wedge x_1 \vee x_2 \vee \rceil x_3$$
 (B)

$$\wedge x_1 \vee \rceil x_2 \dots (C)$$

$$\land \exists x_1....(D)$$

Es no satisfacible (no hay una n-ada que lo haga 1).

Finalmente, observe que

$$x_1 \vee x_2$$
 (A)

$$\wedge \rceil x_1 \vee \rceil x_2 \quad (B)$$

No se simplifica a ϕ , porque

x_1	x_2	$x_1 \vee x_2$ (A)	$ x_1 \lor x_2 $ (B)	$(x_1 \vee x_2) \wedge (\rceil x_1 \vee \rceil x_2)$	$(]x_1 \wedge x_2) \vee (x_1 \wedge]x_2)$
0	0	0	1	0	0
0	1	1	1	1	1
1	0	1	1	1	1
1	1	1	0	0	0

O sea $(x_1 \lor x_2) \land (\exists x_1 \lor \exists x_2) \neq 0$, de acuerdo con lo anterior $(x_1 \lor x_2) \land (\exists x_1 \lor \exists x_2) \lor (x_1 \land \exists x_2)$.