112033 MATEMATICAS DISCRETAS

Solución del Examen Global

de 2013

Instrucciones. De acuerdo con sus examenes parciales reprobados debe contestar las partes 1,2 y 3. La parte global es obligatoria. El marco de sus respuestas son los objetivos de la UEA que transcribo a continuación:

Docente: Dr. Carlos Barrón Romero

13 de noviembre

- Comprender los principios básicos de la lógica de predicados.
- Describir los conceptos y técnicas elementales de la matemática discreta.
- Aplicar la inducción matemática a la solución de problemas combinatorios.
- Relacionar y combinar conceptos y técnicas de la matemática discreta para la resolución de problemas y el diseño de algoritmos.

Responda en forma resumida, que su respuesta refleje los objetivos de la UEA, use el sentido común y describa con claridad la explicación o el desarrollo de su solución. El valor de cada pregunta está entre "[", "]".

Parte Global

- 1. Traducir a la notación de lógica símbolica.
 - (a) [1.0] Sócrates es humano y es alumno de la UAM.

RESPUESTA.

Convención: S: Sócrates, h: humano, a: alumno de la UAM. la traducción de Sócrates es humano y es alumno de la UAM es $h(S) \land a(S)$.

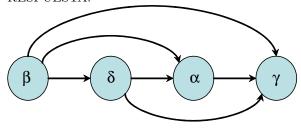
(b) [1.0] Por favor, ¿abres la puerta?

RESPUESTA.

Un pregunta no es traducible.

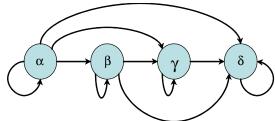
- 2. Para $V = {\alpha, \beta, \gamma, \delta}$. Explicar su respuesta mediante digrafos.
 - (a) [1.0] Construir una relación de orden estricta total de forma que el elemento minimal sea β y el elemento máximal γ .

RESPUESTA.

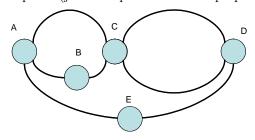


(b) [1.0] Construir una relación de orden no estricta total apropiada de forma que el elemento minimal sea α y el maximal sea δ .

RESPUESTA.



3. Explicar (justificar por un criterio apropiado o por exploración exhaustiva) si tiene o no para el grafo siguiente:



RESPUESTA. Los grados de los vertices son:

gr(A)=4,gr(B)=2,gr(C)=4,gr(D)=3,gr(E)=2.

(a) [1.0] un ciclo Euleriano.

RESPUESTA.

No tiene ciclo Euleriano porque no todos los grados de los vertices son pares.

(b) [1.0] un camino Euleriano.

RESPUESTA.

Tiene un camino Euleriano porqué es conexa y tiene exactamente 2 vertices de grado impar.

(c) [1.0] un ciclo Hamiltoneano.

RESPUESTA.

Un ciclo Hamiltoneano es A, E, D, C, B, A.

(d) [1.0] un camino Hamiltoneano.

RESPUESTA.

Un camino Hamiltoneano es A, E, D, C, B.

Parte 1

- 1. Explicar y evaluar con falso o verdadero los siguientes enunciados (de conjuntos o lógicos).
 - (a) [0.5] Sean A y B dos conjuntos, Si $A \cap B = \phi$, entonces $|A \cup B| = |A| + |B|$.

RESPUESTA.

Por el principio de inclusión y exclusión $|A \cup B| = |A| + |B| - |A \cap B|$. Como por hipótesis $A \cap B = \phi$ se tiene $|A \cap B| = 0$. Por tanto $|A \cup B| = |A| + |B|$.

El enunciado: $A \cap B = \phi \Rightarrow |A \cup B| = |A| + |B|$ es verdadero.

(b) [0.5] Sean A y B dos conjuntos, si $A \subset B$ entonces $a \in A \Rightarrow a \notin B$.

RESPUESTA.

No es posible que $a \in A \Rightarrow a \notin B$, ya que $A \subset B$, significa que $\forall x \in A \Rightarrow x \in B$.

El enunciado: $A \subset B \Rightarrow (a \in A \Rightarrow a \notin B)$ es falso.

- 2. Sea el conjunto $\Gamma = \{x \in \mathbb{Z} | (x \le 2) \lor (-2 \ge x)\}$ donde \mathbb{Z} es el conjunto de los números enteros.
 - (a) [0.5] Explicar porqué axioma el conjunto Γ está bien definido.

RESPUESTA.

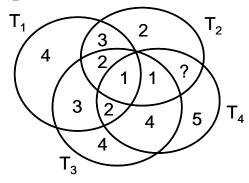
Por el axioma de especificación o regla.

(b) [0.5] Determinar o calcular los elementos del conjunto $\Gamma.$

RESPUESTA.

Por el axioma de especificación o regla, evaluamos los elementos x de \mathbb{Z} para los cuales es verdadero $(x \le 2) \lor ([-2 \ge x] \equiv [x \le -2])$. Se tiene que $\Gamma = \{x \in \mathbb{Z} \mid x \le 2\} = \{2, 1, 0, -1, -2, -3, \ldots\}$

3. Una cadena de tiendas tiene un gran total de 52 elementos entre sus cuatro tiendas ($|\cup_{i=1}^4 T_i| = 52$). Vea la siguiente figura:



(a) [1.0] Calcular $|T_1|$, $|T_2|$, $|T_3|$ y $|T_4|$.

RESPUESTA.

Del dibujo se tiene

$$|T_1| = 4 + 3 + 2 + 1 + 2 + 3 = 15,$$

$$|T_2| = 2 + 3 + 2 + 1 + 1 + ? = 9 + ?$$

$$|T_3| = 3 + 2 + 1 + 1 + 4 + 4 + 2 = 17 \text{ y}$$

$$|T_4| = 1 + 1 + 2 + 4 + 5 + ? = 13 + ?.$$

Para determinar? La suma de las particiones es 52 = 4 + 3 + 2 + 1 + 1 + 2 + 3 + 2 + 4 + 4 + 5 + ? = 31 + ?.

Por tanto ? = 52 - 31 = 21. Finalmente, sustituyendo ? se tiene

$$|T_2| = 9 + 21 = 30.$$

$$|T_4| = 13 + 21 = 34.$$

(b) [1.0] Calcular el número de elementos del área "?".

RESPUESTA.

Para determinar? La suma de las particiones es 52 = 4 + 3 + 2 + 1 + 1 + 2 + 3 + 2 + 4 + 4 + 5 + 7 = 31 + 7.

Por tanto ? = 52 - 31 = 21.

- 4. [1.0] Se tienen dos algoritmos A y B, que realizan $n^2 + 5$ y n^3 operaciones respectivamente. Explicar y demostrar por el Principio de Inducción Matemática que se puede generalizar que el algotimo A realiza menos operaciones que B a partir de un cierto valor n (número natural).
 - (a) RESPUESTA.

En l siguiente tabla se comporan A y B.

$$\begin{array}{ccc} \mathrm{n} & \mathrm{A} & \mathrm{B} \\ & n^2 + 5 & & n^3 \end{array}$$

$$1 \quad 1^2 + 5 = 6$$

$$2 \quad 2^2 + 5 = 9 \quad 2^3 = 8$$

$$3 \quad 3^2 + 5 = 14 \quad 3^3 = 27$$

El paso inicial de la demostración por el Principio de inducción Matemática corresponde cuando n=3.

Hipóteis de Inducción (HI): $n^2 + 5 < n^3, n > 3$.

Paso de inducción. Sea n+1, $(n+1)^2+5=n^2+2n+1+5$, como $1 < n < n^2 < n^3$, se tiene $n^2+2n+1+5 < n^3+2n^2+n+5=n^3+\left(2n^2+2\right)+(n+2)+1 < n^3+3n^2+n+2n+1=n^3+3n^2+3n+1=(n+1)^3$. ya que $\left(2n^2+2\right) < 3n^2$ y (n+2) < 3n con n>3.

Se tiene para $n+1, (n+1)^2+5 < (n+1)^3$.

Parte 2

- 1. Dada un baraja inglesa de 52 cartas (A,2,3,4,5,6,7,8,9,10,J,Q,R, sin comodín).
 - (a) [1.0] Encontrar de cuantas formas se pueden acomodar en circulo 5 cartas (de la baraja inglesa). Explicar su modelo combinatorio y su resultado.

RESPUESTA.

$$\binom{52}{5} = \frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 2598960$$

$$(5-1) = 4! = 24$$
. Y $(2598960)24 = 62375040$.

Selecccion de 5 cartas del maso Circulo de 5 cartas Total
$$\binom{52}{5}$$
 $(5-1)!$ $\binom{52}{5}(5-1)!=62375040$

(b) [1.0] Encontrar de cuantas formas se tiene una tercia (de Q o R) y un par. Explicar su modelo combinatorio y su resultado.

RESPUESTA.

Para una tercia de Q y un par se tiene:

- $\binom{4}{3} = 4$, selección de una Q.
- $\binom{4}{2}$ 12 = 6 (12) = 72, selección de un par de las 12 cartas que no son Q.

Seleccción de tercia de Q un par Total
$$\binom{4}{3}$$
 $\binom{4}{3}$ $\binom{2}{3}$ $\binom{4}{2}$ $\binom{12}{2}$ $\binom{4}{3}$ $\binom{4}{3}$ $\binom{12}{2}$ $\binom{4}{3}$ $\binom{4$

De forma similar para una tercia de R y un par se tienen 288.

El total de Full con Q o R es (288) 2 = 576.

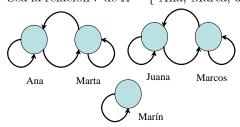
- 2. Una cadena comercial tiene tres tiendas. La tienda 1 tiene dos empleados (Ana y Marta), la tienda 2 tiene dos empleados (Juana y Marcos) y la tienda 3 tiene un empleado (Marín).
 - (a) [1.0] Construir una familia de tres clases o particiones para todos los empleados.

RESPUESTA.

Sean $T_1 = \{\text{Ana, Marta}\}, T_2 = \{\text{Juana, Marcos}\} \text{ y } T_3 = \{\text{Marin}\}.$

(b) [1.0] Para la familia de clases del inciso anterior construir una relación de equivalencia y dibujarla con un digrafo. RESPUESTA.

Sea la relación r de $\Omega = \{$ Ana, Marta, Juana, Marcos, Marín. $\}$ dada por x r y si $(x \in T_i) \land (y \in T_i)$ con i = 1, 2, 3.



- 3. Sean $L = \{a, b, y\}, N = \{1, 2, 3\}, R_1 = \{(a, 1), (a, 2), (b, 3), (y, 3)\}$ y $R_2 = \{(1, a), (2, y), (3, y)\}$.
 - (a) [1.0] Calcular la composición $R_1 \circ R_2$ e identificar el producto cruz al que pertenece.

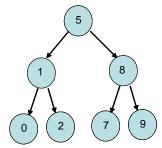
$$R_1 \circ R_2 \subset L \times L, R_1 \circ R_2 = \{(a, a), (a, y), (b, y), (y, y)\}.$$

(b) [1.0] Calcular la composición $R_2 \circ R_1$ e identificar el producto cruz al que pertenece. RESPUESTA.

$$R_2 \circ R_1 \subset N \times N, R_2 \circ R_1 = \{(1,1), (1,2), (2,3), (3,3)\}.$$

Parte 3

- 1. [1.0] Construir un árbol binario ordenado de altura 2 con las dígitos 9,0,7,1,2,8,5 de forma que el recorrido en-orden los imprima ordenados.
 - (a) RESPUESTA.



2. Sea la serie de Fibonaci: $f_0=0, f_1=1, f_2=1, f_3=2, f_4=3, \dots$ Una posible función $f:\mathbb{N}\to\mathbb{N}$ (incompleta) que la construye es

$$f(n) = f(n-1) + f(n-2)$$
.

(a) [1.0] Demuestrar que la serie es computable, es decir, que corresponde con una función recursiva primitiva. RESPUESTA.

Sea $f: \mathbb{N} \to \mathbb{N}$, dada por

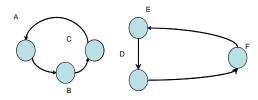
$$f(n) = \begin{cases} 0 & n = 0\\ 1 & n = 1\\ + (f(\operatorname{ant}(n)), f(\operatorname{ant}(\operatorname{ant}(n)))) & n > 1. \end{cases}$$

(b) [1.0] Calcular con todo detalle f_7 .

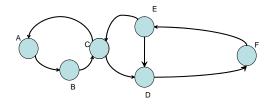
RESPUESTA.

Se tiene $f_0 = 0$, $f_1 = 1$, $f_2 = 1$, $f_3 = 2$, $f_4 = 3$, $f_5 = 5$, $f_6 = 8$, $f_7 = 13$.

3. [1.0] Explicar y construir como transformar por clausura (con minimos ajustes) en un digrafo fuertemente conexo al siguiente digrafo:



RESPUESTA.



El digrafo anterior es una clausura del de la pregunta y es fuertemente conexo, ya que hay caminos de ida y vuelta entre todos los pares de vertices (V_1, V_2) , tal como se indica en la siguiente tabla:

V_1, V_2	Ida	Vuelta
$_{A,B}$	$_{A,B}$	$_{\mathrm{B,C,A}}$
$_{A,C}$	$_{A,B,C}$	$_{\mathrm{C,A}}$
$_{A,D}$	A,B,C,D	$_{\mathrm{D,F,E,C,A}}$
$_{A,E}$	A,B,C,D,F,E	$_{\mathrm{E,C,A}}$
$_{A,F}$	A,B,C,D,F	F,E,C,A
$_{\mathrm{B,C}}$	$_{\mathrm{B,C}}$	$_{\mathrm{C,A,B}}$
$_{\mathrm{B,D}}$	$_{\mathrm{B,C,D}}$	D,F,E,C,A,B
$_{\mathrm{B,E}}$	$_{\mathrm{B,C,D,F,E}}$	$_{\mathrm{E,C,A,B}}$
$_{\mathrm{B,F}}$	$_{\mathrm{B,C,D,F}}$	F,E,C,A,B
$_{\mathrm{C,D}}$	$_{\mathrm{C,D}}$	$_{\mathrm{D,F,E,C}}$
$_{\mathrm{C,E}}$	C,D,F,E	$_{\mathrm{E,C}}$
$_{\mathrm{C,F}}$	$_{\mathrm{C,D,F}}$	$_{\mathrm{F,E,C}}$
$_{\mathrm{D,E}}$	$_{\mathrm{D,F,E}}$	$_{\mathrm{E,D}}$
$_{\mathrm{D,F}}$	$_{\mathrm{D,F}}$	$_{\mathrm{F,E,D}}$
$_{\mathrm{E,F}}$	$_{\mathrm{E,D,F}}$	$_{\mathrm{F,E}}$

4. [1.0] Explicar cuantas aristas tiene un grafo de n vertices, con n > 3, si $\sum_{i=1}^{n} \operatorname{grad}(v_i) = 4n$.

RESPUESTA. Por el teorema del Handshaking se tiene que $\sum_{i=1}^{n} \operatorname{grad}(v_i) = 2|A|$ donde A es el conjunto de aristas. Como $\sum_{i=1}^{n} \operatorname{grad}(v_i) = 4n$, $\sum_{i=1}^{n} \operatorname{grad}(v_i) = 2|A|$, se tiene 4n = 2|A|. Por tanto, el número de aristas es |A| = 2n.