Tarea de Introducción al Cálculo

Profesor Carlos Barrón Romero

Suponga que las variables y las constantes son en números reales.

Encontrar los intervalos de

- 1. $2x^2 + 4x \le |x 4|^2$,
- **2**. $|3x 7| \le |2x + 2|$.

3. Encontrar una base donde $\frac{1}{3}$ tenga una fracción finita.

RESPUESTAS.

Respuesta 3.

La base 3. Se tiene
$$\frac{1_{10}}{3_{10}} = 0.1_3$$
. Ya que $0.1_3 = 3^{-1} * 1 = \frac{1_{10}}{3_{10}}$

Respuesta 1.

Se tiene

$$2x^{2} + 4x \le |x - 4|^{2} = x^{2} - 8x + 16.$$
 Se tiene
$$2x^{2} + 4x \le x^{2} - 8x + 16,$$

$$2x^2 + 4x \le x^2 - 8x + 16$$

$$x^2 + 12x \le 16$$

$$x^{2} + 12x \le 16$$
,
 $(x+6)^{2} \le 16 + 36 = 52$,

$$|x+6| \le \sqrt{52}$$
.

Dos casos

1)
$$x + 6 \le \sqrt{52}$$
, $x \le \sqrt{52} - 6$.

2)
$$-(x+6) \le \sqrt{52}, -6 - \sqrt{52} \le x.$$

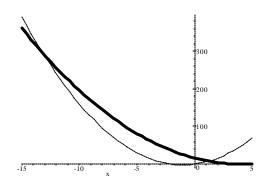
Por tanto
$$-6 - \sqrt{52} \le x \le -6 + \sqrt{52}$$
.

O como intervalo $[-6 - \sqrt{52}, -6 + \sqrt{52}]$.

$$-6 - \sqrt{52} = -13.2111$$

$$-6 + \sqrt{52} = 1.2111$$

Interpretación gráfica de la solución. es el intervalo debajo de la curva gruesa ($|x-4|^2$).



Respuesta 2.

$$|3x-7| \le |2x+2|,$$

Se tiene que analizar cuatro casos:

a)
$$3x - 7 \ge 0$$
 y $2x + 2 \ge 0$

b)
$$3x - 7 \ge 0$$
 y $2x + 2 < 0$

c)
$$3x - 7 < 0$$
 y $2x + 2 \ge 0$

d)
$$3x - 7 < 0$$
 y $2x + 2 \ge 0$

Para a) se tiene $3x - 7 \le 2x + 2$, $x \le 9$

Para b) se tiene
$$3x - 7 \le -(2x + 2)$$
, $3x - 7 \le -2x - 2$, $5x \le 5$, $x \le 1$.

Para c) se tiene
$$-(3x-7) \le 2x+2, -3x+7 \le 2x+2, 5 \le 5x, 1 \le x$$
.

Para d) se tiene
$$-(3x-7) \le -(2x+2)$$
, $-3x+7 \le -2x-2$, $9 \le x$.

La intersección de los cuatro intervalos da $1 \le x \le 9$.

El intervalo es [1,9]

Interpretación gráfica de la solución. es el intervalo debajo de la curva gruesa (|2x + 2|).

