Carlos Barrón Romero

ESPACIO LINEAL.

Sea V un conjunto, diferente de cero con una operación + (V,+) } Algebra Vectorial (I)

Sea C un campo de números (reales \mathbb{R} o complejos C) (C, +, \cdot , 0, 1) (II)

I. (V,+) + suma de vectores.

Sean a, b, c∈ V

1.
$$\overline{a} + \overline{b} \in V$$
 Cerradura en V

2.
$$\overline{a} + \overline{b} = \overline{b} + \overline{a}$$
 Conmutatividad

3.
$$(\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c})$$
 Asociatividad \overline{c} \overline{c}

$$+(+(\overline{a},\overline{b}),)=+(\overline{a},+(,))$$

II. Sean α , β , $\lambda \in C$.

i.
$$\alpha + \beta \in C$$
; $\alpha \cdot \beta \in C$ Cerradura en C

ii.
$$\alpha + \beta = \beta + \alpha$$
; $\alpha \cdot \beta = \beta \cdot \alpha$ Conmutatividad

iii.
$$(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda)$$
 Asociatividad $(\alpha \cdot \beta)\lambda = \alpha(\beta \cdot \lambda)$

iv. Unidades o elemento neutro

$$\alpha + 0 = \alpha$$
 Por la derecha $\alpha \cdot 1 = \alpha$

(Proposición: Las unidades de un campo con conmutatividad son también por la izquierda)

Prop.
$$0 + \alpha = \alpha$$

$$1 \cdot \alpha = \alpha$$

Demostración:

$$0 + \alpha \text{ por ii} = 0 + \alpha = \alpha + 0$$
 ... (a)

Y por iv =
$$\alpha + 0 = \alpha$$
 ... (b)

Por (a) y (b) =
$$0+\alpha = \alpha + 0 = \alpha \rightarrow 0+\alpha = \alpha$$

(En forma similar para $1\alpha = \alpha$)

v. Inversos.

+)
$$\exists ! -\alpha \in C$$
, tal que $\alpha + (-\alpha) = 0$
*) $\forall \beta \in C \setminus \{0\}, \exists ! B^{-1} \text{ tal que } \beta(\beta^{-1}) = 1$

(En forma similar en C conmutativo son por la izquierda)

Resolución de ecuaciones.

vi. Distributibidad de · sobre +

Expandir

$$\alpha(\beta+\lambda) = \alpha\beta + \alpha\lambda$$

Factorización

I, II. (V,+) (C,+,·,0,1). Si
$$\forall$$
 λ ∈ C, \forall $\overline{\mathbf{v}}$ ∈ V

Proposición $\exists \overline{\mathbf{0}} \in V$

Demostración por III para λ =0, $\overline{\mathbf{v}}$ \in V

Se tiene 0 ▼ ∈ V

El
$$\overline{\mathbf{0}}$$
 debe cumplir que $\overline{\mathbf{v}}$ \in V, \exists - $\overline{\mathbf{v}}$ \in V tal que $\overline{\mathbf{v}}$ +(- $\overline{\mathbf{v}}$)= $\overline{\mathbf{0}}$

Y esto se cumple porque $\overline{\mathbf{v}} + (-\overline{\mathbf{v}}) = 1 \cdot \overline{\mathbf{v}} + (-1) \overline{\mathbf{v}} = (1 + (-1) \overline{\mathbf{v}} = 0 \overline{\mathbf{v}}$

Además
$$\overline{\mathbf{v}}_{+}\overline{\mathbf{0}} = 1 \cdot \overline{\mathbf{v}}_{+0} \cdot \overline{\mathbf{v}} = [1+0] \overline{\mathbf{v}} = 1 \cdot \overline{\mathbf{v}} = \overline{\mathbf{v}}$$

LINEALIDAD.

 \bar{a}

$$\overline{a}_{+}\overline{a}_{=2}\overline{a}_{=(1+1)}$$

ā

$$\lambda \overline{a} + \beta \overline{a} = (\lambda + \beta)$$

Interpretación geométrica

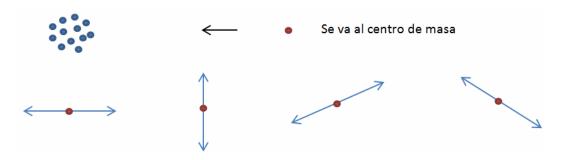
Dirección (depende de un origen) y magnitud (tamaño, peso y cantidad)

PRINCIPIO DE TRASLACIÓN DE VECTORES.

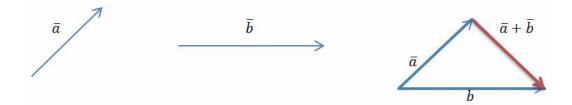
Los vectores se pueden trasladar a una referencia cualesquiera sin alterar su magnitud y dirección. Dicha traslación obedece al sentido común, diagrama de fuerzas del objeto o resolución de un problema.

¿Cuál es la dirección del 0?

Dado un sistema de una partícula a un cúmulo de partículas distantes, el vector de atracción de estos se dirige al centro de masa del cúmulo.



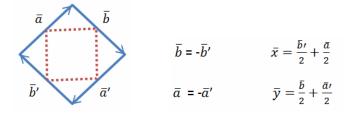
El cero es un vector que tiene todas las direcciones



mal el diagrama

Cualesquiera dos fuerzas que apunten al cúmulo forman un triángulo isósceles y éste triángulo coincide con el centro de masa.

Dado un sistema cerrado de 2 vectores, los puntos medios forman un rombo.



Un conjunto V es un campo C, forman un espacio vectorial si:

b

$$\alpha^{\overline{a}} + \beta^{\overline{b}} \in V \quad (\alpha + \beta) \qquad \overline{\mathbf{0}} \in V$$

Un conjunto SCV de un sub-espacio vectorial si S es un conjunto vectorial

Ejemplos de espacios vectoriales:

$$\mathbf{R}^{2} = \left\{ \begin{pmatrix} \frac{x}{y} \\ \frac{1}{y} \end{pmatrix} \middle| x, y \in \mathbf{R} \right\}$$

$$\underline{\lambda} \in \mathbf{R}, \ P = \begin{pmatrix} P_{x} \\ P_{y} \end{pmatrix}$$

$$\underline{\lambda} P = (\underline{\lambda} P_{x}, \lambda P_{y})^{\mathsf{T}}$$

$$\underline{P}_{x}$$

$$P_{y} = (\underline{\lambda} P_{x}, \lambda P_{y})^{\mathsf{T}}$$

$$\underline{P}_{x} = (\underline{\lambda} P_{x}, \lambda P_{y})^{\mathsf{T}}$$

mas

$$P = \begin{pmatrix} P_x \\ P_y \end{pmatrix}, q = \begin{pmatrix} q_x \\ q_y \end{pmatrix}$$

$$\alpha = \begin{pmatrix} \alpha P_x \\ \alpha P_y \end{pmatrix} + \begin{pmatrix} \beta q_x \\ \beta q_y \end{pmatrix} = \begin{pmatrix} \alpha P_x + \beta q_x \\ \alpha P_y + \beta q_y \end{pmatrix} \in \mathbb{R}^2$$

: (R²,R,+,·) Es un espacio vectorial

$$\mathbf{P} = \begin{pmatrix} P_1 \\ P_2 \\ \vdots \\ P_n \end{pmatrix}, \quad \mathbf{q} = \begin{pmatrix} q_1 \\ q_2 \\ \vdots \\ q_n \end{pmatrix} \quad \Rightarrow \quad \mathbf{P} + \mathbf{q} = \begin{pmatrix} P_1 + q_1 \\ P_2 + q_2 \\ \vdots \\ P_n + q_n \end{pmatrix}$$

: (R², R, +,-) También es un espacio vectorial.

Si tenemos un espacio vectorial, con n componentes, pero sólo con P₁ y P₂ ≠ 0 y P₃, P₄,..., P_n=0

$$\mathbf{R^2} \in \mathbf{R^n}, \qquad \mathbf{R^2} = \left\{ \begin{pmatrix} \mathbf{P_1} \\ \mathbf{P_2} \\ \mathbf{0} \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \end{pmatrix} \middle| \mathbf{P_1}, \mathbf{P_2} \in \mathbf{R} \right\} \implies \mathbf{R^2}$$

R2 contenido en Rn

Es un espacio vectorial de \mathbb{R}^n , pero $\mathbb{R}^n \neq \mathbb{R}^2$

Una recta que pasa por el origen es un espacio vectorial y es un sub-espacio de

Una recta que pasa por el origen es un espacio vectorial, en el plano hay n espacios vectoriales.

Un plano que pasa por el origen es un espacio vectorial y es un sub-espacio de $\mathbb{R}^4, \mathbb{R}^5, ..., \mathbb{R}^n$. (Hiperplanos > 3 dimensiones).

$$\mathbf{A} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mn} \end{pmatrix}$$
Matrices $\mathbf{M}^{\mathbf{n} \times \mathbf{m}}$

Matrices de mxn

$$\mathbf{A} + \mathbf{B} = \begin{pmatrix} a_{11} + b_{11} & \cdots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \cdots & a_{mn} + b_{mn} \end{pmatrix} \qquad \lambda \mathbf{A} = \begin{pmatrix} \lambda a_{11} & \cdots & \lambda a_{1n} \\ \vdots & \ddots & \vdots \\ \lambda a_{m1} & \cdots & \lambda a_{mn} \end{pmatrix}$$

∴ (M, R, +,·) Es un espacio vectorial.

Sea P el conjunto de los polinomios

$$P = \{P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 | a \in \mathbb{R}, i = 0, \dots, n \in \mathbb{R}\}$$

$$P, q \in \mathbf{P}, q(\mathbf{x}) = a'_n x^n + \dots + a'_0$$

$$\mathbf{p(x)} + \mathbf{q(x)} = (a_n + a'_n)x^n + (a_{n-1} + a'_{n-1})x^{n-1} + \dots + (a_1 + a'_1)x + a_0 + a'_0 \in \mathbf{P}$$

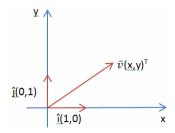
$$\lambda \mathbf{p(x)} = \lambda a_n x^n + \lambda a_{n-1} x^{n-1} + \dots + \lambda a_n x + \lambda a_0$$

y el polinomio cero: $0 = 0 \cdot x^n + 0 \cdot x^{n-1} + \dots + 0 \in \mathbf{P}$

(P, R, +,) Espacio vectorial para todos los polinomios (de dimensión infinita).

BASE DE UN ESPACIO VECTORIAL.

Es un conjunto de vectores que se pueden describir linealmente independientes $(\mathbb{R}^2, \mathbb{R}, +, \cdot)$



$$\Rightarrow \overline{v} = (x\hat{\imath} + y\hat{\jmath})$$

î y jî cumplen con ser LINEALMENTE INDEPENDIENTES

Ejemplo: $\hat{i}=(1,0)$; $\hat{w}=(2,0)$

$$\lambda_1 \hat{i} + \lambda_2 \hat{w}$$
 $\lambda_1 = 1$ $\lambda_2 = -1/2$ $\lambda'_1 = -1$ $\lambda'_2 = 1/2$

$$\lambda_1 \hat{i} + \lambda_2 \hat{w} = 1(1,0)^T + (-1/2)(2,0)^T = (1,0)^T + (-1,0)^T = (0,0)^T$$

$$\lambda'_1\hat{i} + \lambda'_2\hat{w} = -1(1,0)^T + (1/2)(2,0)^T = (-1,0)^T + (1,0)^T = (0,0)^T$$

Luego î y ŵ no son linealmente independientes

Una base debe ser:

- Linealmente independientes.
- Generan a todos los vectores del espacio vectorial.

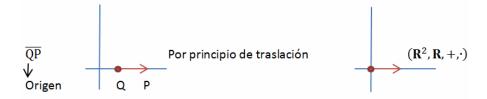
verificando que son base

Îуĵ

$$\lambda_{1} = \lambda_{1} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \lambda_{2} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \lambda_{1} + 0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \lambda_{1} = 0, \lambda_{2} = 0$$

$$\binom{x}{y} = x\hat{\imath} + y\hat{\jmath}$$

∴ î y ĵ son linealmente independientes, más aún son base de $(\mathbf{R}^2, \mathbf{R}, +, \cdot)$ $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbf{R}^2$



Base de E(-E, C, +, ⋅)

$$_{\mathsf{B}=\{\overline{v}_1,\,\overline{v}_2,\mathsf{I}\}}ar{v}_i \text{ son L.i.} \left\{i.\,e.\,\overline{\mathbf{0}} = \sum_{i=1} \lambda_i \overline{v}_i, \lambda_i = 0, \mathbf{v}_i \text{ es la única Bolución}
ight\}$$

L(B)=E, donde L son todas las combinaciones lineales de los elementos de B.

Dimensión: $D(E)=|\mathbf{B}|$ cardinalidad del conjunto (número de elementos del conjunto.

La dimensión de un espacio vectorial es la cardinalidad de una base de este.

Tensores.

Arreglos de matrices, desde n=1, hasta n=p

Vectores
$$\overline{u} \in \mathbb{R}^n$$

$$\begin{array}{c} \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} & _{\mathbb{D}}(\mathbb{R}^n) = |\{\widehat{\iota},\widehat{\iota}_2,...,\widehat{\iota}_n\}| = n \\ \\ \text{Matrices} & \overline{v} \in \mathbb{R}^{n \times m} & \begin{pmatrix} v_{11} & ... & v_{1m} \\ \vdots & \ddots & \vdots \\ v_{n1} & ... & v_{nm} \end{pmatrix} & _{\mathbb{D}}(\mathbb{R}^{n \times m}) = n \cdot m \\ \\ \text{Tensores} & \overline{t} \in \mathbb{R}^{n \times m \times p} & \begin{pmatrix} t^1_{11} & ... & t^1_{1m} \\ \vdots & \ddots & \vdots \\ t^n_{n1} & ... & t^n_{nm} \end{pmatrix} & _{\mathbb{D}}(\mathbb{R}^{n \times m \times p}) = n \cdot m \cdot p \\ \begin{pmatrix} t^p_{11} & ... & t^p_{1m} \\ \vdots & \ddots & \vdots \\ t^p_{n1} & ... & t^p_{nm} \end{pmatrix}$$

Propiedades.

$$\mathbf{u_1}, \mathbf{u_2} \in \mathbf{K}^4$$
 $(\lambda + \mu)\overline{u_1} = \lambda \overline{u_1} + \mu \overline{u_1}$ Existe el tensor nulo

Ejemplo de suma de tensores $\bar{t}, \bar{z} \in \mathbf{R}^{n \times m \times p}$

$$\begin{pmatrix} t^{1}_{11} & \cdots & t^{1}_{1m} \\ \vdots & \ddots & \vdots \\ t^{1}_{m1} & \cdots & t^{1}_{mm} \end{pmatrix} + \begin{pmatrix} z^{1}_{11} & \cdots & z^{1}_{1m} \\ \vdots & \ddots & \vdots \\ z^{1}_{m1} & \cdots & z^{1}_{mm} \end{pmatrix} + \begin{pmatrix} z^{2}_{11} & \cdots & z^{2}_{1m} \\ \vdots & \ddots & \vdots \\ z^{2}_{m1} & \cdots & z^{2}_{mm} \end{pmatrix}$$

$$\begin{pmatrix} t^{2}_{11} & \cdots & t^{2}_{1m} \\ \vdots & \ddots & \vdots \\ z^{2}_{m1} & \cdots & z^{2}_{mm} \end{pmatrix} + \begin{pmatrix} z^{2}_{11} & \cdots & z^{2}_{1m} \\ \vdots & \ddots & \vdots \\ z^{2}_{m1} & \cdots & z^{2}_{mm} \end{pmatrix} = \begin{pmatrix} t^{1}_{11} + z^{1}_{11} & \cdots & t^{1}_{1m} + z^{1}_{1m} \\ \vdots & \ddots & \vdots \\ t^{1}_{m1} + z^{1}_{m1} & \cdots & t^{1}_{mm} + z^{1}_{mm} \end{pmatrix}$$

$$\vdots$$

$$\begin{pmatrix} t^{2}_{11} + z^{2}_{11} & \cdots & t^{2}_{1m} + z^{2}_{1m} \\ \vdots & \ddots & \vdots \\ t^{2}_{m1} + z^{2}_{m1} & \cdots & t^{2}_{mm} + z^{2}_{mm} \end{pmatrix}$$

$$\vdots$$

$$\begin{pmatrix} t^{2}_{11} + z^{2}_{11} & \cdots & t^{2}_{1m} + z^{2}_{1m} \\ \vdots & \ddots & \vdots \\ t^{2}_{m1} + z^{2}_{m1} & \cdots & t^{2}_{mm} + z^{2}_{mm} \end{pmatrix}$$

$$\vdots$$

$$\begin{pmatrix} t^{2}_{11} + z^{2}_{11} & \cdots & t^{2}_{mm} + z^{2}_{mm} \\ \vdots & \ddots & \vdots \\ t^{2}_{m1} + z^{2}_{m1} & \cdots & t^{2}_{mm} + z^{2}_{mm} \end{pmatrix}$$

$$\vdots$$

$$\begin{pmatrix} t^{2}_{11} + z^{2}_{11} & \cdots & t^{2}_{mm} + z^{2}_{mm} \\ \vdots & \ddots & \vdots \\ t^{2}_{m1} + z^{2}_{m1} & \cdots & t^{2}_{mm} + z^{2}_{mm} \end{pmatrix}$$

$$\vdots$$

$$\begin{pmatrix} t^{2}_{11} + z^{2}_{11} & \cdots & t^{2}_{mm} + z^{2}_{mm} \\ \vdots & \ddots & \vdots \\ t^{2}_{m1} + z^{2}_{m1} & \cdots & t^{2}_{mm} + z^{2}_{mm} \end{pmatrix}$$

$$\vdots$$

$$\begin{pmatrix} t^{2}_{11} + z^{2}_{11} & \cdots & t^{2}_{mm} + z^{2}_{mm} \\ \vdots & \ddots & \vdots \\ t^{2}_{m1} + z^{2}_{m1} & \cdots & t^{2}_{mm} \end{pmatrix}$$

Los espacios tensoriales también son espacios vectoriales.

Fin de clase
