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Abstract

I development a Conjugate Gradient Method for solving a partial differential system with multiply

controls. Some numerical results are depicted. Also, I present an explication of why the control over a

partial differential equations system is necessary.
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1 Introduction

Given the partial differential system:



















∂y
∂t

− µ ∂2y
∂x2 + ǫ ∂y

∂x
− y = 0 in Q = (0, L)× (0, T )

y (x, 0) = y0, t = 0,

−µ∂y(0,t)
∂x

= 0, x = 0,

µ∂y(L,t)
∂x

= 0, x = L.

(S)

A conjugate gradient algorithm with several control on [0, L] is developed for S, which is similar to the
Burgers’ equation.

2 Several Control for S

With an appropriate functions v ∈ V , v = (v0, v1, . . . , vM ) and V appropriate Hilbert Space, the system can
be controlled on xk = L k

M
, k = 0, . . . ,M (see figure 1).



















∂y
∂t

− µ ∂2y
∂x2 + ǫ ∂y

∂x
− y = χxk

(x)vk in Q = (0, L)× (0, T ) , k = 1, . . . ,M − 1
y (x, 0) = y0, t = 0,

−µ∂y(0,t)
∂x

= v0, x = 0,

µ∂y(L,t)
∂x

= vM , x = L.

(SE)

In this case, the corresponding variational control problem is

{

Find u∗ ∈ V ,
J (u∗) ≤ J (v), ∀v ∈ V

(CP)

where
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Figure 1: System (SE).

J (v) =
k0
2

M
∑

k=0

∫ T

0

v2kdt+
k1
2

∫∫

Q

y2dxdt+
k2
2

∫ L

0

y (x, T )2 dx

where v = (v0, v1, . . . , vM ), and y is the solution of (SE) for each v (see figure 1).
The equivalent form as an optimization problem is:

min
v∈U

J (v) =
k0
2

M
∑

k=0

∫ T

0

v2kdt+
k1
2

∫∫

Q

y2dxdt+
k2
2

∫ L

0

y (x, T )
2
dx,

where y is the solution of (SE) for v.
In this case, the objective of the optimization problem is given a perturbation function y0 at t = 0 get

back to the steady state to 0. Also, the controls must reduce the cost or weight of control variable v, keep
low the cost of the evolution of the system y (x, t) .

3 The continuous case

The continuous case is computing by a perturbation of (CP) and (SE) and using the optimal (necessary and
sufficient) condition δJ (v) = 0.

δJ (v) = k0

M
∑

k=0

∫ T

0

vkδvkdt+ k1

∫∫

Q

yδydxdt

+ k2

∫ L

0

y (x, T ) δy (x, T ) dx.

The perturbation system of the equation (SE) is



















∂δy
∂t

− µ∂2δy
∂x2 + ǫ∂δy

∂x
− δy = χxk

(x)δvk in Q = (0, L)× (0, T ) , k = 1, . . . ,M − 1
δy (x, 0) = 0, t = 0,

−µ∂δy(0,t)
∂x

= δv0, x = 0,

µ∂δy(L,t)
∂x

= δvM , x = L.

(δSE)
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Let p (x, t) a sufficiently smooth function that allow to integrate (δSE) in Q

0 =

∫∫

Q

p

(

∂δy

∂t
− µ

∂2δy

∂x2
+ ǫ

∂δy

∂x
− δy − χxi

δv

)

dxdt

=

∫∫

Q

p
∂δy

∂t
dxdt− µ

∫∫

Q

p
∂2δy

∂x2
dxdt+ ǫ

∫∫

Q

p
∂δy

∂x
dxdt

−

∫∫

Q

pδydxdt−

∫∫

Q

pχxi
δvdxdt.

The integration of (δSE) is achieved by the formula of integration by parts:

∫ b

a

vdu = vu|ba −

∫ b

a

udv.

Therefore

∫∫

Q

p
∂δy

∂t
dxdt =

∫ L

0

[

∫ T

0

p
∂δy

∂t
dt

]

dx (3.1)

v = p, du =
∂δy

∂t
dt

=

∫ L

0

[p (x, T ) δy (x, T )]
T
0 dx−

∫∫

Q

∂p

∂t
δydxdt

=

∫ L

0

p (x, T ) δy (x, T ) dx−

∫ L

0

p (x, 0) δy (x, 0) dx

−

∫∫

Q

∂p

∂t
δydxdt

(δy (x, 0) = 0)

=

∫ L

0

p (x, T ) δy (x, T ) dx+

∫∫

Q

(

−
∂p

∂t

)

δydxdt

− µ

∫∫

Q

p
∂2δy

∂x2
dxdt = −µ

∫ T

0

[

∫ L

0

p
∂2δy

∂x2
dx

]

dt (3.2)

v = p, du =
∂2δy

∂x2
dx

= −µ

∫ T

0

[

p (x, t)
∂δy (x, t)

∂x

]L

0

dt+ µ

∫∫

Q

[

∂p

∂x

∂δy

∂x
dx

]

dt

v =
∂p

∂x
, du =

∂δy

∂x
dx

=

∫ T

0

p (L, t)

(

−µ
∂δy (L, t)

∂x

)

dt−

∫ T

0

p (0, t)

(

−µ
∂δy (0, t)

∂x

)

dt

+µ

∫ T

0

[

∂p (x, t)

∂x
δy (x, t)

]L

0

dt− µ

∫∫

Q

∂2p

∂x2
δydxdt.
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(

µ
∂δy (L, t)

∂x
= δvM (t) ,−µ

∂δy (0, t)

∂x
= δv0 (t)

)

= −

∫ T

0

p (L, t) δvM (t) dt−

∫ T

0

p (0, t) δv0 (t) dt

+µ

∫ T

0

[

∂p (x, t)

∂x
δy (x, t)

]L

0

dt− µ

∫∫

Q

∂2p

∂x2
δydxdt

=

∫ T

0

p (L, t) (−δvM (t)) dt−

∫ T

0

p (0, t) δv0 (t) dt

+µ

∫ T

0

∂p (L, t)

∂x
δy (L, t) dt− µ

∫ T

0

∂p (0, t)

∂x
δy (0, t) dt

−µ

∫∫

Q

∂2p

∂x2
δydxdt

=

∫ T

0

(−p (L, t)) (δvM (t)) dt+

∫ T

0

(−p (0, t)) δv0 (t) dt

+

∫ T

0

µ
∂p (L, t)

∂x
δy (L, t) dt+

∫ T

0

(

−µ
∂p (0, t)

∂x

)

δy (0, t) dt

−µ

∫∫

Q

∂2p

∂x2
δydxdt

=

∫ T

0

(−p (L, t)) (δvM (t)) dt+

∫ T

0

(−p (0, t)) δv0 (t) dt

+

∫ T

0

µ
∂p (L, t)

∂x
δy (L, t) dt+

∫ T

0

(

−µ
∂p (0, t)

∂x

)

δy (0, t) dt

+

∫∫

Q

(

−µ
∂2p

∂x2

)

δydxdt

ǫ

∫∫

Q

p
∂δy

∂x
dxdt = ǫ

∫ T

0

[

∫ L

0

p
∂δy

∂x
dx

]

dt (3.3)

v = p, du =
∂δy

∂x
dx

= ǫ

∫ T

0

[p (x, t) δy (x, t)]
L
0 dt− ǫ

∫∫

Q

∂p

∂x
δydxdt

= ǫ

∫ T

0

p (L, t) δy (L, t) dt− ǫ

∫ T

0

p (0, t) δy (0, t) dt

−ǫ

∫∫

Q

∂p

∂x
δydxdt

=

∫ T

0

ǫp (L, t) δy (L, t) dt+

∫ T

0

(−ǫp (0, t)) δy (0, t) dt

−ǫ

∫∫

Q

∂p

∂x
δydxdt

−

∫∫

Q

pδydxdt =

∫∫

Q

(−p) δydxdt. (3.4)
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−

∫∫

Q

pχxi
δvdxdt =

M−1
∑

i=1

∫ T

0

(−pi) δvidt (3.5)

where χxi
p = pi.

0 = (3.1) + (3.2) + (3.3) + (3.4) + (3.5)

=

∫ L

0

p (x, T ) δy (x, T ) dx+

∫∫

Q

(

−
∂p

∂t

)

δydxdt

+

∫ T

0

(−p (L, t)) (δvM (t)) dt+

∫ T

0

(−p (0, t)) δv0 (t) dt+

∫ T

0

µ
∂p (L, t)

∂x
δy (L, t) dt

+

∫ T

0

(

−µ
∂p (0, t)

∂x

)

δy (0, t) dt+

∫∫

Q

(

−µ
∂2p

∂x2

)

δydxdt

+

∫ T

0

ǫp (L, t) δy (L, t) dt+

∫ T

0

(− ∈ p (0, t)) δy (0, t) dt− ǫ

∫∫

Q

∂p

∂x
δydxdt

+

∫∫

Q

(−p) δydxdt

+

M−1
∑

i=1

∫ T

0

(−pi) δvidt

=

M
∑

i=0

∫ T

0

(−pi) δvidt

+

∫∫

Q

(

−
∂p

∂t
− µ

∂2p

∂x2
− ǫ

∂p

∂x
− p

)

δydxdt

+

∫ L

0

p (x, T ) δy (x, T ) dx

+

∫ T

0

(

µ
∂p (L, t)

∂x
+ ǫp (L, t)

)

δy (L, t) dt+

∫ T

0

(

−µ
∂p (0, t)

∂x
− ǫp (0, t)

)

δy (0, t) dt

Adjusting terms with

δJ (v) = k0

M
∑

k=0

∫ T

0

vkδvkdt+ k1

∫∫

Q

yδydxdt+ k2

∫ L

0

y (x, T ) δy (x, T ) dx,

the adjoint system is














p (x, T ) = k2y (x, T ), x ∈ [0, L]

µ ∂p
∂x

(L, t) + ǫp (L, t) = 0, t ∈ [0, T ]

µ ∂p
∂x

(0, t) + ǫp (0, t) = 0 t ∈ [0, T ]
∂p
∂t

+ µ ∂2p
∂x2 + ǫ ∂p

∂x
+ p = −k1y, in Q

(δASE)

also

∇J (v) = k0

M
∑

k=0

(vk − pk (x, t)) .

4 Discretization on Time

The discretization on time of J
∆t

(v) is

J
∆t

(v) =
∆t

2

M
∑

k=0

N
∑

n=0

‖vnk ‖
2
+

k1∆t

2

N
∑

n=0

∫ L

0

‖yn‖
2
dx+

k2
2

∫ L

0

∥

∥yN+1 (x)
∥

∥

2
dx

5



Figure 2: Discretization on time of (δSE∆t).

where N > 0,and ∆t = T
N
.

Now, the forward discretization on time of (SE) is



























y0 = y0.
for n = 0, . . . , N
yn+1−yn

∆t
− µ∂2yn

∂x2 + ǫ∂y
n

∂x
− yn = χxk

(x)vnk ,

−µ∂yn(0)
∂x

= vn0 ,

µ∂yn(L)
∂x

= vnM .

(SE△t)

The optimal condition is

δJ∆t(v) =

M
∑

k=0

(

∇J
∆t

(vk) , δvk

)

U∆t
= 0.

And

δJ∆t(v) = k0∆t

M
∑

k=0

N
∑

n=0

vnk δv
n
k + k1∆t

N
∑

n=0

∫ L

0

ynδyndx+ k2

∫ L

0

yN+1δyN+1dx.

By the other hand, the perturbation of (SE△t) is



























δy0 = 0.
for n = 0, . . . , N
δyn+1−δyn

∆t
− µ∂2δyn

∂x2 + ǫ∂δy
n

∂x
− δyn = χxk

(x)δvnk ,

−µ∂δyn(0)
∂x

= δvn0 ,

µ∂δyn(L)
∂x

= δvnM .

(δSE∆t)

Figure 2 depicts (δSE∆t).
Now, multiplying these by appropriate functions pn to integrate:

∆t
N
∑

n=0

∫ L

0

pn
(

δyn+1 − δyn

∆t
− µ

∂2δyn

∂x2
+ ǫ

∂δyn

∂x
− δyn − χxk

δvnk

)

dx = 0.

∆t
N
∑

n=0

∫ L

0

pn
(

δyn+1 − δyn

∆t

)

dx = (4.1)

6



Figure 3: Discretization on time of adjoint system of (SE).

= −

∫ L

0

p0
δy0

∆t
dx−∆t

N
∑

n=1

∫ L

0

(

pn − pn−1

∆t

)

δyndx+

∫ L

0

pNδyN+1dx

−∆t
N
∑

n=1

∫ L

0

(

pn − pn−1

∆t

)

δyndx+

∫ L

0

pNδyN+1dx.

∆t

N
∑

n=0

∫ L

0

pn
(

−µ
∂2δyn

∂x2

)

dx = (4.2)

= ∆t
N
∑

n=0

p

[

−µ
∂δy

∂x

]L

0

+ µ∆t
N
∑

n=0

∂p

∂x
[δy]L0 − µ∆t

N
∑

n=0

∫ L

0

∂2p

∂x2
δydx

= −∆t

N
∑

n=0

pn (0) (δvn) + µ∆t

N
∑

n=0

∂pn (L)

∂x
δy (L)

−µ∆t

N
∑

n=0

∫ L

0

∂2p

∂x2
δydx.

∆t
N
∑

n=0

∫ L

0

pn
(

ǫ
∂δyn

∂x

)

dx = ǫ
N
∑

n=0

pn (L) δy (L)− ǫ
N
∑

n=0

∫ L

0

∂p

∂x
δydx. (4.3)

∆t

N
∑

n=0

∫ L

0

pn (−δyn) dx. (4.4)

0 = (4.1) + (4.2) + (4.3) + (4.4) =

∆t

N
∑

n=1

∫ L

0

(

−
pn − pn−1

∆t
− µ

∂2p

∂x2
− ǫ

∂p

∂x
− pn

)

δyndx+

∫ L

0

pNδyN+1dx

−∆t
N
∑

n=0

p (0) (δvn) + µ∆t
N
∑

n=0

∂pn

∂x
(L) δy (L) + ǫ

N
∑

n=0

p (L) δy (L) .
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Figure 4: Fully discretization of (SE).

Therefore the discretization on time of the adjoint system (see figure 3) is























pN = k2y
N+1.

for n = N, . . . , 1
pn−pn−1

∆t
+ µ ∂2p

∂x2 + ǫ ∂p
∂x

+ pn = −k1y
n,

µ∂pn

∂x
(0) + ǫpn (0) = 0

µ∂pn

∂x
(L) + ǫpn (L) = 0.

(ASE∆t)

And

∇J
∆t

(v) =

M
∑

k=0

{vnk − pn (0)}
N
n=0 .

4.1 Fully discretization

Let H > 0, H is an integer multiple of M , and △x = h = L
H
. The indices for axis x are −1 ≤ j ≤ H + 1.

Note that two sets of points are added on j = −1, and j = H + 1, this is convenient because the frontier

conditions on x = 0 (−µ∂y(0,t)
∂x

= v (t) ,) and x = L (µ∂y(L,t)
∂x

= 0) can be inserted before and after the points
of interest 0 to H on x.

The corresponding fully discrete steady equations (see figure 4)are



























y0j = y0,j , j = 0, . . . , H
for n = 0, . . . , N , j = 0, . . . , H
yn+1

j
−yn

j

∆t
− µ

yn
j+1+yn

j−1−2yn
j

h2 + ǫ
yn
j+1−yn

j

h
− ynj = χxj

vk

−µ
yn
0 −yn

−1

h
= vn0

µ
yn
H+1−yn

H

h
= vnM .

(SE△t
△x)

−µ
yn
0 −yn

−1

h
= vn0

−µyn0 + µyn−1 = hvn0
+yn−1 = (hvn0 + µyn0 ) /µ

+yn−1 =
h
µ
vn0 + yn0

µ
yn
H+1−yn

H

h
= vnM

µ
(

ynH+1 − ynH
)

= hvnM

8



Figure 5: Fully discretization of adjoint system of (SE).

µynH+1 − µynH = hvnM
µynH+1 = µynH + hvnM
ynH+1 = ynH + h

µ
vnM

The adjoint equations (see figure 5) are































pNj = k2y
N+1
j , j = 0, . . . , H

for n = N, . . . , 1, j = 0, . . . , H
pn
j −pn−1

j

∆t
+ µ

pn
j+1+pn

j−1−2pn
j

h2 + ǫ
pn
j+1−pn

j

h
+ pnj = −k1y

n
j

µ
pn
H+1−pn

H

h
+ ǫpnH = 0.

µ
pn
0 −pn

−1

h
+ ǫpn−1 = 0

(ASE△t
△x)

pn
j −pn−1

j

∆t
+ µ

pn
j+1+pn

j−1−2pn
j

h2 + ǫ
pn
j+1−pn

j

h
+ pnj = −k1y

n
j .

The solution is pn−1
j =

h2pn
j +µ∆tpn

j+1+µ∆tpn
j−1−2µ∆tpn

j +ǫ∆thpn
j+1−ǫ∆thpn

j +pn
j ∆th2+k1y

n
j ∆th2

h2 =

pn−1
j = pnj +

µ∆tpn
j+1+µ∆tpn

j−1−2µ∆tpn
j +ǫ∆thpn

j+1−ǫ∆thpn
j +pn

j ∆th2

h2 + k1y
n
j ∆t =

pn−1
j = pnj +

µ∆t(pn
j+1+pn

j−1−2pn
j )

h2 +
ǫ∆t(pn

j+1−hpn
j )

h
+ pnj∆t+ k1y

n
j ∆t =

µ
pn
0−pn

−1

h
+ ǫpn−1 = 0

µ
h
pn0 − µ

h
pn−1 + ǫpn−1 = 0

µpn0 − µpn−1 + ǫhpn−1 = 0
pn−1 = µpn0/ (µ− ǫh)

µ
pn
H+1−pn

H

h
+ ǫpnH = 0

µpnH+1 − µpnH = −ǫhpnH
µpnH+1 = (µ− ǫ) pnH/µ.
And the corresponding perturbation equations are



























δy0j = 0, j = 0, . . . , H
for n = 0, . . . , N , j = 0, . . . , H
δyn+1

j
−δyn

j

∆t
− µ

δyn
j+1+δyn

j−1−2δyn
j

h2 + ǫ
δyn

j+1−δyn
j

h
− δynj = χxj

δvnk
−µ

δyn
0 −δyn

−1

h
= δvn0 ,

µ
δyn

H+1−δyn
H

h
= δvnM .

(δSE△t
△x)
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The corresponding variational control problem is

{

Find u∗ = {un} ∈ V△t
△x(= R

N×M )

J△t
△x (u

∗) ≤ J△t
△x (v) , ∀ v ∈ V△t

△x

(CP△t
△x)

where

J△t
△x (v) =

∆t

2

M
∑

k=0

N
∑

n=0

[vnk ]
2
+

k1∆th

2

N
∑

n=0

H
∑

j=0

[

ynj
]2

+
k2h

2

H
∑

j=0

[

yN+1
j

]2
,

and y =
{

ynj
}0≤n≤N+1

−1≤j≤H+1
is the solution of (SE△t

△x) with v. Note that H ≥ M and H must be a multiple

of M in order to have χxj
δvnk = δvnk , ∀k = 0, . . . ,M.

5 The Conjugate Gradient Algorithm

The CG algorithm for the fully discrete control problem (CP△t
△x) is:

1. Given ε (the tolerance to stop the algorithm), 0 < ε ≪ 1, and
{

un,0
}

= 0 ∈ V△t
△x.

2. Solve the equation (SE△t
△x), and

with the solution
{

yn,0j

}0≤n≤N+1

−1≤j≤H+1
solve (ASE△t

△x) to get
{

pn,0j

}0≤n≤N

−1≤j≤H+1
.

3. Compute g0 =
{

un,0
jk

+ pn,0jk

}0≤n≤N

0≤jk≤H
, and set w0 = g0.

Now, we have um, gm, and wm.

4. If
(gm+1,gm+1)

V

(g0,g0)
V

< ǫ2 take um+1 as the solution and stop.

5. Compute m = m+ 1.

6. Solve the equation (δSE△t
△x), and

with the solution y =
{

δyn,mj

}0≤n≤N+1

−1≤j≤H+1
solve (ASE△t

△x) to get p =
{

pn,mj

}0≤n≤N

−1≤j≤H+1
.

7. Compute gm =
{

wn,m
jk

+ pn,mjk

}0≤n≤N

0≤jk≤H
, ρm = (gm, gm)V , u

m+1 = um−ρmwm, and gm+1 = gm−ρmgm.

8. If
(gm+1,gm+1)

V

(g0,g0)
V

< ǫ2 take um+1 as the solution and stop.

9. Compute γm =
(gm+1,gm+1)

V

(gm,gm)
V

, and wm+1 = gm+1 + γmwm

10. Go to step 5.

6 Numerical Experiments

A program of the Conjugated Gradient Method (Section 5) was development in Matlab.
Three numerical experiments were designed:

1. y0 is a positive pulse in [0, 1].

2. y0 = 10 sin(5πx), x ∈ [0, 1].
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Figure 6: y0 is a positive pulse, 3 controls.

Figure 7: y0 is a positive pulse, 5 controls.
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Figure 8: y0 is a positive pulse, 11 controls.

Figure 9: y0 = 10 sin(5πx), 3 controls.
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Figure 10: y0 = 10 sin(5πx), 5 controls.

Figure 11: y0 = 10 sin(5πx), 11 controls.
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Figure 12: y0 = 10 sin(πx), 3 controls.

Figure 13: y0 = 10 sin(πx), 5 controls.
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Figure 14: y0 = 10 sin(πx), 11 controls.

3. y0 = 10 sin(πx), x ∈ [0, 1].

The results are depicted in figures 6, 7, 8, 9, 10, 11, 12, 13, and 14. Each figure depicts the evolution
of the state y, the initial state y0, the final state y(T ), and the graphs of the controls. These experiments
depict:

1. The graphs of the controls show that the cost increases with the numbers of controls.

2. The graphs of the controls show that the controls behave different.

3. It seems that with more controls the final state is closed to steady state 0. However, there is a
dependency of the initial state y0 and the numbers of controls in the contrary. Figures 6, 7, and 8
depict a case where 3 controls behave better than 11 controls.

4. It seems that with more controls the evolution of the y is controlled. In all cases, the controls are
enough to diminish the initial state y0 and to keep under control the evolution of the system over time.

7 Motivation for controlling

We preferred to leave this section at the end, because these notes are principally aimed for graduate students,
which could be interested in developing their own simulators. It is possibly, that they already know the
importance of the Theory of Control on Systems over Partial Differential Equations or the control for
industrial process.

From the abundant literature, we mention the book of partial differential equations [4], and for Control
the books [1, 3]. These notes were developed from the talk in [2].

The following problem depicts a classical problem for a parabolic equation with three physical-chemical
components.

1. Advection. It is the scalar variation at each point of a vector field, by example, the contaminant
entrainment in a medium.
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2. Reaction. It is the response or reaction of the system, by example, the heat exchanges in a system.

3. Diffusion. It is the gradient (change or transport) of system components.

Figure 15: Sistem’s domain

Let be the following parabolic equation where the advection is V · ∇ϕ, the reaction is f (ϕ), and the
diffusion is ∇ · (A∇ϕ) acting over the time. It is Equation of the State System.

∂ϕ
∂t

−∇ · (A∇ϕ) + V · ∇ϕ+ f (ϕ) = 0 en Q = Ω× [0, T ] ,
A∇ϕ · n = 0 en Σ = Γ× [0, T ] ,
ϕ (x, 0) = ϕ0 (x) x ∈ Ω

. (SEE)

where Ω ⊂ R
d (d ≥ 1, dimension) it is a smooth region, with orientated boundary Γ = ∂Ω, n represents

a normal unit vector on Γ (pointing outside of Ω), T > 0 is the time ( including the possiblity T = ∞).
Figure 15 depicts (SEE).

The intern product · is the usual, a, b ∈ R
d, a · b =

d
∑

i=1

aibi, A is a real tensor function (diffusion matrix),

V : Ω → R
d is a vectorial function, f : R → R is a real function, and ϕ(x, t) is the phenomena function that

occurs in Q.
In addition we assume that:

A(x)ξ · ξ ≥ α |ξ|2 , ∀ξ ∈ R
d for almost all x ∈ Ω

which means that A is uniformly positive definite for almost all x in Ω.
For the vector function V, we assume:

∇ · V = 0 (divergence free)

∂V

∂t
= 0 (it is constant over time)

V · n = 0 on Γ

Control is necessary for this System, let be a reaction function given by

f (ϕ) = C − λeϕ

16



where C, λ > 0 are real positive constants.
Then the steady state solution for such f fulfill:

∂ϕ

∂t
+ f (ϕ) = 0 (7.1)

and it is given by

ϕs =
lnC

λ

Note that ϕs is constant,so that the equation (7.1), substituting ϕs is fulfill (because f (ϕs) = C−λeϕs =

C − λe
lnC
λ = 0).

Assuming that for some t > 0, the system was its stable steady state solution ϕ = ϕs.
Now, ϕ = ϕs at some time t0 = 0 has a small constant perturbation δϕ, independent from x y t (with

∇δϕ = 0 y ∂δϕ
∂t

= 0).
For this perturbation, the system evolves under the following ordinary differential equation:

dϕ

dt
= λeϕ − C, λ,C > 0, real constants

ϕ (0) = ϕs + δϕ

This model behaves with a constant positive perturbation, δϕ > 0, such that ϕ → +∞. By other hand,
if the perturbation is a constant negative, δϕ < 0, then ϕt→∞ → −∞. In the following paragraphs, it is
showed that in the former the deviation from the stable state grows fast to +∞, and in the second case the
deviation of the stable state is slow and steady toward −∞ as the time progress.

This means that around a stable steady state solution, the introduction a small constant perturbation
makes the system unstable. To verify the above statement, we proceed by the Euler Method to numerically
integrate the above equation:

dϕ

dt
= λeϕ − C, λ,C > 0, real constants

ϕ (0) =
lnC

λ
+ δϕ

Without loss of generality we take △t = 1, C = 1, λ = 1, δϕ = 0.1 > 0, and approach dϕ
dt

by a time
difference between n and n− 1.

The resulting approximation difference equation is
ϕn = exp (ϕn−1) + ϕn−1 − 1.
From the initial condition:
ϕ0 = lnC

λ
+ δϕ = 0.1

The numerical estimations are
ϕ1 = exp (0.1) + 0.1− 1 = 0.205 17
ϕ2 = exp (0.205 17)+ 0.205 17− 1 = 0.432 9
ϕ3 = exp (0.432 9) + 0.432 9− 1 = 0.974 64
ϕ4 = exp (0.974 64)+ 0.974 64− 1 = 2. 624 8
ϕ5 = exp (2. 624 8) + 2. 624 8− 1 = 15. 427
ϕ6 = exp (15. 427) + 15. 427− 1 = 5. 010 3× 106

ϕ7 = exp
(

5. 010 3× 106
)

+ 5. 010 3× 106 − 1 = 4. 392 2× 102175945

ϕ (t) in a finite time grows very quickly, it tends accelerated to ∞.
By other hand, assuming that δϕ = −0.1 < 0, and using the same constants C y λ, the numerical

estimations for this case are
ϕ0 = −0.1
ϕ1 = exp (−0.1) + (−0.1)− 1 = −0.195 16
ϕ2 = exp (−0.195 16)+ (−0.195 16)− 1 = −0.372 46
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ϕ3 = exp (−0.372 46)+ (−0.372 46)− 1 = −0.683 42
ϕ4 = exp (−0.683 42)+ (−0.683 42)− 1 = −1. 178 5
ϕ5 = exp (−1. 178 5)+ (−1. 178 5)− 1 = −1. 870 8
ϕ6 = exp (−1. 870 8)+ (−1. 870 8)− 1 = −2. 716 8
ϕ7 = exp (−2. 716 8)+ (−2. 716 8)− 1 = −3. 650 7
ϕ8 = exp (−3. 650 7)+ (−3. 650 7)− 1 = −4. 624 7
ϕ9 = exp (−4. 624 7)+ (−4. 624 7)− 1 = −5. 614 9
ϕ10 = exp (−5. 614 9)+−5. 614 9− 1 = −6. 611 3
ϕ11 = exp (−6. 611 3)+−6. 611 3− 1 = −7. 610 0
ϕ (t) is decreasing slowly to −∞.
The previous numerical results clearly depicts that a control is necessary to prevent such behavior and

to return the system to the steady state solution ϕs.

Conclusions and future work

I did not expect implying that more controls means best result. The numerical results depict this but
the positive pulse. However, in all numerical experiments the controls push back the controlled system SE
to the steady solution 0. As in global optimization, the objective functions and problems have a relation
or compromise within the solution and the method for solving them. Here, there are different behaviors
between initial state and numbers of controls.

The position of controls could be interesting to study in the future.
My students of the master program in Engineering Process help me to obtain preliminary results in less

than three months. They study the relation between one control and the initial state, they found examples
where one control does not work. Also, they want to known about how difficult could be to apply advance
mathematics and to development control process software. I already have the one control version, so they
did the preliminary experiments. I promise them, that I will development the multiple controls version. My
teaching philosophy is to help people to understand and to be free of myths. Of course it is difficult but, it
is better to development a toy simulator than to buy one.

I believe, that is a good practice to help the students and people to understand and take advance
mathematics and to build by themselves software, as an open box.
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Dedicated to the 43 Ayotzinapa’s students.

References

[1] R. Glowinski. Numerical Methods for Nonlinear Variational Problems. Computational Physics. Springer-
Verlag, 1984.

[2] R. Glowinski. A Brief Introduction on the Optimal Control of Partial Differential Equations. Workshop
en Métodos Numéricos de Optimización y de Control Optimo en PDE, Guanajuato, Gto., México, 2006.
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