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Abstract— A numerical method for a nonlinear control opti-
mization of the open problem of the semi-linear wave equation
stated by Jacques-Louis Lions (1928-2001) is depicted using
the method of Glovinski-Lions-He. The goal of the numerical
control depicted in this paper is to drive the state variable
close to a given target function at finite time. Which is relevant
because this equation without control decays or explodes. The
results of the numerical experiments of a set of different target
functions are satisfactory for the controllability and stability
for an ad-hoc real control problem.

I. INTRODUCTION

A cubic semi-linear state system:

ytt − yxx + y3 = 0

had been studied for periodic solutions by Lidskii and Shul-
man [1]. Also, Donninger, R. and Zenginoğlu [2] studied
an hyperboloidal initial value problem for the decaying of
cubic wave equation:

(−∂2
t +△x)v(t, x) + v(t, x)3 = 0, x ∈ R3.

Enrique ZuaZua depicts the open problem of
the exact controllability of the semi-linear wave
equation stated by Jacques-Louis Lions [6], [9]:

ytt − yxx + y3 = χωu(t, x) (0, 1)× (0, T )
y = 0 t ∈ (0, T )
y(0) = y0 x ∈ (0, 1)
yt(0) = y1 x ∈ (0, 1)

where T > 0 and ω ⊂ (0, 1), λω is the characteristic
function of the set ω, the state space is (y(t, ·), yt(t, ·)) and
u(t) is the control that acts on the system through ω. State
variable y behaves in cubic form, it grows and shrinks fast,
it well known that such kind of non-linear system is an open
problem to study.

A weak controllability problem is

find u ∈ L2 ((0, T )× (0, 1)) such that y satisfies

y(0) = z0 and yt(T ) = z1 in (0, 1), where (y0, y1) and
(z0, z1) ∈ H1

0 (0, 1)× L2(0, 1) are given.
To my knowledge this is the first time that the Control

Variational Methods of Glowinski-Lions-He [4], [7] are used
to find numerical solutions of the previous control problem
over a finite set of controls points distributed on (0,1). Other
approach is given by Zhou, Xu, and Lei [3].

The appropriate control problem is stated in the next
section. The section III depicts the construction of an ad-hoc
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version of the Conjugate Gradient Algorithm and an how to
solve numerically a cubic polynomial for estimating the opti-
mal numerical control for the discretization of state variable
yn evolving under the cubic semi-linear wave equation. A set
of numerical experiments are presented in sectionIV. Finally,
the last section presents the conclusions.

II. THE CONTROL PROBLEM

The formulation of the real control problem for the cubic
semi-linear state equation is:{

Find v ∈ U = L2([0, T ], (0, 1))M

J(v) ≤ J(u),∀u ∈ U (PCL)

where M is the number of controls points in (0, 1) of the
functional J :

J(v) =
1

2

∫ T

0

||v||2dt+
k1
2

∫ 1

0

||y(T )− z0||2dx

+
k2
2

∫ 1

0

||φx||2dx,

for the control state system:

ytt − yxx + y3 =

M∑
j=1

vjδ(x− aj), (EDy)

y(0, t) = y(1, t) = 0,

y(0) = y0,

yt(x, 0) = y1(x),

−φxx = yt(T )− z1, (EDz)
φ(0) = φ(1) = 0

where z0 : [0, 1] → R, z1 : [0, 1] → R, y1 : [0, 1] → R, aj ∈
[0, 1], j = 1, . . . ,M.

The convergence and unique optimal solution for (PCL)
under the techniques of Glowinski-Lions-He is a conse-
quence of the formulation as a convex optimal problem on
a appropriate complete Hilbert Spaces and the Lax-Milgram
Theorem [4], [7].

III. BUILDING A CONJUGATE GRADIENT
ALGORITHM

The steps to build an ad-hoc Conjugate Gradient (CG)
Algorithm for (PCL) are:

1. Build a time discretization for (PCL).
2. Calculate δJ∆t.



3. Build a fully discretization and find the partial differen-
tial subproblems to compute δJ′∆t.

The discretization on time of J is

J∆t(v) =
∆t

2

N∑
n=0

||vn||2 + k1
2

∫ 1

0

||yN − z0||2dx

+
k2
2

∫ 1

0

||φx||2dx

where N ∈ N, ∆t = T
N .

Now, the discretization for (EDy) and (EDz) are:

yn+1 − 2yn + yn−1
tt

(∆t)2
− ynxx + (yn)3 =

M∑
j=1

vnj δ(x− aj), (EDyn)

yn(0) = 0

yn(1) = 0,

y0 = y0,

y0t = y1.

−φxx =
yN+1 − yN+1

2∆t
− z1, (EDzn)

φ(0) = 0

φ(1) = 0.

The estimation of

δJ∆t(u) =
(

J′∆t(u), w
)
U = ∆t

N∑
n=1

J′∆t(u)n · wn

is by using the norm of (RN )M .
Now, δJ∆t(u) = ∆t

∑N
n=1 u

nδun + k1(y
N − z0)δy

N+

k2

(
yN+1−yN−1

2∆t − z1

)
δyN+1−δyN−1

2∆t .

The next step is for calculating the feedback of a variation
of (EDyn) and (EDzn), multiplying by discrete variation
function pn and integrate them by part.

δyn+1 − 2δyn + δyn−1

∆t2
− δynxx +

(yn)2

3
δyn

=

M∑
j=1

δ(x− aj)δv
n
j , (δEDyn)

δyn(0) = 0

δyn(1) = 0,

δy0 = 0,

δy0t = 0.

−δφxx =
δyN+1 − δyN+1

2∆t
, (δEDzn)

δφ(0) = 0

δφ(1) = 0.

∆t
∑N

n=1

∫ 1

0
( δy

n+1−2δyn+δyn−1

∆t2
−δynxx+

(yn)2

3 δyn)pn dx =

∆t
∑N

n=1

∫ 1

0

∑M
j=1 δ(x− aj)δv

n
j pn dx.

But,

∆t

N∑
n=1

∫ 1

0

M∑
j=1

δ(x− aj)δv
n
j p dx = ∆t

N∑
n=1

M∑
j=1

δvnj pj dx.

The explicit form is

J′∆t(v) = {vnj + pnj }Nn=1.

∆t
∑N

n=1

∫ 1

0
( δy

n+1−2δyn+δyn−1

∆t2
− δynxx + (yn)2

3 δyn)p dx =

∆t
∫ 1

0
( δy

N+1−2δyN+δyN−1

∆t2
− δyNxx + (yN )2

3 δyN )p dx +

∆t
∫ 1

0
( δy

N−2δyN−1+δyN−2

∆t2
−δyN−1

xx + (yN−1)2

3 δyN−1)p dx+
∆t

∫ 1

0
( δy

N−1−2δyN−2+δyN−3

∆t2
− δyN−2

xx +
(yN−2)2

3 δyN−2)p dx + ∆t
∑N−2

n=1

∫ 1

0
(
δyn+1−δ2yn+δyn−1

tt

∆t2
−

δynxx + (yn)2

3 δyn)p dx.
From (δEDzn)

−δφxx2∆t+ δyN−1 = δyN+1,

−2
∫ 1

0
pNδφxxdx + 1

∆t

∫ 1

0
(p

N−1

∆t − 2 pN

∆t − ∆t pNx x +
∆t pN (yN )2

3 )δyNdx + 1
∆t

∫ 1

0
(p

N−2

∆t − 2 pN−1

∆t +
pN

∆t − ∆t pN−1
x x + ∆t pN−1 (yN−1)2

3 )δyNdx +
1
∆t

∑N−3
n=0

∫ 1

0
(p

n−2 pn+1+pn+2

∆t − ∆t pn+1
xx +

∆t (y
n+1)2

3 pn+1)δyndx +
∫ 1

0
(−2 p0+p1

∆t − ∆t p0xx +

∆t (y
0)2

3 p0)δy0dx,

−2

∫ 1

0

pNδφxxdx = 2

∫ 1

0

pNx δφxdx.

Finally, the system of equations (EDp) for pn are

2pNx = k2 φ

pN−1

∆t − 2 pN

∆t −∆t pNx x+ ∆t pN (yN )2

3 = k1 (y
N − z0)

pn−2 pn+1+pn+2

∆t −∆t pn+1
xx +∆t (y

n+1)2

3 pn+1 = 0,
n = N − 2, . . . , 1

−2 p0+p1

∆t −∆t p0xx +∆t (y
0)2

3 p0 = 0.

A. CG Algorithm

A version of the CG algorithm for (PCL) has the following
steps:

1) Let u0
q .

2) Solve (Ed1n) and get y0q .
3) Solve (Ed2n) and get zq .
4) With yq and zq solve (Edp) and get pq .
5) Update gqj = uqj + pqj .
6) Set gq2 = ||gq||2, yqb = yq , wq = gq . if ||gq||2

max(1,||uq||) <
ϵ take u0 like solution, otherwise, we have uq+1, wq+1,
gq+1.

7) With wq and yqb solve (δEdpn), and get ȳq .
8) Now using ȳ solve (δEDzn’) and get z̄q .
9) Solve (δEdp’) with yqb, ȳq , and z̄q and compute pq .

10) Update ḡqj = wqj + pqj
11) ḡwq = ||ḡq|| ||wq||
12) ρq =

||gq||2
ḡqwq

13) uq+1 = uq − ρq wq

14) gq+1 = gq − ρq ḡq if ||gq+1||2
||g0||2 < ϵ take uq+1 as the

solution, otherwise continue.



15) γq =
||gq+1||2
||gq||2 , wq = gq+1 + γq , wq . q = q + 1, go to

step 7.

This is a classical version of Conjugate Gradient Algo-
rithm for solving the problem by residual (v. [4] p. 164).
Looking carefully the steps 6 to 15 are for solving (δEdpn),
(δEDzn’) and (δEdp’). The details to solve the finite differ-
ences equations are depicted in the next section. A reference
for finite differences techniques is [8].

B. Algorithm for (EDyn)

The main idea for solving the explicit formulation is by
using the information of the two consecutive steps. It is
possible because the initial condition for (EDy) are for time
n = 0, and also for n = 1. The first is follow from y(0) = y0
and the second is from yt(0) = y1. The first condition gives,

y0i = y0(xi), i = 0, . . . , N

For the second condition, the following central discrete
approximation is considered:

yt(0) ≈
y1i − y−1

i

2∆t

and for n = 1,

2 y1i − 2 y0i −∆ty1i
∆t2

−
y0i+1 − 2 y0i + y0i−1

(∆x)2
+

1

32
(2y1i + 2y0i − 2∆ty1i )((y

1
i )

2+

2 y0i(2 y
1
i + y0i − 2∆ty1i) + (y1i 2∆ty1i)

2) =
M∑
j=1

δ(x− aj)δv
1
j

The formula for yn+1 is a polynomial of degree 3.

Φ(ζ1)− Φ(ζ2)

ζ1 − ζ2
= ϕ(ζ1) if ||ζ1 − ζ2|| is small

where Φ′ = ϕ.
In fact, for solving yn+1

i for n = 1, . . . , N

y0i = y0(xi), i = 0, . . . , N
(yn+1

i )3

8 +
yn
i −∆tyn

i

8 (yn+1
i )2 + (

(yn
i −∆tyn

i )2

8 +
(∆tyn

i )2

8 +
2

(∆t)2 )y
n+1
i

− 2∆t yn+1
i +2 yn

i

(∆t)2 − yn
i+1−2 yn

i +yn
i−1

(∆x)2 +
∑M

j=1 δ(x−aj)δv
n
j =

0.

Regrouping terms, the following cubic equation is ob-
tained

an (y
n+1
i )3 + bn (y

n+1
i )2 + cn y

n+1
i + dn = 0 (1)

where

an =
1

8
,

bn =
yni −∆tyni

8
,

cn = (
(yni −∆tyni )

2

8
+

(∆tyni )
2

8
+

2

(∆t)2
),

dn =
2∆t yn+1

i + 2 yni
(∆t)2

−
yni+1 − 2 yni + yni−1

(∆x)2

+

M∑
j=1

δ(x− aj)δv
n
j .

For each i, yn+1
i is a root of the equation (1). Such roots are

estimated by the Newtow-Raphson Method.

IV. NUMERICAL EXPERIMENTS

The advantage of using the Glowinski-Lions-He’s Method-
ology is that the Conjugate Gradient algorithm codification
is straightforward from the description on section III-A.

The tolerance of the Newton-Raphson Method is 5×10−6,
the tolerance of CG algorithm is 5 × 10−6, the number of
points for the discretization of the space interval (0, 1) is
66, the number of time steps is N = 231, and for all the
numerical experiments T = 1; for J , k1 = 2 × 106 and
k2 = 20 and aj denotes the position of the control points.

For each test problem, different controls points were
selected in order to reach the target function z0(x) ̸= 0
with minimum error from the given initial state y0 = 0 and
y1(x) = 0 at t = 0. The error is given by err(y(T )) =
||y(T ) − z0|| and err(yt(T )) = ||yt(T ) − z1||. The last one
means (yt) ≈ 0 at T .

The graphics of the numerical experiments depicts the
controls points functions evolving over time, the overlap-
ping between state function (y) and its corresponding target
function (z0), and the overlapping between time derivative
of the state function (yt) and the function (z1 = 0) at T .
Target function 1: z0(x) = −(x− 1)x6.
M = 1: err(y(T )) = 2.32× 10−2, err(yt) = 5.62× 10−2, 6
steps. See fig. 1, aj ∈ {0.85}. M = 2: err(y(T )) = 7.41 ×
10−2, err(yt) = 6.02 × 10−6, 32 steps. See fig. 2, aj ∈
{0.37, 0.63}.

Target function 2: z0 (x) =
{

x x ∈
(
0, 1

2

)
,

1− x x ∈
(
1
2 , 1

)
.

M = 1: err(yt) = 7.53 × 10−3, 2 steps. See fig. 3, aj ∈
{0.5}, err(y(T )) = 8.14× 10−2.
Target function 3: z0(x) = sin(πx).
M = 1: err(y(T )) = 1.58 × 10−1, err(yt) = 8.75 × 10−2,
2 steps. See fig. 5, aj ∈ {0.5}. Fig. 4 depicts the evolution
over the space and time of the state function y toward the
target function.
Target function 4: z0(x) = 2 sin(4πx)5.
M = 2: err(y(T )) = 7.49 × 10−1, err(yt) = 4.3 × 10−2, 2
steps. See fig. 7, aj ∈ {0.37, 0.63}.

Fig. 6 depicts the evolution over the space and time of the
state function y toward the target function.



Target function 5: z0(x) =
{

0 x ∈ (0, 1
2 ) ∪ ( 34 , 1),

1.5 x ∈ ( 12 ,
3
4 ).

M = 3: err(y(T )) = 1.99 × 100, err(yt) = 2.38 × 10−1, 6
steps. See fig. 8, aj ∈ {0.134, 0.5, 0.866}.
M = 5: err(y(T )) = 1.92 × 100, err(yt) = 2.32 × 10−1, 5
steps. See fig. 10, aj ∈ {0.134, 0.2929, 0.5, 0.7071, 0.866}.
Target function 6: z0(x) = −(x− 1)x3.
M = 1: err(y(T )) = 1.88× 10−2, err(yt) = 9.19× 10−3, 2
steps. See fig. 10, aj ∈ {0.85}.
M = 5: err(y(T )) = 2.21× 10−2, err(yt) = 1.15× 10−4, 2
steps. See fig. 10, aj ∈ {0.134, 0.2929, 0.5, 0.7071, 0.866}.

Fig. 1. z0(x) = −(x− 1)x6, M = 1

Fig. 2. z0(x) = −(x− 1)x6, M = 2

V. CONCLUSIONS

Without controls, it is not possible to reach any of the
target functions. The results depicted are the best considering
the control’s position for a low error between the target
function and the state function at the final time T . The

Fig. 3. Z0 is a triangular pulse, M = 1

Fig. 4. Evolution of y(x, t) toward z0(x) = sin(πx), M = 1

Fig. 5. z0(x) = sin(πx), M = 1

Fig. 6. Evolution of y(x, t) toward z0(x) = 2 sin(4πx)5, M = 2



Fig. 7. z0(x) = 2 sin(4πx)5, M = 2

Fig. 8. z0(x) is a square pulse, M = 3

Fig. 9. z0 is a square pulse, M = 5

Fig. 10. z0(x) = −(x− 1)x3, M = 1

Fig. 11. z0(x) = −(x− 1)x3, M = 5

summary of the the numerical best results depicts that in
many smooth target functions, one controls is enough for
reaching them. See figures 1, 3, 5, and 10. Other cases require
more controls points, see figures 7, 8, and 9. Figures 1 and
2 depict that one control in an appropriate position reach
the target function better than two controls. Figures 10 and
11 depict that there are not improvement for reaching the
target function by using more controls points. In these two
cases, the number of steps grow with the controls points but
without a significant improvement on the final result. In the
future there will be a more extensive study.
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