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1 Introduction

Here we are interesting to solve the following control problem:
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We following the techniques of Glowinski and Lions [1] to solve optimal control problems
with distributed parameters. We are interesting in the properties, like numerical stability,
converge, and, of course, to find one optimal control. But, this is a preliminary report.
In advance for future research, here we only show how build a Conjugated Gradient (CG)
algorithm and show some numerical experiments and results.

In this report, we give the algoritmh on section 2, the numerical experiment and results on
section 3, our conmments. By other hand, if you are interesting in our MatLab’s source
code, please send a e-mail to charron@math.uh.edu. We will glad to ear about you and we
will send a copy.

2 Building a GC algoritmh

The steps to build a Gradient Conjugated algoritmh are:

1n all report, we use the convention f(t) = g means h(z,t) = g(z).



Step 1) Build the Time Discretization problem for PCL.
Step 2) Calculate § J&7.

Step 3) Build the fully Discretization and find the partial diferential subproblems to compute
§ JAt,

The discretization on time of J is
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where N € N, At = %
Now, the discretization for EDy and EDz are:

ynJFl — 2yn + yn_l n n n < n
(At)2 = - Y + (Y )3 =f"+ Zvj Iz —ay), (EDyn)
j=1
y"(0) =
y"(L) =0,
y0 = Yo,
Yy = Y1-
N+1 N+1
Pz = Y QAty — Z1, (EDZH)
p(0) =
¢(L)=0
To calculate .
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we use the standar norm of ( R™)M.
Now,
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With this, we continue the second step, to calculate a variation of (EDyn) and (EDzn),
multiply by discrete variation function p” and integrate by part.
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dp(0) =0
do(L) = 0.
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But,
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We get a explicit form,
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We get,
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Finally, we get the sistem of equations (EDp) for p™,
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2.1 GC algorithm
The GC algorithm for (PLC) is
1. Let u.
2. Solve (EdIn) and get .
3. Solve (Ed2n) and get z,.
4. With y, and z, solve (Edp) and get p,.
5. Update gq; = ugq; + pg;.

6. Set 992 = ||99||?, v = Yy, wg = gy if %H;H) < € take ug like solution, otherwise,

we have Ugq1, Wet1, Ggt1-



7. With wq and y,, solve (0 Edpn), and get g,.

8. Now using ¢ solve (§ EDzn’) and get Z,.

9. Solve (6 Edp’) with yg, y,, and Z, and compute p,.
10. Updte g4 = wqj + py;

11 gwg = [[gal| ||wg|

12, p, = Lol
13. ugy1 = uq — pgwy

2
14. ggr1 = gg — Pq Gq if % < € take ug4q like solution, otherwise continue.

15. v, = llgg+1]l? Wy = Jgt1 + Vg Wq- ¢ = ¢+ 1, repeat from step 7.
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This is a clasical GC algorithm?. However it has slight different details to solve the partial
diferential equations that we show in the next sections.

2.2 Algorithm for (EDyn)

The main idea is solve a explicit formulation to compute the solution in next step time using
the information of the two previus step. It is possible becouse, the initial condition for (EDy)
are for time n = 0, and also for n = 1. The first is follow from y(0) = yo and the second is
from 4,(0) = y;. The first give,
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For the second we use the following central discrete aproximation:
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and for n = 1 we have
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The formula for y"*! is a polynomeal of dregre 3 and it is derived from the schema given by
Dean, Glowinski , et.al. remarks 6.1, p. 206 on [2]:
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where ¢ = ¢.

In fact, we apply it again for solve 4y forn=1,..., N
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3 Comments
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