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Abstract—We study the orbits around of a two par-
ticle system under a pairwise good potential like the
one of Van der Waals. We show that the levels sets
are completely determined by polynomials at most four
degree that can be factorized by means of standard
algebraic procedures, such as the methods of Cardan
and Ferrari. The distribution of real positive roots
determine the level curves and provides a complete
description of the map of the equipotential zones. We
show that our methods can be generalized to a family
of polynomials with degree multiple of 2, 3, and 4.
We carry out a comparison with numerical simulations,
with the true orbits, and 2-d and 3-d pictures depicting
the true isopotential zones.
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I. Introduction

The study of clusters of massless non-interactive parti-
cles under a potential fields has been approached, roughly
speaking, under two view points: the one that considers
the dynamics given by Newton’s equations associated to
the potential, and the one that considers static particles.
The latter is related among others, to theoretical and
experimental research in crystal formation, plasticity and
swarming phenomena, whereas the former is connected
with research in control theory, astrophysics and celestial
mechanics. Another line of research involving pairwise
good potentials and control of chaos concerns to the
dynamical analysis and control of micro cantilevers as
single mode approximation for tackling interactions under
Van der Waals potential, see for instance [?].
In the study of the N-body problem, several pairwise

good potential have been utilized for describing relative
equilibria and central configurations, see for instance [?],
the methods there include classical dynamical systems as
well as non-linear geometric control techniques [?]. In finite
elastoplasticity, Lie groups and algebras have been recently
applied, for instance in [?], A. Mielke associates to the
plastic tensor a certain element of a Lie group, and to the
plastic dissipation a Finsler metric of the same Lie group.
Following this approach, D. Mittenhuber [?], has solved
the problem of 4-slip system in the plane with orthogonal
slip directions by computing the associated dissipation
metric as the solution of an optimal control problem.

We are interested in clusters of non-interactive particles
under pairwise good potentials, our research points to
the optimal control problems of optimal path planning,
collision free navigation and crystal formation on equipo-
tential zones of clusters. In this paper, we restrict ourselves
to the study of the equipotential zones for a system of
two static non interactive particles, as the preliminary
step for continuing the control theoretic approach of the
aforementioned problems.

In the literature, numerical methods of mathematical
numerical software is commonly used to generate graphics
of levels set or orbits. However, there are few algebraic
methods and techniques for determining the shape of the
surfaces or curves or dots of the potential energy surface
(PES) even for small clusters. The novelty of our approach
is to solve the implicit function problem of the determi-
nation of the levels sets using the algebraic methods for
solving polynomials by radicals. With our methods, the
exact solution of an orbit is obtained as a function. We
also show that a numerical approximation could give a
“good” numerical approximation to the solution that is
visually similar to the true orbit.

To the best of our knowledge, most of the reported
research on clusters of particles under a well pair potential
is focused on methods for the problem of search of optimal
clusters, see for instance [?], [?], [?], [?], [?], and the refer-
ences therein. In this paper we take a different approach
from numerics, although we include some for the purpose
of comparison.

As we mentioned before, this is a first step of a general
research program that pretends to tackle optimal control
problems on clusters under pairwise good potentials.

The paper is organized as follows, in section II, we depict
the notation of the problem, the general description of
our approach, and our main result. Section III contains
the description of algebraic procedures along with brief
historical recount. In section IV we present a comparison
of numerical and algebraic results. At the end in section V,
we derive some conclusions and generally describe some of
the future lines of research.

II. Notation and Problems



For a given metric d in R3, a smooth function P : R+ →
R is well pairwise good potential if satisfies the following
conditions:

1) Infinite reject to avoid destroying or collapsing par-
ticles limd→0 P (d) = ∞.

2) A negative basin around a minima distance d⋆ =
argmind∈(0,∞) P (d).

3) Asymptotic attraction, limd→∞ P (d) = 0−.

An elementary model of the Van der Waals that com-
plies the previous properties is the following

B (d) =
1

d4
− 2

d2
.

This function has its minima at d⋆ = 1, B (d⋆) = −1.
For a group of three particles pi = (xi, yi, zi) ∈

R3, i = 1, 2, 3, with the Euclidian metric
√
dij =√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 one has

B (p1, p2, p3) =
∑

1≤i<j≤3

1

(dij)
2 − 2

dij
.

The well know Lennard-Jones potential (LJ 12-6) is the
following

J(d) =
1

d12
− 2

d6
,

which has its minima at d⋆ = 1, J (d⋆) = −1. For three
particles with the Euclidian metric one has

JE (p1, p2, p3) =
∑

1≤i<j≤3

1

(dij)
6 − 2

(dij)
3 .

But using the metric

6

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2

the potential LJ(12-6) yields B, i.e.,

J 6
√
· (p1, p2, p3) = B (p1, p2, p3) .

We consider the problem of determining the orbits of a
system of two given particles and one free under potential
B, hereafter shall be called B2.
Without lost of generality, we can assume p1 =

(− l
2 , 0, 0), p2 = ( l

2 , 0, 0) where the distance l > 0 between
them is fixed. Let be p = (x, y, z) ∈ R3 a free particle,
then the complete potential of this system is the following

B2 (x, y, z) =
1

((x+ l
2 )

2+y2+z2)
2 − 2

(x+ l
2 )

2+y2+z2 +

1

((x− l
2 )

2+y2+z2)
2 − 2

(x− l
2 )

2+y2+z2 +

Kl.

where Kl =
1
l4 −

2
l2 is the corresponding potential between

p1 and p2, which is constant.
An orbit of B2 of value G is the set {(x, y, z) ∈

R3 |B2 (x, y, z) = G}. The values of G correspond to the
range of B2. Therefore, G ∈ [ml,∞) where l > 0 is
distance for a given system of two particles and

ml = min
(x,y,z)∈R3

B2(x, y, z).

The symmetry of B2 (x, y, z) with respect to the third
coordinate allow us to reduce the problem to R2. More-
over,

B2 (x, y) = B2 (x,−y) = B2 (−x,−y) = B2 (−x, y) .

Therefore, it is only necessary to consider the or-
bits of B2 of value G as the sets O(l, G) = {(x, y) ∈
R+2 |B2 (x, y) = G}, where R+ = [0,∞), l > 0 is the
distance between the given system of two particles, G ∈
[ml,∞). The corresponding 3D model can be constructed
by appropriate rotations.

Our methodology is based on:

• The algebraic methods of Cardan and Ferrari.
• For a given G = Gx, the equation

B2(x, y) = G

yields a third or fourth degree polynomial with coef-
ficients in the ring R[x], that we solve to obtain an
exact root r(x,G, l).

• If r(x,G, l) ≥ 0 is a root, then the orbit O(l, G) is
given as follows {(x, y) |x > 0, y =

√
r(x,G, l)}.

Let state our the main proposition
Proposition 2.1: Given a system of two particles, p1 =

(− l
2 , 0, 0), p2 = ( l

2 , 0, 0) at distance l. The orbits O(l, G)
of B2, for G ∈ [ml,∞), correspond to the positive roots of
the third and fourth degree polynomial obtained from the
equation:

B2 (x, y)−Gl = 0. (II.1)

Proof:
The equation II.1 gives:((

x− l
2

)2
+ y2

)2

−

2
((

x+ l
2

)2
+ y2

)((
x− l

2

)2
+ y2

)2

+((
x+ l

2

)2
+ y2

)2

−

2
((

x− l
2

)2
+ y2

)((
x+ l

2

)2
+ y2

)2

−
(K (l) +G)((

x+ l
2

)2
+ y2

)2 ((
x− l

2

)2
+ y2

)2

) = 0.

It has power on x or y as 8, 6, 4, 2 when (Kl +G) ̸= 0
and it has power on x or y as 6, 4, 2 when (Kl +G) = 0.

We let now u = y2 the following third and fourth degree
equations are obtained:(

1024Gx2 + 256G+ 1280 + 1024x2
)
u3 +

352 + 256Gx2 + 3328x2 +

1536Gx4 + 1536x4 + 96G)u2 +

(−256Gx4 + 1024Gx6 − 576x2 − 48 −
64Gx2 + 2816x4 + 16G+ 1024x6)u −

15 +G− 16Gx2 + 96Gx4 −
256Gx6 + 256Gx8 −

848x2 − 672x4 + 768x6 + 256x8 = 0, (II.2)



(256G+ 256Kl)u
4 +(

1024Gx2 + 256G+ 1280 + 1024x2
)
u3 +

352 + 256Gx2 + 3328x2 +

1536Gx4 + 1536x4 + 96G)u2 +

(−256Gx4 + 1024Gx6 − 576x2 − 48 −
64Gx2 + 2816x4 + 16G+ 1024x6)u −

15 +G− 16Gx2 + 96Gx4 −
256Gx6 + 256Gx8 −

848x2 − 672x4 + 768x6 + 256x8 = 0 (II.3)

The roots of them are constructed by the methods of
Cardan and Ferrari in the complex numbers, C. Therefore,
O(l, G) = {(x, y) |x > 0, y =

√
r(x,G, l), r(x,G, l) ≥ 0}.

Remark 2.2: The construction of the roots is not done
by mathematical software, but it is done by finding and
replacing the parameters of the formulas of the methods of
Cardan and Ferrari with the coefficients of the polynomials
of the equations II.2 and II.3.
Proposition 2.3: For the system of the previous propo-

sition, when l = 1, we have

1) m1 = −3.

2) O(1,−3) = {(0,
√
3
2 )}, i.e., it is a point the root of

fourth degree equation for G1 = −3.
3) There are two orbits from the roots of fourth degree

equation with G1 ∈ [m,−1).
4) There is one orbit from the roots of fourth degree

equation with G1 ∈ (−1,∞).

Proof: It follows by direct substitution of l = 1 in the
resulting roots of the previous proposition.
Remark 2.4: Also for l = 1 the figure 3 depicts some

examples of the orbits. The free point and the other
two particles form an equilateral triangle of size 1, and
minimum is B2(0,

√
3
2 ) = −3 = m1. There is one orbit

from the roots of third degree equation with G1 = −1, the
details are given in section IV.
Also, this result follows:
Proposition 2.5: The Polynomials Ax2k + Bxk + C,

Ax3k +Bx2k +Cxk +D, Ax4k +Bx3k +Cx2k +Dxk +E
k > 1 are solvable by radicals.

Proof: Let be u = xk.

III. Solving Polynomial by radicals

The Galois theory is the algebraic framework for the
study of roots of polynomials. It is not focus in numerical
estimations but in the construction of formulæ using
radicals. For numerical estimation there is for instance
the well know method of Newton–Raphson. Instead, the
Galois theory is about the structure and characteristics
of the groups of polynomials that can be solved by a
formula using radicals. In this work, we are interested in
applying the known methods for polynomials which are

solvable by radicals. That is, for a polynomial, we want to
write its roots by means formulæ involving its coefficients,
arithmetic operations, and radicals.

It is known that there is not a general method or formula
to find the polynomial’s roots with degree n ≥ 5. However,
there are general formulas for polynomials with coefficient
in R when n ≤ 4.

The Babylonians at 1600 AC knew that the quadratic
polynomial f(x) = x2 + 2px + q is solvable by the
completing squares, by writing f(x) = (x + p)2 + q − p2,
the roots are given by −p±

√
p2 − q.

The cubic polynomial f(x) = x3+ax2+bx+c, was solved
at the 16th century by more complicated formula found si-
multaneously by Ferro and Tartaglia. For the fourth degree
polynomial f(x) = x4+ax3+bx2+cx+d, Ferrari provided
a procedure. These methods were published by Cardano
in the Ars Magna at 1545. In 18th century, Lagrange
unified these methods for a polynomial with degree n ≤ 4
using what now is know as the Lagrange’s resolvent. This
method involves an auxiliary equation with a polynomial
with degree less than one, i.e., it uses, for example, a third
degree polynomial to solve the fourth degree polynomial.
In fact, this is the procedure for solving the quadratic
polynomial. However, this method fails for the polynomials
of degree 5, because the auxiliary polynomial is of degree
6. Ruffini at 1799, and Abel at 1824 proved that there
is not a general formula using radicals for finding the
roots of quintic polynomial. Galois by 1832 showed how
to associate to each polynomial f(x) a subgroup Gal(f)
of the symmetric group, call the Galois group of f(x),
and established the following result, for details see for
instance [?]

Theorem 3.1: (Galois) A polynomial f is soluble by
radicals if and only if its group Gal(f) is soluble.

As an application of these algebraic techniques we have
the following result.

Proposition 3.2: Given a system of two particles, p1 =
(− l

2 , 0, 0), p2 = ( l
2 , 0, 0), at distance l, the critical points

of B2 (x, y) are the following

1) (0, 0) ∀l ≥ 0.
2) (±x⋆, 0), x⋆ is a positive root of the polynomial

obtained from substituting y = 0 in ∂
∂xB2 (x, y) with

l > 2. The points (±x⋆, 0) are collinear with p1, p2.
3) (0,±y⋆) where y⋆ is a positive root of the polynomial

obtained from substituting x = 0 in ∂
∂yB2 (x, y). The

points (0,±y⋆) correspond to the oppositive vertex
of an isosceles triangle of the side with vertices p1, p2.

Proof: The polynomial to solve come from the first
optimality condition: ∂

∂xB2 (x, y) = 0 and ∂
∂yB2 (x, y) = 0,

where

∂

∂x
B2 (x, y) = −4

(x± l
2 )(

(x± l
2 )

2 + y2
)3 +

4(x± l
2 )(

(x± l
2 )

2 + y2
)2

and



∂

∂y
B2 (x, y) = −4

y(
(x± l

2 )
2 + y2

)3 +
4y(

(x± l
2 )

2 + y2
)2 .

Note that from the previous equations, we have that
∇B2(0, 0) = 0, for all l > 0.
Using that y = 0 gives ∂

∂yB2(x, 0) = 0, the equation for
∂
∂xB2(u

1
2 , 0) = 0 (x = u2 is changed) is

−64u3 +
(
64− 16l2

)
u2 +(

20l4 + 160l2
)
u+

(
20l4 − 3l6

)
= 0. (III.1)

The positive roots of the previous third degree equation
give the optimal points.
In a similar way, using that x = 0 gives ∂

∂xB2(0, u
1
2 ) = 0,

the equation for ∂
∂xB2(0, u

1
2 ) = 0 gives

4y2 + l2 − 4 = 0 (III.2)

The real roots of the previous second degree equation
give the optimal points for l ∈ [0, 2). The interval of l come
from the restriction of the discriminant of the quadratic
equation.
In the following paragraphs we summarizes the methods

of solubility by radicals on which are based our results.
Quadratic equation
For the quadratic equation Ax2 + Bx + C = 0

with A ̸= 0 the roots are given by x1 = (−B +√
B2 − 4AC)(2A)−1 and x2 = (−B−

√
B2 − 4AC)(2A)−1.

It is clear that (x− x1) (x− x2) = x2+(−x1 − x2)x+x1x2

and (−x1 − x2) = BA−1, x1x2 = CA−1.
For the equation III.2 the roots are y1 = 1

2

√
22 − l2 and

y2 = −1
2

√
22 − l2. The real roots are constrained by 22 −

l2 > 0, it is l ∈ (0, 2].
Method of Cardan
For the cubic polynomial x3 + ax2 + bx + c = 0, we

eliminate the quadratic term by writing x = y −
a

3
, to

obtain y3+py+q = 0, where p = b−
a2

3
and q = c−

ba

3
+
2a3

27
.

We now introduce new variables u and v such that y =
u+v and 3uv = −p to get u3+v3 = −q. For then, u3 and
v3 are roots of (t− u3)(t− v3) = 0, which is equivalent to

t2 + qt−
p3

27
= 0. For these equation the roots are

A,B =
−q

2
±

√
q2

4
+

4p3

27
.

We take now, u3 = A and v3 = B, and extracting the
cubic root to get u = 3

√
A, ω 3

√
A, ω2 3

√
A where 1, ω, ω2

are the unit cubic roots. We chose 3
√
B in such a way that

3
√
A 3
√
B = uv = −p

3 to obtain the following solutions for y

y1 = 3
√
A+ 3

√
B

y2 = ω 3
√
A+ ω2 3

√
B

y3 = ω2 3
√
A+ ω 3

√
B

Finally, we write x = y −
a

3
for finding the corresponding

solutions x1, x2, x3.

For the general cubic equation Ax3 +Bx2 +Cx+D =
0, A ̸= 0. One gets x3 + a1x

2 + a2x + a3 = 0 with
a1 = BA−1, a2 = CA−1, and a3 = DA−1. And the above
expressions apply.

Equation III.1. −64u3+
(
64− 16l2

)
u2+

(
20l4 + 160l2

)
u+(

20l4 − 3l6
)
= 0. The coefficients for the Cardan’s for-

mulas are the following A = −64, B =
(
64− 16l2

)
,

C =
(
20l4 + 160l2

)
, and D =

(
20l4 − 3l6

)
.

The first root x1(l) =

((− 1
2 (

2
27 ((

(
64− 16l2

)
)(−64)−1)3 − 1

3 ((
(
64− 16l2

)
)

(−64)−1)((
(
20l4 + 160l2

)
)(−64)−1) + ((

(
20l4 − 3l6

)
)

(−64)−1)) + ( 1
27 ((

(
20l4 + 160l2

)
)(−64)−1 − 1

3
((
(
64− 16l2

)
)(−64)−1)2)3 + 1

4 (
2
27 ((

(
64− 16l2

)
)

(−64)−1)3 − 1
3 ((

(
64− 16l2

)
)(−64)−1)((

(
20l4 + 160l2

)
)

(−64)−1) + ((
(
20l4 − 3l6

)
)(−64)−1))2)

1
2 )

1
3 ) + ((− 1

2
( 2
27 ((

(
64− 16l2

)
)(−64)−1)3 − 1

3 ((
(
64− 16l2

)
)

(−64)−1)((
(
20l4 + 160l2

)
)(−64)−1) + ((

(
20l4 − 3l6

)
)

(−64)−1)) − ( 1
27 ((

(
20l4 + 160l2

)
)(−64)−1 − 1

3
((
(
64− 16l2

)
)(−64)−1)2)3 + 1

4 (
2
27 ((

(
64− 16l2

)
)

(−64)−1)3 − 1
3 ((

(
64− 16l2

)
)(−64)−1)((

(
20l4 + 160l2

)
)

(−64)−1) + ((
(
20l4 − 3l6

)
)(−64)−1))2)

1
2 )

1
3 ) −

1
3 ((

(
64− 16l2

)
)(−64)−1).

The previous equation gives the optimal points on
(x1(l), 0) for l ≥ 2.

As an example s(2) = 3. 938 003 500√
s(2) = 1. 984 4 B2 (0, 0, 2) = − 39

16 .

Equation II.2 We have 1024u3 +(
3072x2 + 256

)
u2 +

(
3072x4 − 512x2 − 64

)
u +(

1024x6 − 768x4 − 832x2 − 16
)

= 0, we have

B2

(
x,

√
v−1 (x)

)
= −1.

Method of Ferrari

For the quartic x4+ax3+bx2+cx+d = 0, we eliminate

first the quadratic term by mean of x = y −
a

4
, to obtain

y4 + py2 + qy+ r = 0, where p = b−
3a2

2
, q = c+

a3 − ba

2
,

and r = d−
3a4 + 64ac

256
. Writing the equation as y4+py2 =

−qy−r and adding py2+p2 in both sides, we get (y2+p)2 =
−qy − r + py2 + p2. By introducing a new variable for
completing the square (y2+p+z)2 = (p+2z)y2−qy+(p2−
r+2pz+ z2), the right side is a perfect square in y if and
only if z satisfies q2=8z3+20pz2+(16p2−8r)z+(4p3−4pr),
which is cubic and can be solved by Cardan’s method.

For the general case the fourth degree equation is x4 +
B
Ax3+C

Ax2+D
Ax+E

A = 0, A ̸= 0. And the Ferrari’s formulas
are the following

α = −3B2

8A2 + C
A

β = B3

8A3 − BC
2A2 + D

A

γ = − 3B4

256A4 + CB2

16A3 − BD
4A2 + E

A

P = −α2

12 − γ

Q = − α3

108 + αγ
3 − β2

8



Fig. 1: The dots depict the numerical approximation of the
orbit O(1,−1.9305).

Fig. 2: The Potential of the numerical approximation of the
orbit O(1,−1.9305).

R = −Q
2 +

√
Q2

4 + P 3

27

U = 3
√
R, y = −5

6α+ U − P
3U , and

W = (α+ 2y)
1
2 ,

the roots are

x1 = − B
4A +

W−
√

−(3α+2y+ 2β
W )

2

x2 = − B
4A +

W+
√

−(3α+2y+ 2β
W )

2

x3 = − B
4A +

−W−
√

−(3α+2y− 2β
W )

2

x4 = − B
4A +

−W+
√

−(3α+2y− 2β
W )

2 .

For the equation II.3, the formulas of the four roots
have an extension of four pages each. The formulas are
syntactically correct and allow to compute by symbolic
mathematical software(SMS) the orbits. This is not ef-
ficient because the SMS replaces symbols and estimates
the result each time. Compare with a compiled numerical
routine, this is slower but nevertheless an orbit can be
visualized or simplified in few minutes.

The next section shows the results for the orbits of the
proposition 2.1.

IV. Levels set of the potential B2

A. Numerical Results

Here the configuration of the fixed particles correspond
to l = 1. For G = −1.9305 the figure 1 depicts a numer-
ical approximation for the orbit O(1,−1.9305). Figure 2
illustrates the corresponding values of the potential. The
expected result is not the constant line at G = −1.9305.

B. Results

The proposition 3.2 gives similar results for B2 instead
of LJ 12-6 to the triangular and collinear choreographes
of the 3-body system discussed in [?]. We remark that
our approach is done by basic analysis and algebraic
techniques for the static case.

The next proposition provides the asymptotics for the
isosceles triangular configurations.

Proposition 4.1: Given a system of two particles of the
proposition 3.2, and l ∈ (2, 0). If a free particle is at (0, y),
where y = ±1

2

√
22 − l2. Then the free particle is on a local

point. Moreover, from the free particle’s point of view,
the two particles act as one virtual particle of double B
potential when l → 0.

Proof: Without loss of generality, let be y1 =
1
2

√
22 − l2. The free particle is perpendicular to middle

point of the side with vertices (p1, p2). The result follows
immediately from proposition 3.2 and the equation III.2,
which corresponds to the condition ∇B2(0, y1) = 0. Also,
the free particle position goes to (0, 2) when l → 0, which is
the double of the optimal distance (d⋆ = 1) of the function
B.

Proposition 4.2: Given a system of two particles of the
proposition 3.2, with l = 1. Then the minimal points of a
free particle is at (0, y), where y = ±

√
3
2 . The particles are

the vertices of an equilateral triangle.
Proof: Without loss of generality, let be y1 = 1

2

√
3,

then the distance between the three particles is 1. The
determinant of Hessian matrix of the system at (0, y1) is

|∇2B2(0,

√
3

2
)| = −64 (−3) .

The optimality follows from proposition 3.2 and
|∇2B2(0, y1)| > 0.

Proposition 4.3: Given a system of two particles of the
proposition 3.2, and l ∈ (2, 0). Then the orbit of B2 of
value Gy = B2(0, y) is the pointed set O(l, Gy)= {(0, y) ∈
R+2} where y = 1

2

√
22 − l2.

Proof: By the symmetry the space is restricted to
R+2

. The determinant of Hessian matrix of the system at
(0, y) is

|∇2B2(0,
1

2

√
22 − l2)| = −64l2

(
l2 − 4

)
.

The polynomial −64l2
(
l2 − 4

)
is strictly positive for

l ∈ (0, 2). This means that the positive root of the
equation III.2 corresponds to the optimality conditions
∇B2(0, y) = 0 and |∇2B2(0, y)| > 0. Therefore O(l, Gy)
is the minimal point (0, y).

For G = −3 the four roots of fourth degree equation II.3
(with l = 1) are

r1 (x) =
1
4 − x2 − 1

2

√
4x2 − 4ix+ 1

r2 (x) =
1
2

√
4x2 − 4ix+ 1− x2 + 1

4

r3 (x) =
1
4 − x2 − 1

2

√
4x2 + 4ix+ 1

r4 (x) =
1
2

√
4x2 + 4ix+ 1− x2 + 1

4 .



Fig. 3: The true orbits for O(1,−3), O(1,−2.75),
O(1,−2.43755), O(1,−2) , O(1,−1) , O(1, 0) , and O(1, 100)

Fig. 4: 3D model of the levels set of B2(x, y, z) = G, where
G ∈ [3,∞).

Only for x = 0, r2 (0) = 3
4 > 0, therefore the orbit of

O(1,−3) is the point set {(0,
√

3
4 )}. Which is the optimal

point of the equilateral triangle of size = 1. Here, our
method gives the result without appealing to the optimal
conditions as in proposition 4.2 and in proposition 4.3.
The detailed analysis of the third and fourth degree

equations of proposition 2.1 for l = 1 was done to verify

1) m1 = −3.

2) O(1,−3) = {(0,
√
3
2 )}, i.e., it is a point the root of

fourth degree equation for G1 = −3.
3) There are two orbits from the roots of fourth degree

equation with G1 ∈ [m,−1)
4) There is one orbit from the roots of third degree

equation with G1 = −1.
5) There is one orbit from the roots of fourth degree

equation with G1 ∈ (−1,∞).

Figure 3 depicts some examples of the orbits that com-
ply the previous statements. Figure 4 depicts a 3D model
of the PES for l = 1 and G ∈ [−3,∞).

V. Conclusions and future work

To our knowledge this is the first totally complete
description of the level sets of a system of two particles
under a Van der Waals Potential. The application of the
research on solvable polynomial for a Galois Groups is
promising [?] to apply as here.
We have presented a novel approach for the study of

orbits of systems of non interactive particles. We tackle
the problem by reducing the analysis of the equipotential

zones to the one of finding the roots of certain polynomials.
The structure of such polynomial allows the use of alge-
braic methods based on the solvability of the associated
Galois group. A constructive method provided by the
methods of Cardan and Ferrari, yields a complete factor-
ization of the polynomials and consequently an analytical
description of equipotential zones, we compare our results
with the standard numerical routines of MATLABTM

reported in the literature. A complete description of the
orbits of clusters, provides a good knowledge for tackling
the optimal control problems of optimal path planning,
collision free navigation and crystal formation.


