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1 Introduction

Given the partial differential system:


∂y
∂t − µ

∂2y
∂x2 + ε ∂y∂x − y = 0 in Q = (0, L)× (0, T )

y (x, 0) = y0, t = 0,

−µ∂y(0,t)
∂x = 0, x = 0,

µ∂y(L,t)
∂x = 0, x = L.

(S)

A conjugate gradient algorithm with several control on (0, L) is developed for it.

2 Several Control for S

With an appropriate function v(x, t), the system can be controlled, by example on x = 0 or x = L, and also, let
be controls in xk = k

ML, k = 1, . . . ,M − 1 (see figure 1).


∂y
∂t − µ

∂2y
∂x2 + ε ∂y∂x − y = χxkv in Q = (0, L)× (0, T ) , i = 1, . . . ,M − 1

y (x, 0) = y0, t = 0,

−µ∂y(0,t)
∂x = χ0v (t) = v0 (t) , x = 0,

µ∂y(L,t)
∂x = χMv (t) = vM (t) , x = L.

(SE)

In this case, the corresponding control problem is{
Find u∗ ∈ U ,
J (u∗) ≤ J (v), ∀v ∈ U (CP)

where

J (v) =
k0

2

∫∫
Q

χiv
2dxdt+

k1

2

∫∫
Q

y2dxdt+
k2

2

∫ L

0

(y (x, T )− z (x))
2

dx,

k0

2

M∑
k=0

∫ T

0

v2
i dt+

k1

2

∫∫
Q

y2dxdt+
k2

2

∫ L

0

(y (x, T )− z (x))
2

dx,

vk = χxkv (x, t) , z (x) is a given function to reach at t = T , and y is the solution of (SE) for each vk (see figure
1).
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Figure 1: System (SE).

The equivalent form as an optimization problem is:

min
v∈U

J (v) =
k0

2

M∑
k=0

∫ T

0

v2
kdt+

k1

2

∫∫
Q

y2dxdt+
k2

2

∫ L

0

(y (x, T )− z (x))
2

dx,

where y is the solution of (SE) given v.
In this case, the objective of the optimization problem is to reduce the cost or weight of control variable v, keep
lower the cost of the evolution of the system y (x, t), and reduce the cost of final state of the system y (x, T ).

3 The continuous case

The continuous case is computing by a perturbation of (CP) and (SE) and using the optimally condition δJ (v) =
0.

δJ (v) = k0

M∑
k=0

∫ T

0

viδvidt+ k1

∫∫
Q

yδydxdt+ k2

∫ L

0

(y (x, T )− z (x)) δy (x, T ) dx.

The perturbation system of the equation (SE) is
∂δy
∂t − µ

∂2δy
∂x2 + ε∂δy∂x − δy = χxiδvk in Q = (0, L)× (0, T ) , i, k = 1, . . . ,M − 1

δy (x, 0) = 0, t = 0,

−µ∂δy(0,t)
∂x = δv0 (t) , x = 0,

µ∂δy(L,t)
∂x = δvM (t) , x = L.

(δSE)

Let p (x, t) a sufficiently smooth function that allow to integrate (δSE) in Q

0 =

∫∫
Q

p

(
∂δy

∂t
− µ∂

2δy

∂x2
+ ε

∂δy

∂x
− δy − χxiδv

)
dxdt

=

∫∫
Q

p
∂δy

∂t
dxdt− µ

∫∫
Q

p
∂2δy

∂x2
dxdt+ ε

∫∫
Q

p
∂δy

∂x
dxdt−

∫∫
Q

pδydxdt−
∫∫

Q

pχxiδvdxdt.

The integration of (δSE) is achieved by the formula of integration by parts:
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∫ b

a

vdu = vu|ba −
∫ b

a

udv.

Therefore

∫∫
Q

p
∂δy

∂t
dxdt =

∫ L

0

[∫ T

0

p
∂δy

∂t
dt

]
dx (1)

v = p, du =
∂δy

∂t
dt

=

∫ L

0

[p (x, T ) δy (x, T )]
T
0 dx−

∫∫
Q

∂p

∂t
δydxdt

=

∫ L

0

p (x, T ) δy (x, T ) dx−
∫ L

0

p (x, 0) δy (x, 0) dx−
∫∫

Q

∂p

∂t
δydxdt

(δy (x, 0) = 0)

=

∫ L

0

p (x, T ) δy (x, T ) dx+

∫∫
Q

(
−∂p
∂t

)
δydxdt

−µ
∫∫

Q

p
∂2δy

∂x2
dxdt = −µ

∫ T

0

[∫ L

0

p
∂2δy

∂x2
dx

]
dt (2)

v = p, du =
∂2δy

∂x2
dx

= −µ
∫ T

0

[
p (x, t)

∂δy (x, t)

∂x

]L
0

dt+ µ

∫∫
Q

[
∂p

∂x

∂δy

∂x
dx

]
dt

v =
∂p

∂x
, du =

∂δy

∂x
dx

=

∫ T

0

p (L, t)

(
−µ∂δy (L, t)

∂x

)
dt−

∫ T

0

p (0, t)

(
−µ∂δy (0, t)

∂x

)
dt

+µ

∫ T

0

[
∂p (x, t)

∂x
δy (x, t)

]L
0

dt− µ
∫∫

Q

∂2p

∂x2
δydxdt.
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(
µ
∂δy (L, t)

∂x
= δvM (t) ,−µ∂δy (0, t)

∂x
= δv0 (t)

)
= −

∫ T

0

p (L, t) δvM (t) dt−
∫ T

0

p (0, t) δv0 (t) dt+ µ

∫ T

0

[
∂p (x, t)

∂x
δy (x, t)

]L
0

dt

−µ
∫∫

Q

∂2p

∂x2
δydxdt

=

∫ T

0

p (L, t) (−δvM (t)) dt−
∫ T

0

p (0, t) δv0 (t) dt+ µ

∫ T

0

∂p (L, t)

∂x
δy (L, t) dt

−µ
∫ T

0

∂p (0, t)

∂x
δy (0, t) dt− µ

∫∫
Q

∂2p

∂x2
δydxdt

=

∫ T

0

(−p (L, t)) (δvM (t)) dt+

∫ T

0

(−p (0, t)) δv0 (t) dt+

∫ T

0

µ
∂p (L, t)

∂x
δy (L, t) dt

+

∫ T

0

(
−µ∂p (0, t)

∂x

)
δy (0, t) dt− µ

∫∫
Q

∂2p

∂x2
δydxdt

=

∫ T

0

(−p (L, t)) (δvM (t)) dt+

∫ T

0

(−p (0, t)) δv0 (t) dt+

∫ T

0

µ
∂p (L, t)

∂x
δy (L, t) dt

+

∫ T

0

(
−µ∂p (0, t)

∂x

)
δy (0, t) dt+

∫∫
Q

(
−µ∂

2p

∂x2

)
δydxdt

ε

∫∫
Q

p
∂δy

∂x
dxdt = ε

∫ T

0

[∫ L

0

p
∂δy

∂x
dx

]
dt (3)

v = p, du =
∂δy

∂x
dx

= ε

∫ T

0

[p (x, t) δy (x, t)]
L
0 dt− ε

∫∫
Q

∂p

∂x
δydxdt

= ε

∫ T

0

p (L, t) δy (L, t) dt− ∈
∫ T

0

p (0, t) δy (0, t) dt− ε
∫∫

Q

∂p

∂x
δydxdt

=

∫ T

0

εp (L, t) δy (L, t) dt+

∫ T

0

(− ∈ p (0, t)) δy (0, t) dt− ε
∫∫

Q

∂p

∂x
δydxdt

−
∫∫

Q

pδydxdt =

∫∫
Q

(−p) δydxdt. (4)

−
∫∫

Q

pχxiδvdxdt =

M−1∑
i=1

∫ T

0

(−pi) δvidt (5)

where χxip = pi.
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0 = (1) + (2) + (3) + (4) + (5)

=

∫ L

0

p (x, T ) δy (x, T ) dx+

∫∫
Q

(
−∂p
∂t

)
δydxdt

+

∫ T

0

(−p (L, t)) (δvM (t)) dt+

∫ T

0

(−p (0, t)) δv0 (t) dt+

∫ T

0

µ
∂p (L, t)

∂x
δy (L, t) dt

+

∫ T

0

(
−µ∂p (0, t)

∂x

)
δy (0, t) dt+

∫∫
Q

(
−µ∂

2p

∂x2

)
δydxdt

+

∫ T

0

εp (L, t) δy (L, t) dt+

∫ T

0

(− ∈ p (0, t)) δy (0, t) dt− ε
∫∫

Q

∂p

∂x
δydxdt

+

∫∫
Q

(−p) δydxdt

+

M−1∑
i=1

∫ T

0

(−pi) δvidt

=

M∑
i=0

∫ T

0

(−pi) δvidt

+

∫∫
Q

(
−∂p
∂t
− µ∂

2p

∂x2
− ε ∂p

∂x
− p
)
δydxdt

+

∫ L

0

p (x, T ) δy (x, T ) dx

+

∫ T

0

(
µ
∂p (L, t)

∂x
+ εp (L, t)

)
δy (L, t) dt+

∫ T

0

(
−µ∂p (0, t)

∂x
− εp (0, t)

)
δy (0, t) dt

Adjusting terms with

δJ (v) = k0

M∑
k=0

∫ T

0

viδvidt+ k1

∫∫
Q

yδydxdt+ k2

∫ L

0

(y (x, T )− z (x)) δy (x, T ) dx,

the adjoint system is 
p (x, T ) = k2 (y (x, T )− z (x)), x ∈ [0, L]

µ ∂p∂x (L, t) + εp (L, t) = 0, t ∈ [0, T ]

µ ∂p∂x (0, t) + εp (0, t) = 0 t ∈ [0, T ]
∂p
∂t + µ ∂

2p
∂x2 + ε ∂p∂x + p = −k1y, in Q

(δASE)

also

∇J (v) = k0

M∑
k=0

(vi − pi (x, t)) .

4 Discretization on Time

The discretization on time of J
∆t

(v) is

J
∆t

(v) =
∆t

2

M∑
k=0

N∑
n=0

‖vn‖2 +
k1∆t

2

N∑
n=0

∫ L

0

‖yn‖2 dx+
k2

2

∫ L

0

∥∥yN+1 (x)
∥∥2

dx

where N > 0,and ∆t = T
N .

Now, the forward discretization on time of (SE) is
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Figure 2: Discretization on time of (SE).



y0 = y0.
for n = 0, . . . , N
yn+1−yn

∆t − µ∂
2yn

∂x2 + ε∂y
n

∂x − y
n = χxiδv

n
k ,

−µ∂y
n(0)
∂x = vn0 ,

µ∂y
n(L)
∂x = vnM .

(SE4t)

Figure 2 depicts (SE4t).
The optimal condition is

δJ∆t(v) =
(
∇J

∆t

(v) , δv
)
U∆t

= 0.

And

δJ∆t(v) = ∆t

N∑
n=0

vnδvn + k1∆t

N∑
n=0

∫ L

0

ynδyndx+ k2

∫ L

0

yN+1δyN+1dx.

By the other hand, the perturbation of (SE4t) is

δy0 = 0.
for n = 0, . . . , N
δyn+1−δyn

∆t − µ∂
2δyn

∂x2 + ε∂δy
n

∂x − δy
n = χxiδv

n
k ,

−µ∂δy
n(0)
∂x = δvn0 ,

µ∂δy
n(L)
∂x = δvnM .

(δSE∆t)

Now, multiplying these by appropriate functions pn for integrating:

∆t

N∑
n=0

∫ L

0

pn
(
δyn+1 − δyn

∆t
− µ∂

2δyn

∂x2
+ ε

∂δyn

∂x
− δyn − χxiδv

n
k

)
dx = 0.
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Figure 3: Discretization on time of adjoint system of (SE).

∆t

N∑
n=0

∫ L

0

pn
(
δyn+1 − δyn

∆t

)
dx = (6)

= −
∫ L

0

p0 δy
0

∆t
dx−∆t

N∑
n=1

∫ L

0

(
pn − pn−1

∆t

)
δyndx+

∫ L

0

pNδyN+1dx

−∆t

N∑
n=1

∫ L

0

(
pn − pn−1

∆t

)
δyndx+

∫ L

0

pNδyN+1dx.

∆t

N∑
n=0

∫ L

0

pn
(
−µ∂

2δyn

∂x2

)
dx = (7)

= ∆t
N∑
n=0

p

[
−µ∂δy

∂x

]L
0

+ µ∆t

N∑
n=0

∂p

∂x
[δy]

L
0 − µ∆t

N∑
n=0

∫ L

0

∂2p

∂x2
δydx

= −∆t

N∑
n=0

pn (0) (δvn) + µ∆t

N∑
n=0

∂pn (L)

∂x
δy (L)

−µ∆t

N∑
n=0

∫ L

0

∂2p

∂x2
δydx.

∆t

N∑
n=0

∫ L

0

pn
(
ε
∂δyn

∂x

)
dx = ε

N∑
n=0

pn (L) δy (L)− ε
N∑
n=0

∫ L

0

∂p

∂x
δydx. (8)

∆t

N∑
n=0

∫ L

0

pn (−δyn) dx. (9)
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Figure 4: Fully discretization of (SE).

0 = (5) + (6) + (7) + (8) +(8) = ∆t

N∑
n=1

∫ L

0

(
−p

n − pn−1

∆t
− µ∂

2p

∂x2
− ε ∂p

∂x
− pn

)
δyndx+

∫ L

0

pNδyN+1dx

−∆t

N∑
n=0

p (0) (δvn) + µ∆t

N∑
n=0

∂pn

∂x
(L) δy (L) + ε

N∑
n=0

p (L) δy (L) .

Therefore the discritization on time of the adjoint system (see figure 3) is
pN = k2y

N+1.
for n = N, . . . , 1
pn−pn−1

∆t + µ ∂
2p
∂x2 + ε ∂p∂x + pn = −k1y

n,

µ∂p
n

∂x (0) + εpn (0) = 0

µ∂p
n

∂x (L) + εpn (L) = 0.

(ASE∆t)

And
∇J

∆t

(v) = {vn − pn (0)}Nn=0 .

4.1 Fully discretization

Let H > 0 an integer, and 4x = h = L
H . The indices for axis x are −1 ≤ j ≤ H + 1. Note that two sets

of points are added on j = −1, and j = H + 1, this is convenient because the frontier conditions on x = 0

(−µ∂y(0,t)
∂x = v (t) ,) and x = L (µ∂y(L,t)

∂x = 0) can be inserted before and after the points of interest 0 to H on x.
The corresponding fully discrete steady equations (see figure 4)are

y0
j = y0,j , j = 0, . . . ,H

for n = 0, . . . , N , j = 0, . . . ,H
yn+1
j −ynj

∆t − µy
n
j+1+ynj−1−2ynj

h2 + ε
ynj+1−y

n
j

h − ynj = χjvk

−µy
n
0−y

n
−1

h = vn0
µ
ynH+1−y

n
H

h = vnM .

(SEMt
Mx)

−µy
n
0−y

n
−1

h = vn0
−µyn0 + µyn−1 = hvn0
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Figure 5: Fully discretization of adjoint system of (SE).

+yn−1 = (hvn0 + µyn0 ) /µ

+yn−1 = h
µv

n
0 + yn0

µ
ynH+1−y

n
H

h = vnM
µ
(
ynH+1 − ynH

)
= hvnM

µynH+1 − µynH = hvnM
µynH+1 = µynH + hvnM
ynH+1 = ynH + h

µv
n
M

The adjoint equations (see figure 5) are

pNj = k2y
N+1
j , j = 0, . . . ,H

for n = N, . . . , 1, j = 0, . . . ,H
pnj −p

n−1
j

∆t + µ
pnj+1+pnj−1−2pnj

h2 + ε
pnj+1−p

n
j

h + pnj = −k1y
n
j

µ
pnH+1−p

n
H

h + εpnH = 0.

µ
pn0−p

n
−1

h + εpn−1 = 0

(ASE4t4x)

pnj −p
n−1
j

∆t +µ
pnj+1+pnj−1−2pnj

h2 +ε
pnj+1−p

n
j

h +pnj = −k1y
n
j , Solution is : pn−1

j =
h2pnj +µ∆tpnj+1+µ∆tpnj−1−2µ∆tpnj +ε∆thpnj+1−ε∆thp

n
j +pnj ∆th2+k1y

n
j ∆th2

h2 =

pn−1
j = pnj +

µ∆tpnj+1+µ∆tpnj−1−2µ∆tpnj +ε∆thpnj+1−ε∆thp
n
j +pnj ∆th2

h2 + k1y
n
j ∆t =

pn−1
j = pnj +

µ∆t(pnj+1+pnj−1−2pnj )
h2 +

ε∆t(pnj+1−hp
n
j )

h + pnj ∆t+ k1y
n
j ∆t =

µ
pn0−p

n
−1

h + εpn−1 = 0
µ
hp

n
0 −

µ
hp

n
−1 + εpn−1 = 0

µpn0 − µpn−1 + εhpn−1 = 0
pn−1 = µpn0/ (µ− εh)

µ
pnH+1−p

n
H

h + εpnH = 0
µpnH+1 − µpnH = −εhpnH
µpnH+1 = (µ− ε) pnH/µ
And the corresponding perturbation equations are
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δy0
j = 0, j = 0, . . . ,H

for n = 0, . . . , N , j = 0, . . . ,H
δyn+1
j −δynj

∆t − µ δy
n
j+1+δynj−1−2δynj

h2 + ε
δynj+1−δy

n
j

h − δynj = χjδv
n
k

−µ δy
n
0−δy

n
−1

h = δvn0 ,

µ
δynH+1−δy

n
H

h = δvnM .

(δSE4t4x)

The corresponding control problem is {
u = {un} ∈ V = U4t4x = RN

J4t4x (u) ≤ J4t4x (v) , ∀v ∈ V
(CP4t4x)

where

J4t4x (v) =
∆t

2

M∑
k=0

N∑
n=0

[vnk ]
2

+
k1∆th

2

N∑
n=0

H∑
j=0

[
ynj
]2

+
k2h

2

H∑
j=0

[
yN+1
j

]2
,

and y =
{
ynj
}0≤n≤N+1

−1≤j≤H+1
is the solution of (SEMt

Mx) with v.

5 The Conjugate Gradient Algorithm

The CG algorithm for the fully discrete control problem (CP4t4x) is:

1. Given ε (the tolerance to stop the algorithm), 0 < ε� 1, and
{
un,0

}
∈ V.

2. Solve the equation (SEMt
Mx), and

with the solution
{
yn,0j

}0≤n≤N+1

−1≤j≤H+1
solve (ASE4t4x) to get

{
pn,0j

}0≤n≤N

−1≤j≤H+1
.

3. Compute g0 =
{
un,0jk

+ pn,0jk

}0≤n≤N

0≤jk≤H
, and set w0 = g0.

Now, we have um, gm, and wm.

4. If
(gm+1,gm+1)V

(g0,g0)V
< ε2 take um+1 as the solution and stop.

5. Compute m = m+ 1.

6. Solve the equation (δSE4t4x), and

with the solution y =
{
δyn,mj

}0≤n≤N+1

−1≤j≤H+1
solve (ASE4t4x) to get p =

{
pn,mj

}0≤n≤N
−1≤j≤H+1

.

7. Compute gm =
{
wn,mjk + pn,mjk

}0≤n≤N
0≤jk≤H

, ρm = (gm, gm)V , um+1 = um − ρmwm, and gm+1 = gm − ρmgm.

8. If
(gm+1,gm+1)V

(g0,g0)V
< ε2 take um+1 as the solution and stop.

9. Compute γm =
(gm+1,gm+1)V

(gm,gm)V
, and wm+1 = gm+1 + γmwm

10. Go to step 5.
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6 Motivation

We preferred to leave this section at the end, because these notes are principally aimed for graduate students,
which could be interested in developing their own simulators. It is possibly, that they already know the impor-
tance of the Theory of Control on Systems over Partial Differential Equations.
From the abundant literature, we mention the book of partial differential equations [4], and for Control the
books [1, 3]. These notes were developed from the talk in [2].
The following problem depicts a classical problem for a parabolic equation with three physical-chemical compo-
nents.

1. Advection. It is the scalar variation at each point of a vector field, by example, the contaminant entrainment
in a medium.

2. Reaction. It is the response or reaction of the system, by example, the heat exchanges in a system.

3. Diffusion. It is the gradient (change or transport) of system components.

Figure 6: Sistem’s domain

Let be the following parabolic equation where the advection is V · ∇ϕ, the reaction is f (ϕ), and the diffusion is
∇ · (A∇ϕ) acting over the time. It is Equation of the State System.

∂ϕ
∂t −∇ · (A∇ϕ) + V · ∇ϕ+ f (ϕ) = 0 en Q = Ω× [0, T ] ,
A∇ϕ · n = 0 en Σ = Γ× [0, T ] ,
ϕ (x, 0) = ϕ0 (x) x ∈ Ω

. (SEE)

where Ω ⊂ Rd (d ≥ 1, dimension) it is a smooth region, with orientated boundary Γ = ∂Ω, n represents a
normal unit vector on Γ (pointing outside of Ω), T > 0 is the time ( including the possiblity T =∞). Figure 6
depicts (SEE).

The intern product · is the usual, a, b ∈ Rd, a · b =
d∑
i=1

aibi, A is a real tensor function (diffusion matrix),

V : Ω → Rd is a vectorial function, f : R → R is a real function, and ϕ(x, t) is the phenomena function that
occurs in Q.
In addition we assume that:

A(x)ξ · ξ ≥ α |ξ|2 ,∀ξ ∈ Rd for almost all x ∈ Ω

11



which means that A is uniformly positive definite for almost all x in Ω.
For the vector function V, we assume:

∇ · V = 0 (divergence free)

∂V

∂t
= 0 (it is constant over time)

V · n = 0 on Γ

Control is necessary for this System, let be a reaction function given by

f (ϕ) = C − λeϕ

where C, λ > 0 are real positive constants.
Then the steady state solution for such f fulfill:

∂ϕ

∂t
+ f (ϕ) = 0 (10)

and it is given by

ϕs =
lnC

λ

Note that ϕs is constant,so that the equation (10), substituting ϕs is fulfill (because f (ϕs) = C − λeϕs =

C − λe lnC
λ = 0).

Assuming that for some t > 0, the system was its stable steady state solution ϕ = ϕs.
Now, ϕ = ϕs at some time t0 = 0 has a small constant perturbation δϕ, independent from x y t (with ∇δϕ = 0
y ∂δϕ

∂t = 0).
For this perturbation, the system evolves under the following ordinary differential equation:

dϕ

dt
= λeϕ − C, λ,C > 0, real constants

ϕ (0) = ϕs + δϕ

This model behaves with a constant positive perturbation, δϕ > 0, such that ϕ → +∞. By other hand, if the
perturbation is a constant negative, δϕ < 0, then ϕt→∞ → −∞. In the following paragraphs, it is showed that
in the former the deviation from the stable state grows fast to +∞, and in the second case the deviation of the
stable state is slow and steady toward −∞ as the time progress.
This means that around a stable steady state solution, the introduction a small constant perturbation makes the
system unstable. To verify the above statement, we proceed by the Euler Method to numerically integrate the
above equation:

dϕ

dt
= λeϕ − C, λ,C > 0, real constants

ϕ (0) =
lnC

λ
+ δϕ

Without loss of generality we take 4t = 1, C = 1, λ = 1, δϕ = 0.1 > 0, and approach dϕ
dt by a time difference

between n and n− 1.
The resulting approximation difference equation is
ϕn = exp

(
ϕn−1

)
+ ϕn−1 − 1.

From the initial condition:
ϕ0 = lnC

λ + δϕ = 0.1
The numerical estimations are
ϕ1 = exp (0.1) + 0.1− 1 = 0.205 17

12



ϕ2 = exp (0.205 17) + 0.205 17− 1 = 0.432 9
ϕ3 = exp (0.432 9) + 0.432 9− 1 = 0.974 64
ϕ4 = exp (0.974 64) + 0.974 64− 1 = 2. 624 8
ϕ5 = exp (2. 624 8) + 2. 624 8− 1 = 15. 427
ϕ6 = exp (15. 427) + 15. 427− 1 = 5. 010 3× 106

ϕ7 = exp
(
5. 010 3× 106

)
+ 5. 010 3× 106 − 1 = 4. 392 2× 102175945

ϕ (t) in a finite time grows very quickly, it tends accelerated to ∞.
By other hand, assuming that δϕ = −0.1 < 0, and using the same constants C y λ, the numerical estimations
for this case are
ϕ0 = −0.1
ϕ1 = exp (−0.1) + (−0.1)− 1 = −0.195 16
ϕ2 = exp (−0.195 16) + (−0.195 16)− 1 = −0.372 46
ϕ3 = exp (−0.372 46) + (−0.372 46)− 1 = −0.683 42
ϕ4 = exp (−0.683 42) + (−0.683 42)− 1 = −1. 178 5
ϕ5 = exp (−1. 178 5) + (−1. 178 5)− 1 = −1. 870 8
ϕ6 = exp (−1. 870 8) + (−1. 870 8)− 1 = −2. 716 8
ϕ7 = exp (−2. 716 8) + (−2. 716 8)− 1 = −3. 650 7
ϕ8 = exp (−3. 650 7) + (−3. 650 7)− 1 = −4. 624 7
ϕ9 = exp (−4. 624 7) + (−4. 624 7)− 1 = −5. 614 9
ϕ10 = exp (−5. 614 9) +−5. 614 9− 1 = −6. 611 3
ϕ11 = exp (−6. 611 3) +−6. 611 3− 1 = −7. 610 0
ϕ (t) is decreasing slowly to −∞.
The previous numerical results clearly depicts that a control is necessary to prevent such behavior and to return
the system to the steady state solution ϕs.
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