Irreducible Quadrangulations of Surfaces
 ACCOTA 2006 (Ten Years) December 3-8, 2006 Puerto Vallarta, Mexico

Gloria Aguilar and Francisco Zaragoza
CINVESTAV (Mathematics) and UAM Azcapotzalco (Systems), Mexico

```
gaguilar@math.cinvestav.mx and franz@correo.azc.uam.mx
```


Contents

- Surfaces and Quadrangulations.
- Irreducible Quadrangulations.
- Maximum Irreducible Quadrangulations.
- Old and New Bound.
- Conclusions.

Surfaces and Euler genus

- Let M_{g} be the sphere with g handles attached.
- Let N_{g} be the sphere with g cross-caps attached.
- Their Euler genuses are $\gamma\left(M_{g}\right)=2 g$ and $\gamma\left(N_{g}\right)=g$.

Graphs and Euler genus

- Let G be a simple graph.
- The orientable genus $\bar{\gamma}(G)$ of G is the minimum g such that G is embeddable in M_{g}.
- The non-orientable genus $\tilde{\gamma}(G)$ of G is the minimum g such that G is embeddable in N_{g}.
- The Euler genus $\gamma(G)$ of G is $\min \{2 \bar{\gamma}(G), \tilde{\gamma}(G)\}$.
- Note $\gamma(G)=\min \{\gamma(S): G$ is embeddable in $S\}$.

Quadrangulations

- A quadrangulation of a closed surface S is a simple graph G embedded on S in such a way that all its faces have four (different) vertices.
- Two small quadrangulations of the sphere are the square and the cube:

Irreducible Quadrangulations

- A face of a quadrangulation is contractible if this operation produces another quadrangulation:

- A quadrangulation is irreducible if it does not have contractible faces.

Maximum Irreducible Quadrangulations

- Let $q(S)$ be the maximum number of vertices of an irreducible quadrangulation of a closed surface S.
- $q(S)$ is finite.
- $q(S) \leq 186 \gamma(S)-64$ (Nakamoto and Ota, 1995).

Our Main Theorem

- Main Theorem: For every closed surface S the following bound holds

$$
q(S) \leq 159.5 \gamma(S)-46
$$

- This is an improvement of about 16 percent over the previous result.

Some Useful Lemmas

1. Let G_{1}, G_{2} and $G=G_{1} \cup G_{2}$. If $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right| \leq 2$ then $\gamma(G) \geq \gamma\left(G_{1}\right)+\gamma\left(G_{2}\right)$ (Miller, 1987).
2. Let G be an irreducible quadrangulation of $S \neq M_{0}$. G has minimum degree 3 (Nakamoto and Ota, 1995).
3. Let G^{\prime} be the graph embedded on S obtained from G by adding a vertex of degree 4 to each of its faces. For $v \in V(G)$, let H_{v} be the subgraph of G^{\prime} induced by v, the neighbours of v in G, and the new vertices added to the neighbour faces of v. Then $\gamma\left(H_{v}\right) \geq 1$ (Nakamoto and Ota, 1995, for $\operatorname{deg}_{G}(v) \leq 4$).

The graph $G^{\prime \prime}$

Independent Set Lemma

- For $i \geq 3$ let V_{i} be the set of vertices of degree i in G.
- We say that $I \subseteq V(G)$ is independent if no two distinct vertices in I are on the same face of G.
- Independent Set Lemma: Let $k \geq 3$. Then there exists an independent set $X \subseteq V_{3} \cup V_{4} \cup \cdots V_{k}$ such that

$$
|X| \geq \sum_{i=3}^{k} \frac{\left|V_{i}\right|}{2 i+1} .
$$

- Nakamoto and Ota proved this for $k=4$.

Sketch of the Theorem (1)

- Let $k \geq 3$, let X be as in the Independent Set Lemma, and $Y \subseteq V(G) \backslash X$ be the set of vertices on the same face of G as a vertex in X.
- Construct a bipartite subgraph B from X and Y which can be seen to be embeddable on S.
- Find a maximal subset $X^{\prime}:=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\} \subseteq X$ so that you can apply Miller's Lemma to the sequence of graphs $H_{v_{1}}, H_{v_{1}} \cup H_{v_{2}}, \ldots, H_{v_{1}} \cup H_{v_{2}} \cup \cdots \cup H_{v_{r}}$ and obtain the bound $\gamma(S) \geq\left|X^{\prime}\right|$.

Sketch of the Theorem (2)

- Construct another bipartite subgraph B^{\prime} from X^{\prime} and Y^{\prime} which can also be embedded on S.
- Use the maximality of X^{\prime} to prove that B^{\prime} has at least $3\left(|X|-\left|X^{\prime}\right|\right)+\left|Y^{\prime}\right|$ edges.
- Use Euler's formula on B^{\prime} and properties of X to prove that $4-2 \gamma(S) \leq(2 k+3)\left|X^{\prime}\right|-|X|$.
- Use Euler's formula $\left|V_{G}\right|-\left|E_{G}\right|+\left|F_{G}\right|=2-\gamma(S)$ and elementary graph theory on G to prove that

$$
\sum_{i=3}^{k}(k-i+1)\left|V_{i}\right| \geq(k-3)|V(G)|-4 \gamma(S)+8 .
$$

Sketch of the Theorem (3)

- Let $n_{k}=\max _{3 \leq i \leq k}(2 i+1)(k-i+1)$. Note that $n_{3}=7$, $n_{4}=14$, and $n_{k}=\frac{1}{2}(k+1)(k+2)$ for $k \geq 5$.
- Use the lower bound for $|X|$ in the Independent Set Lemma to obtain the inequality

$$
4-2 \gamma(S) \leq-\frac{(k-3)|V(G)|+4 \gamma(S)-8}{n_{k}}+(2 k+3)\left|X^{\prime}\right|
$$

- Or equivalently

$$
\gamma(S) \geq \frac{(k-3)|V(G)|+8+n_{k}\left(4-(2 k+3)\left|X^{\prime}\right|\right)}{2 n_{k}+4}
$$

Sketch of the Theorem (4)

- We obtain two bounds for $\gamma(S)$ depending on $\left|X^{\prime}\right|$. Eliminating this dependency we obtain

$$
\frac{4+(5+2 k) n_{k}}{k-3} \gamma(S)-\frac{4 n_{k}+8}{k-3} \geq|V(G)| .
$$

- For $k=4$ this is $|V(G)| \leq 186 \gamma(S)-64$, the bound obtained by Nakamoto and Ota.
- For $k=5$ this is $|V(G)| \leq 159.5 \gamma(S)-46$.
- For $k \geq 6$, the bound obtained for $|V(G)|$ is not better.

Conclusions

- We improved the bound on $q(S)$.
- We have an alternate definition of quadrangulation for which the same bound is true and we are studying the corresponding irreducible quadrangulations of surfaces with low genus.
- We have also obtained improved bounds for the maximum size of irreducible triangulations.
- The old bound was $|V(G)| \leq 171 \gamma(S)-72$ and our new bound is $|V(G)| \leq 106.5 \gamma(S)-33$. This is an improvement of about 60 percent.

