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Surfaces and Euler genus

• Let Mg be the sphere with g handles attached.

• Let Ng be the sphere with g cross-caps attached.

• Their Euler genuses are γ(Mg) = 2g and γ(Ng) = g.
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Graphs and Euler genus

• Let G be a simple graph.

• The orientable genus γ̄(G) of G is the minimum g
such that G is embeddable in Mg.

• The non-orientable genus γ̃(G) of G is the minimum g
such that G is embeddable in Ng.

• The Euler genus γ(G) of G is min{2γ̄(G), γ̃(G)}.

• Note γ(G) = min{γ(S) : G is embeddable in S}.
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Triangulations

• A triangulation of a closed surface S is a simple
graph G embedded on S so that each face is a
triangle and any two faces share at most two vertices.

• K4 is a triangulation of the sphere, K3 is not.
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Irreducible Triangulations

• A triangulation is irreducible if it has no contractible
edges.

• All irreducible triangulations are known for
M0, M1, M2, N1, N2, N3, N4.
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Figure 1: Contracting edge ab
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Maximum Irreducible Triangulations

• Let N(S) be the maximum number of vertices of an
irreducible triangulation of a closed surface S.

• This number is finite (Barnette and Edelson, 1989).

• First bounds were O(γ(S)4) and O(γ(S)2).

• N(S) ≤ 171γ(S) − 72 (Nakamoto and Ota, 1995).

• N(S) ≤ 120γ(S) for orientable S (Cheng, Dey, Poon,
2002).
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Main Theorem and Main Lemma

• Main Theorem: N(S) ≤ 106.5γ(S) − 33.

• Main Lemma: Let Vi be the set of vertices of degree
i ≥ 4 and let k ≥ 4. There exists an independet set
X ⊆ V4 ∪ · · ·Vk such that

|X| ≥

k∑

i=4

|Vi|

i + 1
.
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Sketch of Main Theorem (1)

• Choose an irreducible triangulation G of a surface S
and apply Euler’s formula.

• Choose k ≥ 4, let X be as in main lemma and let
X ′ ⊆ X be maximal with a nice intersection property.

• Define two bipartite subgraphs of G with vertex sets
X ∪ Y and X ∪ Y ′.

• The former gives γ(S) ≥ |X ′| (Miller’s lemma).

• The latter gives 4 − 2γ(S) ≥ −|X| + (k + 3)|X ′|.
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Sketch of Main Theorem (2)

• Let nk be the maximum value of (i + 1)(k − i + 1) over
4 ≤ i ≤ k.

• The main lemma and the last inequality give

γ(S) ≥
(k − 5)n + 12 + 4nk − (k + 3)nk|X

′|

6 + 2nk

.

• We have two lower bounds for γ(S) (best bound
depends on |X ′|). Independently of |X ′| we obtain

γ(S) ≥
(k − 5)n + 4nk + 12

(k + 5)nk + 6
.
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Sketch of Main Theorem (3)

• The lower bound is maximized for k = 9, that is

γ(S) ≥
(9 − 5)n + 4n9 + 12

(9 + 5)n9 + 6
.

• Since n9 = 30 we obtain equivalently

n ≤ 106.5γ(S) − 33.
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Lower bounds for N(S)

• Nakamoto and Ota constructed irreducible
triangulations to show that
♦ N(Mg) ≥ 8g + 2 for all g ≥ 1.
♦ N(Ng) ≥ 5g + 2 for all g ≥ 1.

• Sulanke (2006) improved these results to
♦ N(Mg) ≥ b17g/2c for all g ≥ 1.
♦ N(Ng) ≥ b11g/2c for all g ≥ 1.
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Conclusions and Further Work

• All known bounds on N(S) have been improved
(either by us or by Sulanke).

• We have obtained improved bounds for irreducible
quadrangulations.

• We have an alternate definition of quadrangulation
and are studying irreducible quadrangulations of
surfaces with low genus.

• We study pentagonizations, hexagonizations, etc.
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