Irreducible Triangulations of Surfaces Joint Meeting CMS-SMM September 21-23, 2006 Guanajuato, Mexico

Gloria Aguilar and Francisco Zaragoza
CINVESTAV (Mathematics) and UAM Azcapotzalco (Systems), Mexico

Contents

- Surfaces and Triangulations
- Irreducible Triangulations
- Known Bounds
- New Bound
- Conclusions

Surfaces and Euler genus

- Let M_{g} be the sphere with g handles attached.
- Let N_{g} be the sphere with g cross-caps attached.
- Their Euler genuses are $\gamma\left(M_{g}\right)=2 g$ and $\gamma\left(N_{g}\right)=g$.

Graphs and Euler genus

- Let G be a simple graph.
- The orientable genus $\bar{\gamma}(G)$ of G is the minimum g such that G is embeddable in M_{g}.
- The non-orientable genus $\tilde{\gamma}(G)$ of G is the minimum g such that G is embeddable in N_{g}.
- The Euler genus $\gamma(G)$ of G is $\min \{2 \bar{\gamma}(G), \tilde{\gamma}(G)\}$.
- Note $\gamma(G)=\min \{\gamma(S): G$ is embeddable in $S\}$.

Triangulations

- A triangulation of a closed surface S is a simple graph G embedded on S so that each face is a triangle and any two faces share at most two vertices.
- K_{4} is a triangulation of the sphere, K_{3} is not.

Irreducible Triangulations

- A triangulation is irreducible if it has no contractible edges.
- All irreducible triangulations are known for $M_{0}, M_{1}, M_{2}, N_{1}, N_{2}, N_{3}, N_{4}$.

Figure 1: Contracting edge ab

Maximum Irreducible Triangulations

- Let $N(S)$ be the maximum number of vertices of an irreducible triangulation of a closed surface S.
- This number is finite (Barnette and Edelson, 1989).
- First bounds were $O\left(\gamma(S)^{4}\right)$ and $O\left(\gamma(S)^{2}\right)$.
- $N(S) \leq 171 \gamma(S)-72$ (Nakamoto and Ota, 1995).
- $N(S) \leq 120 \gamma(S)$ for orientable S (Cheng, Dey, Poon, 2002).

Main Theorem and Main Lemma

- Main Theorem: $N(S) \leq 106.5 \gamma(S)-33$.
- Main Lemma: Let V_{i} be the set of vertices of degree $i \geq 4$ and let $k \geq 4$. There exists an independet set $X \subseteq V_{4} \cup \cdots V_{k}$ such that

$$
|X| \geq \sum_{i=4}^{k} \frac{\left|V_{i}\right|}{i+1}
$$

Sketch of Main Theorem (1)

- Choose an irreducible triangulation G of a surface S and apply Euler's formula.
- Choose $k \geq 4$, let X be as in main lemma and let $X^{\prime} \subseteq X$ be maximal with a nice intersection property.
- Define two bipartite subgraphs of G with vertex sets $X \cup Y$ and $X \cup Y^{\prime}$.
- The former gives $\gamma(S) \geq\left|X^{\prime}\right|$ (Miller's lemma).
- The latter gives $4-2 \gamma(S) \geq-|X|+(k+3)\left|X^{\prime}\right|$.

Sketch of Main Theorem (2)

- Let n_{k} be the maximum value of $(i+1)(k-i+1)$ over $4 \leq i \leq k$.
- The main lemma and the last inequality give

$$
\gamma(S) \geq \frac{(k-5) n+12+4 n_{k}-(k+3) n_{k}\left|X^{\prime}\right|}{6+2 n_{k}} .
$$

- We have two lower bounds for $\gamma(S)$ (best bound depends on $\left.\left|X^{\prime}\right|\right)$. Independently of $\left|X^{\prime}\right|$ we obtain

$$
\gamma(S) \geq \frac{(k-5) n+4 n_{k}+12}{(k+5) n_{k}+6} .
$$

Sketch of Main Theorem (3)

- The lower bound is maximized for $k=9$, that is

$$
\gamma(S) \geq \frac{(9-5) n+4 n_{9}+12}{(9+5) n_{9}+6}
$$

- Since $n_{9}=30$ we obtain equivalently

$$
n \leq 106.5 \gamma(S)-33 .
$$

Lower bounds for $N(S)$

- Nakamoto and Ota constructed irreducible triangulations to show that
$\diamond N\left(M_{g}\right) \geq 8 g+2$ for all $g \geq 1$.
$\diamond N\left(N_{g}\right) \geq 5 g+2$ for all $g \geq 1$.
- Sulanke (2006) improved these results to

$$
\diamond N\left(M_{g}\right) \geq\lfloor 17 g / 2\rfloor \text { for all } g \geq 1 .
$$

$\diamond N\left(N_{g}\right) \geq\lfloor 11 g / 2\rfloor$ for all $g \geq 1$.

Conclusions and Further Work

- All known bounds on $N(S)$ have been improved (either by us or by Sulanke).
- We have obtained improved bounds for irreducible quadrangulations.
- We have an alternate definition of quadrangulation and are studying irreducible quadrangulations of surfaces with low genus.
- We study pentagonizations, hexagonizations, etc.

