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Mixed Graphs and Postman Tours

A mixed graph M = (V, E, A) consists of sets V of
vertices, E of edges, and A of arcs.

A postman tour of M is a closed walk W that
traverses all vertices, edges, and arcs of M .

An arcs postman tour of M traverses each edge of
M exactly once.
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An Arcs Postman Tour
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Figure 1: Mixed graph and arcs postman tour
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Arcs Postman Problem

Given a strongly connected mixed graph
M = (V, E, A) and a vector c ∈ QA

+, the cost of an
arcs postman tour T of M is the sum of the costs of
the arcs traversed by T .

Problem: Obtain the minimum cost MAPT(M, c)
of an arcs postman tour of M .

Complexity of the Mixed Postman Problem with Restrictions on the Edges – p. 5/14



Computational Complexity

It is NP-complete to decide whether a mixed graph
M = (V, E, A) has an arcs postman tour (reduction
from not-all-equal satisfiability).

The arcs postman problem (minimization) can be
solved in polynomial time (for example, using linear
programming methods) if:

M is series-parallel,
M is Eulerian, or
D = (V, A) is a forest.
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Variable Gadget
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Figure 2: The subgraph Gj for qj = 4.
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Clause GadgetPSfrag replacements
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Figure 3: The clause subgraph Hi.
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Connecting the Gadgets
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Figure 4: An instance of arcs postman tour.
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Necessary Conditions (Veerasamy)

If M = (V, E, A) has an arcs postman tour then:
M is connected,
for all outgoing S ⊆ V there are more edges
crossing S than arcs leaving S, and
for all undirected S ⊆ V there is an even number
of edges crossing S.

These conditions are independent.

These conditions can be tested in polynomial time.

These conditions are not sufficient.
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Stronger Necessary Conditions (1)

For S ⊆ V let surM(S) = dE(S) − dA(S).

Assume M has an arcs postman tour with edges
oriented as in I .

If S ⊆ V is outgoing then

dI(S̄) ≥ dA(S) + dI(S)

and therefore

dE(S) = dI(S) + dI(S̄) ≥ dA(S) + 2dI(S),

which implies that

dI(S) ≤ b1

2
(dE(S) − dA(S))c = b1

2
surM(S)c.
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Stronger Necessary Conditions (2)

Similarly, if T ⊆ V is outgoing then

dI(T ) ≤ b1

2
surM(T )c.

Adding these two inequalities we get

dI(S) + dI(T ) ≤ b1

2
surM(S)c + b1

2
surM(T )c.

Observe that a lower bound for dI(S) + dI(T ) is the
number of edges between S \T and T \S. Therefore

|E(S \ T, T \ S)| ≤ b1

2
surM(S)c + b1

2
surM(T )c.
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Stronger Necessary Conditions (3)

Our condition is stronger and generalizes the
outgoing and undirected conditions of Veerasamy.

Our condition can also be tested in polynomial time
(using minimum-odd-cut and flow subroutines).

Our condition is not sufficient:
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Figure 5: A graph with no arcs postman tour.
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Conclusions and Further Work

Strenghten the complexity results for the arcs
postman problem (in both minimization and
feasibility versions).

Find classes of mixed graphs for which there are
approximation algorithms for the arcs postman
problem.

Find (faster) algorithms to test our necessary
condition(s).

Find classes of mixed graphs for which our
necessary condition is also sufficient.
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