Complexity of the Mixed Postman Problem with Restrictions on the Edges

7th ENC, September 18-22, 2006

San Luis Potosí, Mexico

Francisco Javier Zaragoza Martínez UAM Azcapotzalco, Mexico

franz@correo.azc.uam.mx

Contents

- Mixed Graphs and Postman Tours
- Arcs Postman Problem
- Computational Complexity
- Necessary Conditions for Feasibility
- Conclusions

Mixed Graphs and Postman Tours

- A mixed graph $M=(V, E, A)$ consists of sets V of vertices, E of edges, and A of arcs.
- A postman tour of M is a closed walk W that traverses all vertices, edges, and arcs of M.
\square An arcs postman tour of M traverses each edge of M exactly once.

An Arcs Postman Tour

Figure 1: Mixed graph and arcs postman tour

Arcs Postman Problem

- Given a strongly connected mixed graph $M=(V, E, A)$ and a vector $c \in \mathbb{Q}_{+}^{A}$, the cost of an arcs postman tour T of M is the sum of the costs of the arcs traversed by T.
\square Problem: Obtain the minimum cost $\operatorname{MAPT}(M, c)$ of an arcs postman tour of M.

Computational Complexity

- It is NP-complete to decide whether a mixed graph $M=(V, E, A)$ has an arcs postman tour (reduction from not-all-equal satisfiability).
- The arcs postman problem (minimization) can be solved in polynomial time (for example, using linear programming methods) if:
- M is series-parallel,
- M is Eulerian, or
- $D=(V, A)$ is a forest.

Variable Gadget

Figure 2: The subgraph G_{j} for $q_{j}=4$.

Clause Gadget

$y_{i}^{1} \quad y_{i}^{2} \quad y_{i}^{3} \quad$ true false true false ${ }_{i}^{\text {true }}$ false
 si
 s_{i}^{i}
 $s_{i}^{v^{\prime}}$

Figure 3: The clause subgraph H_{i}.

Connecting the Gadgets

Figure 4: An instance of arcs postman tour.

Necessary Conditions (Veerasamy)

- If $M=(V, E, A)$ has an arcs postman tour then:
M is connected,
- for all outgoing $S \subseteq V$ there are more edges crossing S than arcs leaving S, and
for all undirected $S \subseteq V$ there is an even number of edges crossing S.
- These conditions are independent.
\square These conditions can be tested in polynomial time.
\square These conditions are not sufficient.

Stronger Necessary Conditions (1)

- For $S \subseteq V$ let $\operatorname{sur}_{M}(S)=d_{E}(S)-d_{A}(S)$.
\square Assume M has an arcs postman tour with edges oriented as in I.
- If $S \subseteq V$ is outgoing then

$$
d_{I}(\bar{S}) \geq d_{A}(S)+d_{I}(S)
$$

and therefore

$$
d_{E}(S)=d_{I}(S)+d_{I}(\bar{S}) \geq d_{A}(S)+2 d_{I}(S)
$$

which implies that

$$
d_{I}(S) \leq\left\lfloor\frac{1}{2}\left(d_{E}(S)-d_{A}(S)\right)\right\rfloor=\left\lfloor\frac{1}{2} \operatorname{sur}_{M}(S)\right\rfloor .
$$

Stronger Necessary Conditions (2)

- Similarly, if $T \subseteq V$ is outgoing then

$$
d_{I}(T) \leq\left\lfloor\frac{1}{2} \operatorname{sur}_{M}(T)\right\rfloor .
$$

- Adding these two inequalities we get

$$
d_{I}(S)+d_{I}(T) \leq\left\lfloor\frac{1}{2} \operatorname{sur}_{M}(S)\right\rfloor+\left\lfloor\frac{1}{2} \operatorname{sur}_{M}(T)\right\rfloor .
$$

- Observe that a lower bound for $d_{I}(S)+d_{I}(T)$ is the number of edges between $S \backslash T$ and $T \backslash S$. Therefore

$$
|E(S \backslash T, T \backslash S)| \leq\left\lfloor\frac{1}{2} \operatorname{sur}_{M}(S)\right\rfloor+\left\lfloor\frac{1}{2} \operatorname{sur}_{M}(T)\right\rfloor .
$$

Stronger Necessary Conditions (3)

\square Our condition is stronger and generalizes the outgoing and undirected conditions of Veerasamy.

- Our condition can also be tested in polynomial time (using minimum-odd-cut and flow subroutines).
\square Our condition is not sufficient:

Figure 5: A graph with no arcs postman tour.

Conclusions and Further Work

- Strenghten the complexity results for the arcs postman problem (in both minimization and feasibility versions).
- Find classes of mixed graphs for which there are approximation algorithms for the arcs postman problem.
- Find (faster) algorithms to test our necessary condition(s).
- Find classes of mixed graphs for which our necessary condition is also sufficient.

