Complexity of the Mixed Postman Problem with Restrictions on the Arcs ICEEE-CIE, September 6-8, 2006, Veracruz, Mexico

Francisco Javier Zaragoza Martínez
UAM Azcapotzalco, Mexico
franz@correo.azc.uam.mx

Contents

■ Mixed Graphs and Postman Tours
■ Edges Postman Problem

- Reformulation
- Computational Complexity

■ Integer Programming Formulation

- Minimum b-Joins

■ Conclusions

Mixed Graphs and Postman Tours

- A mixed graph $M=(V, E, A)$ consists of sets V of vertices, E of edges, and A of arcs.
- A postman tour of M is a closed walk W that traverses all vertices, edges, and arcs of M.
■ An edges postman tour of M traverses each arc of M exactly once.

An Edge Postman Tour

Figure 1: Mixed graph and edges postman tour

Edges Postman Problem

- Given a strongly connected mixed graph $M=(V, E, A)$ and a vector $c \in \mathbb{Q}_{+}^{E}$, the cost of an edges postman tour T of M is the sum of the costs of the edges traversed by T.
■ Problem: Obtain the minimum cost $\operatorname{MEPT}(M, c)$ of an edges postman tour of M.

Reformulation

$■$ We can remove the arcs from the description of the problem.
\square For each $v \in V$, let $b_{v}=d_{A}(v)-d_{A}(\bar{v})$ be the demand at vertex v.

- An edges postman tour of G is (almost) equivalent to a feasible flow on the directed graph \vec{G} with vector of demands b.
■ Problem: Obtain the minimum cost $\operatorname{MEPT}(G, b, c)$ of an edges postman tour of (G, b).

A Feasible Flow

Figure 2: A feasible flow on an undirected graph

Computational Complexity

$■$ The decision version of the edges postman problem is NP-complete (reduction from 1-in-3 satisfiability).

- The edges postman problem can be solved in polynomial time if G is series-parallel or if G is Eulerian.

Integer Programming Formulation

$\operatorname{MEPT}(G, b, c)=\min c^{\top} x$ subject to

$$
\begin{aligned}
x\left(\delta_{E}(S)\right) & \geq b(S) \text { for all } S \subseteq V \\
x\left(\delta_{E}(v)\right) & \equiv b_{v}(\bmod 2) \text { for all } v \in V \\
x\left(\delta_{E}(S)\right) & \geq l\left(\delta_{E}(S)\right)+1 \text { for each odd set } S \\
x_{e} & \geq l_{e} \text { for all } e \in E \\
x_{e} & \quad \text { integral for all } e \in E .
\end{aligned}
$$

b-Joins

■ Let $G=(V, E)$ be an undirected graph, and let $T \subseteq V$ with $|T|$ even.
\square A T-join of G is a vector $x \in \mathbb{Z}_{+}^{E}$ if for each $v \in V, x\left(\delta_{E}(v)\right)$ is odd if and only if $v \in T$.
■ Let $b \in \mathbb{Z}^{V}$ be a vector with $b(V)$ even, and let $T=\left\{v \in V: b_{v}\right.$ is odd $\}$. Note that $|T|$ is even.
\square A b-join of G is a vector $x \in \mathbb{Z}_{+}^{E}$ if x is a T-join of G, and $x\left(\delta_{E}(v)\right) \geq b_{v}$ for all $v \in V$.

Minimum b-Joins

- Minimum b-join problem is a relaxation of edges postman problem.
\square The corresponding polyhedron has integral extreme points.
- Minimum b-join problem can be solved in polynomial time.

Conclusions and Further Work

- Strenghten the complexity results for the edges postman problem.
- Find better approximation algorithms for the edges postman problem.
■ Find a combinatorial algorithm for the minimum b-join problem.

