The Windy Postman Problem on Series-Parallel Graphs *EuroComb05, September 5-9, 2005, Berlin*

Francisco Javier Zaragoza Martínez

UAM Azcapotzalco, Mexico

franz@correo.azc.uam.mx

Contents

- The Windy Postman Problem
- IP Formulation and LP Relaxation
- Odd-Cut Constraints
- Windy Postman Perfect Graphs
- Windy Postman Ideal Graphs
- Conclusions

The Windy Postman Problem

- Let G = (V, E) be a connected, undirected graph, let $\vec{G} = (V, \vec{E})$ be its associated directed graph, and let $c \in \mathbb{Z}_{+}^{\vec{E}}$.
- The windy postman problem is to find the minimum cost of a tour of G traversing all its edges, where the cost of traversal of an edge depends on the direction.
- Theorem (Guan, 1984): This problem is NP-hard, even if restricted to planar G.

Integer Programming Formulation

 Let P(G) be the convex hull of the feasible solutions of the integer program:

$$\begin{split} \mathsf{WPP}(G,c) &= \min c^\top x\\ \text{subject to}\\ x(\vec{\delta}_G(\vec{v})) - x(\vec{\delta}_G(v)) &= 0 \text{ for all } v \in V\\ x_{e^+} + x_{e^-} &\geq 1 \text{ for all } e \in E\\ x_{e^+}, x_{e^-} &\geq 0 \text{ for all } e \in E\\ x_{e^+}, x_{e^-} &= 0 \text{ for all } e \in E \end{split}$$

Linear Programming Relaxation

• Let Q(G) be the region defined by:

 $\begin{aligned} x(\vec{\delta}_G(\vec{v})) - x(\vec{\delta}_G(v)) &= 0 \text{ for all } v \in V \\ x_{e^+} + x_{e^-} &\geq 1 \text{ for all } e \in E \\ x_{e^+}, x_{e^-} &\geq 0 \text{ for all } e \in E. \end{aligned}$

• Theorem (Win, 1987): Let G be connected. P(G) = Q(G) if and only if G is *Eulerian*.

Odd-Cut Constraints

- Let $S \subseteq V$ be such that $|\delta_G(S)|$ is odd. Then at least one element of $\delta_G(S)$ must be used more than once.
- Therefore the following is valid for P(G):

 $x(\vec{\delta}_G(S)) + x(\vec{\delta}_G(\bar{S})) \ge |\delta_G(S)| + 1.$

 Odd-cut constraints were introduced by Edmonds and Johnson (1973).

Windy Postman Perfect Graphs

- Let O(G) be the subset of Q(G) that satisfies all the odd-cut constraints.
- We say that *G* is *windy* postman perfect if the polyhedron O(G) is integral. Equivalently, *G* is windy postman perfect if O(G) = P(G).
- Theorem (Grötschel and Win, 1992): There exists a polynomial-time algorithm to solve the windy postman problem for the class of windy postman perfect graphs.

More on WPP Graphs

- Trees and Eulerian graphs are windy postman perfect (Win, 1987).
- K_4 is not windy postman perfect, $K_{3,3}$ is.
- Windy postman perfection is not closed under edge deletion.
- But it is closed under edge subdivision, edge contraction, vertex identification, and deletion of *two* parallel edges.
- Win conjectured that series-parallel graphs are windy postman perfect.

Windy Postman Ideal Graphs

• Let $l \in \mathbb{Z}_+^E$, and let $b \in \mathbb{Z}^V$ with b(V) = 0. We say that $S \subseteq V$ is *odd* if $b(S) + l(\delta_G(S))$ is odd. Let O(G, l, b) be given by

 $\begin{aligned} x(\vec{\delta}_G(\vec{v})) - x(\vec{\delta}_G(v)) &= b_v \text{ for all } v \in V \\ x_{e^+} + x_{e^-} &\geq l_e \text{ for all } e \in E \\ x(\vec{\delta}_G(S)) + x(\vec{\delta}_G(\vec{S})) &\geq l(\delta_G(S)) + 1 \text{ for odd } S \\ x_{e^+}, x_{e^-} &\geq 0 \text{ for all } e \in E. \end{aligned}$

We say that G is windy postman ideal if
O(G, l, b) is integral for all choices of l and b.

Characterization of WPI Graphs

- Theorem: Windy postman ideality is closed under taking graph minors.
- Theorem: The following are equivalent:
 - 1. G is series-parallel.
 - 2. *G* is windy postman ideal.
 - **3.** O(G, l, 0) is integral for all $l \in \{0, 1\}^{E}$.
- Corollary: Series-parallel graphs are windy postman perfect.

Conclusions and Further Work

- We have extended the class of known windy postman perfect graphs.
- We are searching for a *combinatorial* algorithm for the windy postman problem on windy postman perfect graphs.
- We are studying windy postman perfection of grafts. We have shown that this property is closed under taking graft minors and we have found two excluded minors.