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The Windy Postman Problem

• Let G = (V, E) be a connected, undirected
graph, let ~G = (V, ~E) be its associated

directed graph, and let c ∈ Z
~E
+.

• The windy postman problem is to find the
minimum cost of a tour of G traversing all its
edges, where the cost of traversal of an edge
depends on the direction.

• Theorem (Guan, 1984): This problem is
NP-hard, even if restricted to planar G.
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Integer Programming Formulation

• Let P (G) be the convex hull of the feasible
solutions of the integer program:

WPP(G, c) = min c>x

subject to

x(~δG(v̄)) − x(~δG(v)) = 0 for all v ∈ V

xe+ + xe− ≥ 1 for all e ∈ E

xe+, xe− ≥ 0 for all e ∈ E

xe+, xe− integral for all e ∈ E.
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Linear Programming Relaxation

• Let Q(G) be the region defined by:

x(~δG(v̄)) − x(~δG(v)) = 0 for all v ∈ V

xe+ + xe− ≥ 1 for all e ∈ E

xe+, xe− ≥ 0 for all e ∈ E.

• Theorem (Win, 1987): Let G be connected.
P (G) = Q(G) if and only if G is Eulerian.
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Odd-Cut Constraints

• Let S ⊆ V be such that |δG(S)| is odd. Then
at least one element of δG(S) must be used
more than once.

• Therefore the following is valid for P (G):

x(~δG(S)) + x(~δG(S̄)) ≥ |δG(S)| + 1.

• Odd-cut constraints were introduced by
Edmonds and Johnson (1973).
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Windy Postman Perfect Graphs

• Let O(G) be the subset of Q(G) that satisfies
all the odd-cut constraints.

• We say that G is windy postman perfect if the
polyhedron O(G) is integral. Equivalently, G is
windy postman perfect if O(G) = P (G).

• Theorem (Grötschel and Win, 1992): There
exists a polynomial-time algorithm to solve
the windy postman problem for the class of
windy postman perfect graphs.
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More on WPP Graphs

• Trees and Eulerian graphs are windy
postman perfect (Win, 1987).

• K4 is not windy postman perfect, K3,3 is.

• Windy postman perfection is not closed under
edge deletion.

• But it is closed under edge subdivision, edge
contraction, vertex identification, and deletion
of two parallel edges.

• Win conjectured that series-parallel graphs
are windy postman perfect.
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Windy Postman Ideal Graphs

• Let l ∈ Z
E
+, and let b ∈ Z

V with b(V ) = 0. We
say that S ⊆ V is odd if b(S) + l(δG(S)) is odd.
Let O(G, l, b) be given by

x(~δG(v̄)) − x(~δG(v)) = bv for all v ∈ V

xe+ + xe− ≥ le for all e ∈ E

x(~δG(S)) + x(~δG(S̄)) ≥ l(δG(S)) + 1 for odd S

xe+, xe− ≥ 0 for all e ∈ E.

• We say that G is windy postman ideal if
O(G, l, b) is integral for all choices of l and b.
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Characterization of WPI Graphs

• Theorem: Windy postman ideality is closed
under taking graph minors.

• Theorem: The following are equivalent:
1. G is series-parallel.
2. G is windy postman ideal.
3. O(G, l, 0) is integral for all l ∈ {0, 1}E.

• Corollary: Series-parallel graphs are windy
postman perfect.
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Conclusions and Further Work

• We have extended the class of known windy
postman perfect graphs.

• We are searching for a combinatorial
algorithm for the windy postman problem on
windy postman perfect graphs.

• We are studying windy postman perfection of
grafts. We have shown that this property is
closed under taking graft minors and we have
found two excluded minors.
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