

Feasibility of the Mixed Postman Problem with Restrictions on the Edges EuroComb07, September 11-15, 2007, Sevilla

Francisco Javier Zaragoza Martínez

UAM Azcapotzalco, Mexico

franz@correo.azc.uam.mx

Contents

- The Mixed Postman Problem
- Restrictions on the Edges
- Complexity of Feasibility
- Even Set Condition
- Outgoing Set Condition
- Two Outgoing Sets Condition
- Many Outgoing Sets
- Conclusions

The Mixed Postman Problem

- Let M = (V, E, A) be a strongly connected mixed graph and let $c \in \mathbb{Z}_+^{E \cup A}$.
- The *mixed postman problem* is to find the minimum cost of a tour of *M* traversing all of its edges and arcs.
- This problem is NP-hard, even if restricted to planar inputs.
- Feasibility can be decided in polynomial time.

Restrictions on the Edges

We are interested on tours that use edges once.

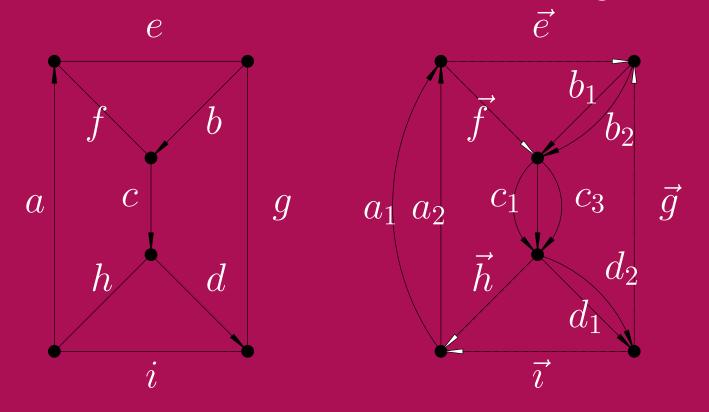


Figure 1: An arcs postman tour.

Complexity of Feasibility

- Feasibility is NP-complete.
- It remains NP-complete for planar inputs.
- Feasibility can be decided in poly-time if
 - *M* has total degree even at every vertex,
 - M is series-parallel, or
 - A is a forest.
- Optimization in poly-time too.
- We are interested in necessary conditions (which can be verified in poly-time).

Even Set Condition

- For $S \subseteq V$, let $\delta_M(S)$ be the set of edges and arcs between S and $\overline{S} = V \setminus S$.
- We say that S is *undirected* if $\delta_M(S) \subseteq E$.
- If *M* has an arcs postman tour and *S* is undirected then $|\delta_M(S)|$ must be even.
- This condition (due to Veerasamy) can be verified in polynomial time.

Outgoing Set Condition

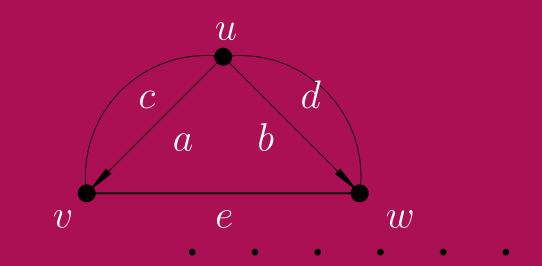
- We say that S is *outgoing* if all arcs in $\delta_M(S)$ go from S to \bar{S} .
- If M has an arcs postman tour and S is outgoing then

$|\delta_M(S) \cap E| \ge |\delta_M(S) \cap A|.$

 This condition (also due to Veerasamy) can be verified in polynomial time.

Independency and Sufficiency

- *K*₂ satisfies the *outgoing set* condition but *not* the even set condition.
- \vec{K}_2 satisfies the *even set* condition but *not* the outgoing set condition.
- These conditions are not sufficient:



Two Outgoing Sets Condition

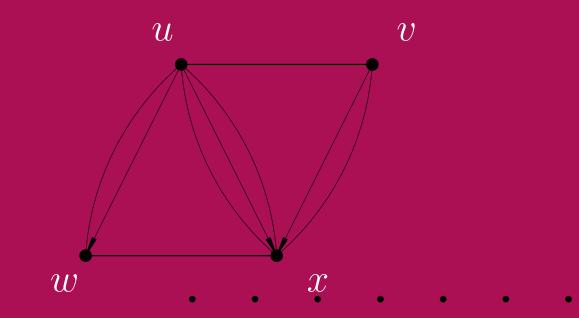
- For outgoing S we define the surplus of S as $sur_M(S) = |\delta_M(S) \cap E| - |\delta_M(S) \cap A|.$
- Theorem: Let M have an arcs postman tour and let S, T be outgoing. Then

$$|E(S \setminus T, T \setminus S)| \le \lfloor \frac{1}{2} \operatorname{sur}_M(S) \rfloor + \lfloor \frac{1}{2} \operatorname{sur}_M(T) \rfloor.$$

• This condition can be verified in polynomial time (nicer algorithm for planar M).

Strength and Sufficiency

- Our condition implies and is stronger than
 - the even set condition (take $T = \overline{S}$) and
 - the outgoing set condition (take T = S).
- Our condition is still not sufficient:



Many Outgoing Sets

• Let $S = \{S_1, \ldots, S_k\}$ be k outgoing subsets:

$$|E_k^{\mathcal{S}}| \le \sum_{i=1}^k \lfloor \frac{1}{2} \operatorname{sur}_M(S_i) \rfloor$$

where E_k^S is a *certain* subset of edges.

• Conjecture: There exists $f : \mathbb{N} \to \mathbb{N}$ for which: A connected mixed graph M has an arcs postman tour iff it satisfies the k-outgoing-sets condition for all $1 \le k \le f(|V(M)|)$.

f is Linear or Worse

The mixed graph M_n satisfies the *k*-outgoing-sets condition for each $1 \le k \le 2n - 1$, but does not satisfy the 2n-outgoing-sets condition.

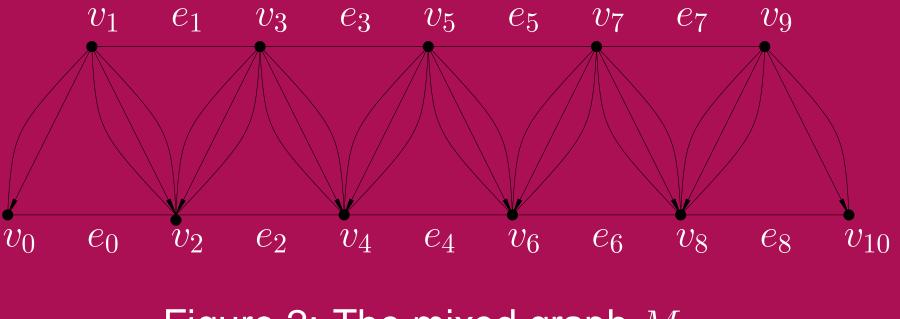


Figure 2: The mixed graph M_5 .

Characterization

The following statements are equivalent:

- *M* has an arcs postman tour for every orientation of its edges.
- The only outgoing sets of M are \emptyset and V.
- D = (V, A) is strongly connected.
- For all $k \in \mathbb{N}$, and for all families S of k outgoing sets, M satisfies:

$$\sum_{e \in E} m_{\mathcal{S}}^+(e) \le \sum_{i=1}^k \lfloor \frac{1}{2} \operatorname{sur}_M(S_i) \rfloor.$$

Conclusions

- New necessary conditions for feasibility.
- Some of them can be verified in poly-time.
- Can we verify some others too?
- Are our conditions sufficient?
- We are searching for other classes of mixed graphs for which we can decide feasibility or optimize in polynomial time.