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The Mixed Postman Problem

• Let M = (V, E, A) be a strongly connected
mixed graph and let c ∈ Z

E∪A
+ .

• The mixed postman problem is to find the
minimum cost of a tour of M traversing all of
its edges and arcs.

• This problem is NP-hard, even if restricted to
planar inputs.

• Feasibility can be decided in polynomial time.
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Restrictions on the Edges

We are interested on tours that use edges once.
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Figure 1: An arcs postman tour.
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Complexity of Feasibility

• Feasibility is NP-complete.
• It remains NP-complete for planar inputs.
• Feasibility can be decided in poly-time if

• M has total degree even at every vertex,
• M is series-parallel, or
• A is a forest.

• Optimization in poly-time too.
• We are interested in necessary conditions

(which can be verified in poly-time).
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Even Set Condition

• For S ⊆ V , let δM(S) be the set of edges and
arcs between S and S̄ = V \ S.

• We say that S is undirected if δM(S) ⊆ E.
• If M has an arcs postman tour and S is

undirected then |δM(S)| must be even.
• This condition (due to Veerasamy) can be

verified in polynomial time.
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Outgoing Set Condition

• We say that S is outgoing if all arcs in δM(S)
go from S to S̄.

• If M has an arcs postman tour and S is
outgoing then

|δM(S) ∩ E| ≥ |δM(S) ∩ A|.

• This condition (also due to Veerasamy) can
be verified in polynomial time.
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Independency and Sufficiency

• K2 satisfies the outgoing set condition but not
the even set condition.

• ~K2 satisfies the even set condition but not the
outgoing set condition.

• These conditions are not sufficient:
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Two Outgoing Sets Condition

• For outgoing S we define the surplus of S as

surM(S) = |δM(S) ∩ E| − |δM(S) ∩ A|.

• Theorem: Let M have an arcs postman tour
and let S, T be outgoing. Then

|E(S \ T, T \ S)| ≤ ⌊
1

2
surM(S)⌋ + ⌊

1

2
surM(T )⌋.

• This condition can be verified in polynomial
time (nicer algorithm for planar M ).
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Strength and Sufficiency

• Our condition implies and is stronger than
• the even set condition (take T = S̄) and
• the outgoing set condition (take T = S).

• Our condition is still not sufficient:
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Many Outgoing Sets

• Let S = {S1, . . . , Sk} be k outgoing subsets:

|ES
k | ≤

k∑

i=1

⌊
1

2
surM(Si)⌋

where ES
k

is a certain subset of edges.

• Conjecture: There exists f : N → N for which:
A connected mixed graph M has an arcs
postman tour iff it satisfies the k-outgoing-sets
condition for all 1 ≤ k ≤ f(|V (M)|).
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f is Linear or Worse

The mixed graph Mn satisfies the k-outgoing-sets
condition for each 1 ≤ k ≤ 2n − 1, but does not
satisfy the 2n-outgoing-sets condition.
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Figure 2: The mixed graph M5.
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Characterization

The following statements are equivalent:
• M has an arcs postman tour for every

orientation of its edges.
• The only outgoing sets of M are ∅ and V .
• D = (V, A) is strongly connected.
• For all k ∈ N, and for all families S of k

outgoing sets, M satisfies:

∑

e∈E

m+

S (e) ≤
k∑

i=1

⌊
1

2
surM(Si)⌋.
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Conclusions

• New necessary conditions for feasibility.
• Some of them can be verified in poly-time.
• Can we verify some others too?
• Are our conditions sufficient?
• We are searching for other classes of mixed

graphs for which we can decide feasibility or
optimize in polynomial time.
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