Solving the Square Path Problem up to 20×20 ICEEE-CIE, September 6-8, 2006, Veracruz, Mexico

R. López Bracho, J. Ramírez Rodríguez, F. J. Zaragoza Martínez UAM Azcapotzalco, Mexico
franz@correo.azc.uam.mx

- The Square Path Problem

Theoretical Results

- Computational Results
- Conclusions and Further Work

The Square Path Problem

Consider an $m \times n$ rectangular lattice with points colored either black or white.

- A square path is a closed path in the shape of a square with edges parallel to those of the lattice.
- The square path problem is to find the minimum number $f(m, n)$ of black points needed in the rectangular lattice so that every square path has at least one black point on it.
- This problem was posed by Morris (1998) for square lattices (that is, for $m=n$.)

Examples

Figure 1: $f(2,2)=1, f(3,3)=2, f(3,4)=2$

Partition Lemma

(Williams 2000) Assume that we have partitioned an $m \times n$ rectangular lattice into k lattices of sizes $m_{1} \times n_{1}, \ldots, m_{k} \times n_{k}$. Then

$$
\begin{array}{ll}
f(m, n) \geq \sum_{i=1}^{k} f\left(m_{i}, n_{i}\right) . & \text { Figure } 2: 4 \geq f(4,5) \geq \\
& f(4,3)+f(2,2)+f(2,2)
\end{array}
$$

What was known?

- Williams (2000) computed $f(m, n)$ for all $m, n \leq 6$. Using CPLEX, Williams (2000) computed upper bounds for $f(n, n)$ for all $n \leq 14$.
- Dean and Zuniga (2004) computed the exact value of $f(m, n)$ for all $m \leq 4$ and all $n \geq 1$.

Computational results

- Williams (2000) computed $f(n, n)$ for all $n \leq 14$ in about 14 hours. The computation of $f(15,15)$ aborted after another 48 hours.
- We developed a backtracking algorithm (with some improvements based on dynamic programming) that computed $f(m, n)$ for all $m, n \leq 20$ in 62 hours.
- In particular, our algorithm computed $f(m, n)$ for all $m, n \leq 15$ in 43 seconds!

The main idea (I)

Figure 3: Horizontal partition.

The main idea (II)

Figure 4: Vertical partition.

Theoretical results

We proved that $f(5, n)=\lfloor(4 n-2) / 3\rfloor$ for $n \geq 1$. We also proved that $f(6, n)=\lfloor(3 n) / 2\rfloor$ for $n \geq 2$.

- Our proofs are by induction and they use a structural characterization of optimal solutions.

Figure 5: $6 \times n$ rectangular grid.

Conclusions and Further Work

- We have conjectures on the exact values of $f(7, n)$, $f(8, n), f(9, n)$, and $f(10, n)$ for all $n \geq 1$.
- We are interested on the rectangle path problem and the cycle path problem.
- We are also interested on the related problems on cylindrical, toroidal, projective, Moebius, and Klein bottle grids.

