Approximation Algorithms for a Restricted Mixed Postman Problem

CombinaTexas Texas, USA, February 25, 2005

Francisco J. Zaragoza — UAM Azcapotzalco

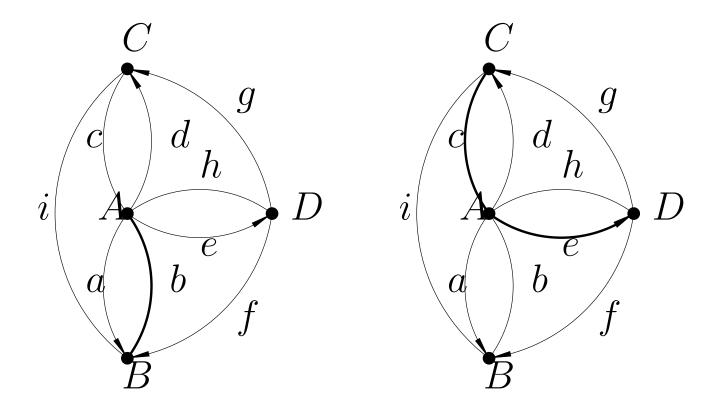
franz@correo.azc.uam.mx

Contents

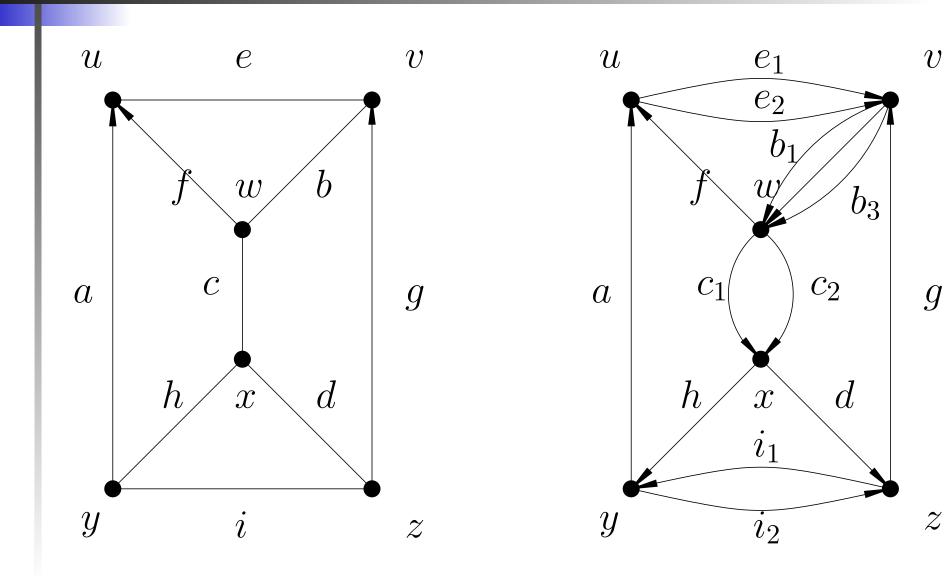
- Mixed graphs and postman tours.
- Restrictions on the arcs.
- Flows in undirected graphs.
- Approximation algorithms.

Mixed graphs and postman tours

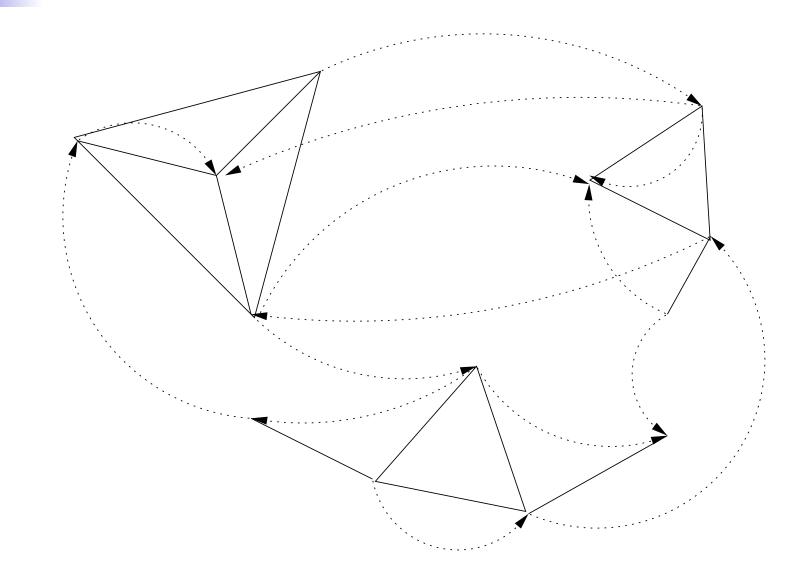
A mixed graph M = (V, E, A), where V are vertices, E are edges, and A are arcs. A postman tour is closed and visits all of them.



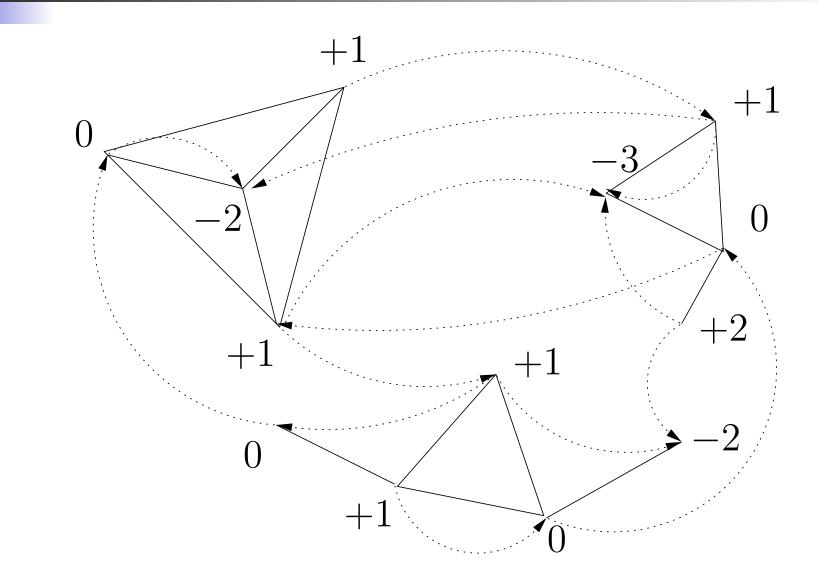
Postman tours with arc restrictions



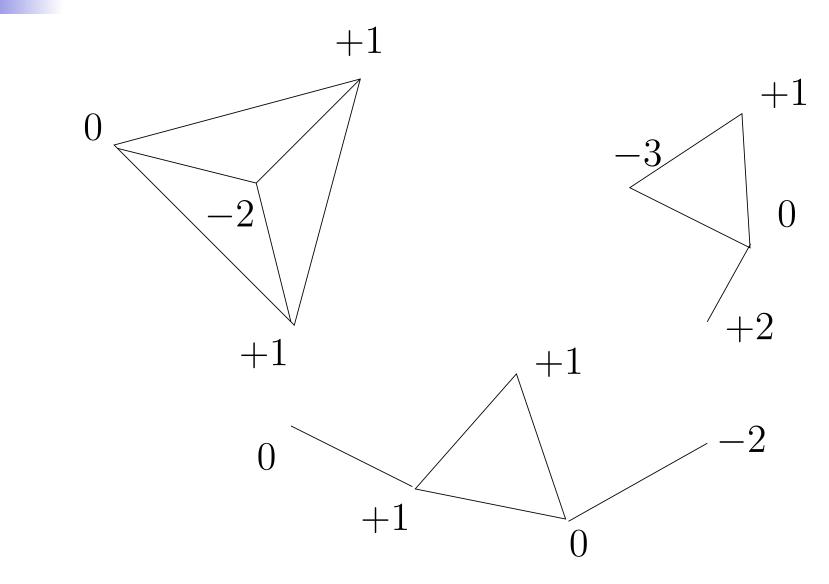
Transformation (I)



Transformation (II)

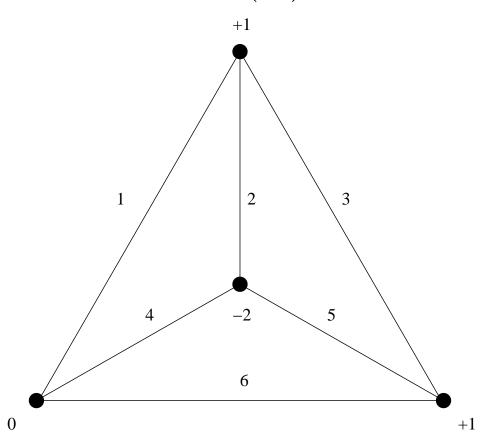


Transformation (III)



Flows in undirected graphs

Let G = (V, E) be undirected and 2-edge connected, $b \in Z^V$ with b(V) = 0, and $c \in R^E_+$.



Bad news

- Finding a minimum cost undirected flow is NP-hard (conjectured by Veerasamy).
- This is still true even if we consider only planar graphs.

T-joins

- Let G = (V, E) and $T \subseteq V$ with |T| even, then $J \subseteq E$ is a *T*-join if $d_J(v)$ is odd iff $v \in T$.
- Minimum cost T-joins can be found in polynomial time.
- If G is 2-edge connected, there exists a T-join J such that $c(J) \leq \frac{1}{2}c(E)$.

Veerasamy's algorithm

- Find a minimum cost directed flow *F*.
- Add unused edges U.
- Let $T = \{v \in V : d_U(v) \text{ is odd}\}.$

• Add a minimum cost T-join J.

 $C_F \leq C^*, C_U \leq C_E \leq C^*, C_J \leq \frac{C_E}{2} \leq \frac{C^*}{2}.$

• Therefore $C_1 \leq \frac{5}{2}C^*$.

Our algorithm

- Let $T = \{v \in V : b_v + d_E(v) \text{ is odd}\}.$
- Add a minimum cost T-join J.
- Solve exactly the problem for $G' = (V, E \cup J)$.
- $\Box C_J \leq \frac{1}{2}C_E.$
- $\Box C^* \ge C_E + C_J \ge 3C_J.$
- Therefore $C_4 \leq C^* + C_J \leq \frac{4}{3}C^*$.

Conclusions

- We show the problem is hard for planar graphs. Are there any polynomially time solvable classes of graphs?
- We improved the guarantee from $\frac{5}{2}$, to 2, to $\frac{3}{2}$, and to $\frac{4}{3}$. Can we do any better? How about for planar graphs?

Our algorithm is based on linear programming. Can we give a combinatorial algorithm?