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elements: !>

A

a) 0
lay)-|aa) basis ( 0 a> ) (2.147)

All of the results (2.132) through (2.147) can be extended in a straight-
forward fashion to larger dimensional bases, as introduced in Section 1.6. For
example, the identity operator is given by >, |a,)a,| in the more general case.

PROBLEMS
2.1. Show that

, xWwe

Jl_r’ll (l + 7\/—) = e
by comparing the Taylor series expansions for the two functions.

2.2. Use Dirac notation (the properties of kets, bras, and inner products) directly without
explicitly using matrix representations to establish that the projection operator P,
is Hermitian. Use the fact that P2 P, to establish that the eigenvalues of the
projection operator are 1 and 0.

2.3. Determine the matrix representation of the rotation operator R(¢k) using the states
|+2) and |—z) as a basis. Using your matrix representation, verify that the rotation
operator is unitary, that is, that it satisfies RT(¢k)R(Pk) = 1.

2.4. Determine the column vectors representing the states [+x) and |—x) using the states
|+y) and |—y) as a basis.

2.5. What is the matrix representation of J. using the states |[+y) and |—y) as a basis?
Use this representation to evaluate the expectation value of S, for a collection of
particles each in the state |— y)

2.6. Evaluate R(6j)|+z), where R(8j) = e~ /¥ s the operator that rotates kets coun-
terclockwise by angle 6 about the y axis. Show that R(Z Zhl+2z) = |+x). Suggestion:
Express the ket | +2) as a superposition of the kets |+y) and |—y) and take advantage
of the fact that J |+y) = (£h/2)|xy); then switch back to the |+z) |—2) basis.

2.7. Work out the matrix representations of the projection operators P, = |+z)+2| and

= |—z)(—2| using the states |+y) and |—y) of a Spin-% particle as a basis. Check
that the results (2.51) and (2.52) are satisfied using these matrix representations.

2.8. A photon polarization state for a photon propagating in the z direction is given by

2 i
ly) = \/;IX>+ %Iy)

15 In general, there are an infinite number of sets of basis states that may be used to form representa-
tions in matrix mechanics. For example, in addition to the states |+z), the states |=x) can be used as
a basis to represent states and operators for spin-% particles. However, since |+x) are not eigenstates
of J,, the matrix representation of this operator using these states as a basis is not diagonal, as (2.96)
shows.
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2.9.

(a) What is the probability that a photon in this state will pass through an ideal
polarizer with its transmission axis oriented in the y direction?

(b) What is the probability that a photon in this state will pass through an ideal
polarizer with its transmission axis y' making an angle ¢ with the y axis?

(c) A beam carrying N photons per second, each in the state |), is totally absorbed
by a black disk with its normal to the surface in the z direction. How large is the
torque exerted on the disk? In which direction does the disk rotate? Reminder:
The photon states |R) and |L) each carry a unit £ of angular momentum parallel
and antiparallel, respectively, to the direction of propagation of the photons.

(d) How would the result for each of these questions differ if the polarization state
were

N [2 1
|¢') - \/;|X)+ ﬁl)’)

that is, the *“i” in the state |¢) is absent?
A system of N ideal linear polarizers is arranged in sequence, as shown in Fig. 2.13.
The transmission axis of the first polarizer makes an angle of ¢/N with the y axis.
The transmission axis of every other polarizer makes an angle of ¢/N with respect
to the axis of the preceding one. Thus, the transmission axis of the final polarizer
makes an angle ¢ with the y axis. A beam of y-polarized photons is incident on
the first polarizer.
(a) What is the probability that an incident photon is transmitted by the array?
(b) Evaluate the probability of transmission in the limit of large N.
(c) Consider the special case with the angle ¢ = 90°. Explain why your result is
not in conflict with the fact that (x|y) = 0.'¢

FIGURE 2.13

16 A nice discussion of the quantum state using photon polarization states as a basis is given by A.
P. French and E. E Taylor, An Introduction to Quantum Physics, Norton, New York, 1978, Chapters
6 and 7. Problem 2.9 is adapted from this source.
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If the z component of the angular momentum has a definite nonzero value, making
the right-hand side of (3.130) nonzero, then we cannot specify either the x or y
component of the angular momentum with certainty, because this would require
the left-hand side of (3.130) to vanish, in contradiction to the inequality. This
uncertainty relation is, of course, built into our results (3.123) and (3.124), which,
like (3.130), follow directly from the commutation relations (3.116). Nonetheless,
uncertainty relations such as (3.130) bring to the fore the sharp differences between
the quantum and the classical worlds. In Chapter 6 we will see how (3.128) and
(3.129) lead to the famous Heisenberg uncertainty relation AxAp, = #/2.

PROBLEMS

3.1.

3.2.

3.3.

3.4.

3.5.

Verify for the operators A, B, and C that

@ [AB+C|=[AB]+]|AC]

®) [A BC) = B[A. €] + [A. B)C

Using the |[+2z) and |—2) states of a spin-; particle as a basis, set up and solve
as a problem in matrix mechanics the eigenvalue problem for S, = S-n, where
the spin operator S = S i+ S)] + S k and n = sin 8 cos ¢i + sin 0 sin ¢j + cos Ok.
Show that the eigenstates may be written as

|[4+n) = cos g|+z) + ¢'®sin gl—z)

|-n) = sin gl-l-z) — e'®cos gl—z)

Rather than simply verifying that these are eigenstates by substituting into the eigen-
value equation, obtain these states by directly solving the eigenvalue problem, as
in Section 3.6.

Show that the Pauli spin matrices satisfy o;0; + ojo; = 26;;0, where i and j can
take on the values 1, 2, and 3, with the understanding that o) = o, 0p = Oy» and
03 = 0,. Thus for i = j show that o2 = o* = = [, while for i # j show
that {0y, o;} = 0, where the curly brackets are called an anticommutator, which is
defined by the relationship {4, B} = AB + BA.

Verify that (a) ¢ X ¢ = 2io and (b) 0 -ac b =a-bl +io - (a XDb),
where ¢ = o,i + 0,j + o.k.

This problem demonstrates another way (also see Problem 3.2) to determine the
eigenstates of §, =S n. The operator

R?(Oj) - e’l'g‘.\-o”l
rotates spin states by an angle 6 counterclockwise about the y axis.
(a) Show that this rotation operator can be expressed in the form

” 20 ~
R©j) = cos & — 25, sin &

2 A 2
Suggestion: Use the states |+z) and |—z) as a basis. Express the operator ﬁ(ﬂj)
in matrix form by expanding . R in a Taylor series. Examine the explicit form
for the matrices representing S S 3, and so on.
(b) Apply R in matrix form to the state |+2z) to obtain the state |+n) given in
Problem 3.2 with ¢ = 0, that is, rotated by angle 6 in the x-z plane.



3.6.
3.7.

3.8.

3.9.

3.10.

3.11.

3.12.

3.13.

3.14.

3.15.

3.16.

3.17.

3.18.
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Derive (3.60).
Derive the Schwarz inequality

(alaXBIB) = KalB)

Suggestion: Use the fact that
(el +A*(BI) (1) + AIBY) = O

and determine the value of A that minimizes the left-hand side of the equation.
Show that the operator C defined through (A, B] = iC is Hermitian, provided the
operators A and B are Hermitian.

Calculate AS, and AS, for an eigenstate of S, for a spm-- particle. Check to see
if the uncertainty relation AS, AS, = RIS, )1/2 is satisfied. Repeat your calculation
for an eigenstate of S,.

Use the matrix representations of the spin-§ angular momentum operators S, S ,
and S, in the S, basis to verify explicitly through matrix multiplication that

.. 8,] = i#S,

Determine the matrix representations of the spm-- angular momentum operators St
) y» and $. using the eigenstates of S as a basns

By examining their action on the basns states |+2) and |—z), verify for a spin-3
particle that (a)

= (A2)|+z)X+2| — (R/2)|-z)(—2]|
and (b) the raising and lowering operators may be expressed as
S, = hl+z)(—2| and S_ = h|l—z)(+17|

Repeat Problem 3.10 using the matrix representations (3.28) for a spin-1 particle in
the J. basis.

Use the spin-1 states |1, 1), [1,0), and |1, —1) as a basis to form the matrix rep-
resentations of the angular momentum operators and hence verify that the matrix
representations (3.28) are correct.

Determine the eigenstates of S, for a spin-1 particle in terms of the eigenstates
I1,1), ]1,0), and |1, —1) of §,.

A spin-1 particle exits an SGz device in a state with S, = #. The beam then enters
an SGx device. What is the probability that the measurement of S, yields the value
0?

A spin-1 particle is in the state

1
1
P
S: basis \/— 3i
(a) What are the probabilities that a measurement of S, will yield the values #, 0,
or —# for this state? What is (S,)?
(b) What is (S,) for this state? Suggestion: Use matrix mechanics to evaluate the
expectation value.
(c) What is the probability that a measurement of S, will yield the value % for this
state?
Determine the eigenstates of S, =S-nfora spin-1 particle, where the spin opera-
tor§ = §, i+Syj+S k and n = sin@ cos ¢i + sin 0 sin ¢j + cos k. Use the matrix
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of this section. The eigenvalues of J. are #, 0, and —#, which are the diagonal
matrix elements of the matrix representing J. in (3.28). The magnitude of the
angular momentum for these states is given by [1(1 + 1)]'2% = (2)"24.

4. There are four j = 3 states: |3, 3), |2, ), 13, —1), and |3, —3). The magni-
tude of the angular momentum is [3(3 + 1)]'24 = (15)"?4/2.

As these examples illustrate, the magnitude [j(j + 1)]"*% of the angular
momentum is always bigger than the maximum projection j# on the z axis for
any nonzero angular momentum. In Section 3.5 we will see how the uncertainty
relations for angular momentum allow us to understand why the angular momen-
tum does not line up along an axis.

3.4 THE MATRIX ELEMENTS OF THE
RAISING AND LOWERING OPERATORS

We have seen in (3.40) and (3.42) that the action of the raising operator Jiona
state of angular momentum j is to create a state with the same magnitude of the
angular momentum but with the z component increased by one unit of #:

Jelj,m) = cihlj,m+1) (3.55)
while the action of the lowering operator is
J-lj,my = c_hlj,m—1) (3.56)

It is useful to determine the values of ¢, and c¢_. Taking the inner product of the
ket (3.55) with the corresponding bra and making use of (3.38), we obtain

G,omlJ_Js|j,m) = cte k2, m+1j,m+1) (3.57)
Substituting (3.47) for the operators, we find
Goml3? = T2 = RIDj, m) = [ + 1) = m* = mMA¥j, mlj, m)
= ek, m+1lj,m+1) (3.58)

Assuming the angular momentum states satisfy (j, m|j, m) = (j, m+1|j, m+1),
we can choose ¢+ = [j(j + 1) — m(m + ]2, or

Jeljom)y = Jj(G+ 1) —m(m + Dalj, m+ 1) (3.59)

Note that when m = j, the square root factor vanishes and the raising action
terminates, as it must. Similarly, we can establish that

J-lj,omy= JjG + 1) —m(m— 1)hlj,m—1) (3.60)

for which the square root factor vanishes when m = —j, as it must.
These results determine the matrix elements of the raising and lowering
operators using the states |j, m) as a basis:

Gom'\elj,m)y = JjiG+ 1) —mm + DAG, m'|j, m+ 1)

= JiG+ 1) —m@m + A8, s (3.61)



