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Derive (3.60).
Derive the Schwarz inequality

(alaXBIB) = KalB)

Suggestion: Use the fact that
(el +A*(BI) (1) + AIBY) = O

and determine the value of A that minimizes the left-hand side of the equation.
Show that the operator C defined through (A, B] = iC is Hermitian, provided the
operators A and B are Hermitian.

Calculate AS, and AS, for an eigenstate of S, for a spm-- particle. Check to see
if the uncertainty relation AS, AS, = RIS, )1/2 is satisfied. Repeat your calculation
for an eigenstate of S,.

Use the matrix representations of the spin-§ angular momentum operators S, S ,
and S, in the S, basis to verify explicitly through matrix multiplication that

.. 8,] = i#S,

Determine the matrix representations of the spm-- angular momentum operators St
) y» and $. using the eigenstates of S as a basns

By examining their action on the basns states |+2) and |—z), verify for a spin-3
particle that (a)

= (A2)|+z)X+2| — (R/2)|-z)(—2]|
and (b) the raising and lowering operators may be expressed as
S, = hl+z)(—2| and S_ = h|l—z)(+17|

Repeat Problem 3.10 using the matrix representations (3.28) for a spin-1 particle in
the J. basis.

Use the spin-1 states |1, 1), [1,0), and |1, —1) as a basis to form the matrix rep-
resentations of the angular momentum operators and hence verify that the matrix
representations (3.28) are correct.

Determine the eigenstates of S, for a spin-1 particle in terms of the eigenstates
I1,1), ]1,0), and |1, —1) of §,.

A spin-1 particle exits an SGz device in a state with S, = #. The beam then enters
an SGx device. What is the probability that the measurement of S, yields the value
0?

A spin-1 particle is in the state

1
1
P
S: basis \/— 3i
(a) What are the probabilities that a measurement of S, will yield the values #, 0,
or —# for this state? What is (S,)?
(b) What is (S,) for this state? Suggestion: Use matrix mechanics to evaluate the
expectation value.
(c) What is the probability that a measurement of S, will yield the value % for this
state?
Determine the eigenstates of S, =S-nfora spin-1 particle, where the spin opera-
tor§ = §, i+Syj+S k and n = sin@ cos ¢i + sin 0 sin ¢j + cos k. Use the matrix
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3.19.

3.20.

representation of the rotation operator in Problem 3.19 to check your result when
¢ =0.

Find the state with S, = A of a spin-1 particle, where n = sin@i + cos 68k, by
rotating a state with S. = £ by angle 6 counterclockwise about the y axis using
the rotation operator R(8j) = e~ Suggestion: Use the matrix representation
(3.104) for § y in the S, basis and expand the rotation operator in a Taylor series.
Work out the matrices through the one representing S 3 in order to see the pattern
and show that

1 +cosf  sinf 1—cosd
2 R
AL sin 6 sin @
R(6)) m _ﬁ cos 6 ——-‘/-;

1 —cosé@ sin @ 1 + cosé@
2 ﬁ 2

A beam of spin-1 particles is sent through a series of three Stern-Gerlach measur-
ing devices (Fig. 3.11). The first SGz device transmits particles with §, = # and

filters out particles with S, = 0 and §. = —#. The second device, an SGn device,

transmits particles with S, = # and filters out particles with S, = O and S, = —#,

where the axis n makes an angle 8 in the x-z plane with respect to the z axis. A last

SGz device transmits particles with S, = —# and filters out particles with §. = &

and S, = 0.

(a) What fraction of the particles transmitted by the first SGz device will survive
the third measurement? Note: The states with S, = A, S, = 0,and S, = —#

in the §, basis follow directly from applying the rotation operator given in
Problem 3.19 to states with §, = £, S, = 0, and S, = —#, respectively.

(b) How must the angle 6 of the SGn device be oriented so as to maximize the
number of particles that are transmitted by the final SGz device? What fraction
of the particles survive the third measurement for this value of 6?

(c) What fraction of the particles survive the last measurement if the SGn device
is removed from the experiment?

Repeat your calculation for parts (a), (), and (c) if the last SGz device transmits

particles with S, = 0 only.

Sp=H —
S, =" SGz H
SGn E_—_ﬁ’
— SGz [ — -
.—|
FIGURE 3.11
3.21. Introduce an angle 6 defined by the relation cos 8 = J,/|J|, reflecting the degree to

3.22.

which a particle’s angular momentum lines up along the z axis. What is the smallest
value of 8 for (a) a spin-% particle, (b) a spin-1 particle, and (c) a macroscopic
spinning top?

Show that if the two Hermitian operators A and B have a complete set of eigenstates
in common, the operators commute.
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rotation operator ﬁ(d«b n=1- ifn d¢/h for rotations by angle d¢ about the
axis specified by the unit vector n with the infinitesimal time translation operator
(4.69). We can actually tie the rotation operator and the time-evolution operator
together with a common thread —namely, symmetry. A symmetry operation is
one that leaves the physical system unchanged or invariant. For example, if the
Hamiltonian is invariant under rotations about an axis, the generator of rotations
about that axis must commute with the Hamiltonian. But (4.77) then tells us that
the component of the angular momentum along this axis is conserved, since its
expectation value doesn’t vary in time. Also, if the Hamiltonian is invariant under
time translations, which simply means that H is independent of time, then of
course energy is conserved. We will have more to say about symmetry, especially
in Chapter 9, but this is our first indication of the important connection between
symmetries of a physical system and conservation laws.

PROBLEMS

4.1. Show that unitarity of the infinitesimal time-evolution operator (4.4) requires that
the Hamiltonian H be Hermitian.

4.2. Show that if the Hamiltonian depends on time and [fl (t)), H (12)] = 0, the time-
development operator is given by

. et
U@t) = exp [——'—f dt'ﬁ(t')]
A o

4.3. Use (4.16) to verify that expectation value of an observable A does not change with
time if the system is in an energy eigenstate (a stationary state) and A does not
depend explicitly on time.

4.4. A beam of spin-% particles with speed v¢ passes through a series of two SGz devices.
The first SGz device transmits particles with S, = #/2 and filters out particles with
S, = —#h/2. The second SGz device transmits particles with S, = —#£/2 and filters
out particles with §, = #/2. Between the two devices is a region of length Iy in
which there is a uniform magnetic field By pointing in the x direction. Determine
the smallest value of /o such that exactly 25 percent of the particles transmitted by
the first SGz device are transmitted by the second device. Express your result in
terms of wy = egBy/2mc and vy.

4.5. A beam of spin-% particles in the |+2) state enters a uniform magnetic field By in
the x-z plane oriented at an angle 6 with respect to the z axis. At time T later,
the particles enter an SGy device. What is the probability the particles will be
found with S, = #/2? Check your result by evaluating the special cases § = 0 and
0 = m/2.

4.6. Verify that the expectation values (4.23), (4.28), and (4.30) for a spin-% particle
precessing in a uniform magnetic field By in the z direction satisfy (4.16).

4.7. Use the data given in Fig. 4.3 to determine the g factor of the muon.

4.8. A spin-} particle, initially in a state with S, = #/2 with n = sin6i + cos 6k, is in
a constant magnetic field By in the z direction. Determine the state of the particle
at time ¢ and determine how (S,), (S,), and (S,) vary with time.

4.9. Derive Rabi’s formula (4.45).

4.10. Express the Hamiltonian (4.57) for the ammonia molecule in the |/)-|II) basis to
obtain (4.61). Assume the electric field E = Eycos wr. Compare this Hamiltonian
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The state just picks up an overall phase as time progresses; thus, the physical state
of the system does not change with time. We often call such an energy eigenstate
a stationary state to emphasize this lack of time dependence.

You might worry that physics could turn out to be boring with a lot of
emphasis on stationary states. However, if the initial state |¢/(0)) is a superposition
of energy eigenstates with different energies, the relative phases between these
energy eigenstates will change with time. Such a state is not a stationary state
and the time-evolution operator will generate interesting time behavior. All we
need to do to determine this time dependence is to express this initial state as a
superposition of energy eigenstates, since we now know the action of the time-
evolution operator on each of these states. We will see examples in Sections 4.3
and 4.5.

4.2 TIME DEPENDENCE
OF EXPECTATION VALUES

The Schrodinger equation permits us to determine in general which variables
exhibit time dependence for their expectation values. If we consider an observable
A, then

d d 7
774 = WAl

d - ~(d dA
= (Growo A + WA ( Suen )+ oG
= (-(ll’(f)lH)AW/(t)) + (Jl(t)|A( H|l//(f)))+ (il’(t)|—|¢(’)>

- - iz
= ZWOI[A, o) + WOIS ) 4.16)

The appearance of the last term involving dA/dt in this equation allows for
the possibility that the operator depends explicitly on time. Equation (4.16) shows
that provided the operator corresponding to a variable does not have any ex-
plicit time dependence (dA/d¢t = 0), the expectation value of that variable will
be a constant of the motion whenever the operator commutes with the
Hamiltonian.

What do we mean by explicit time dependence in the operator? Our exam-
ples in Sections 4.3 and 4.4 will probably illustrate this best. The Hamiltonian for
a spin-— particle in a constant magnetic field is given in (4.17). There is no explicit
t dependence in H; therefore substituting H for the operator A in (4.16) indicates
that energy is conserved, since H of course commutes with itself. However, if we
examine the Hamiltonian (4.34) for a spm-— particle in a time-dependent mag-
netic field, we see explicit time dependence within the Hamiltonian in the factor
cos wt. Such a Hamiltonian does not lead to an expectation value for the energy
of the spin system that is independent of time because dH/at # 0. There is clearly



