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matrix representations that the position-momentum commutation relation (7.7) is
satisfied.

Show that properly normalized eigenstates of the harmonic oscillator are given by
(7.38). Suggestion: Use induction.

Use @|0) = 0 and therefore ( p|a|0) = 0 to solve directly for ( p|0), the ground-state
wave function of the harmonic oscillator in momentum space. Normalize the wave
function. Hint: Recall the result of Problem 6.2,

(plEly) = m%(pw)

Derive (7.56) and (7.57).

A particle of mass m in the one-dimensional harmonic oscillator is in a state for

which a measurement of the energy yields the values fw/2 or 3fw/2, each with a

probability of one-half. The average value of the momentum (p,) at time ¢ = 0 is

(mw#/2)'. This information specifies the state of the particle completely. What is

this state and what is (p,) at time ¢?

(a) Determine the size of the classical turning point xo for a harmonic oscillator in
its ground state with a mass of 1000 kg and a frequency of 1000 Hz. Compare
your result with the size of a proton. A bar of aluminum of roughly this mass
and tuned to roughly this frequency (called a Weber bar) is used in attempts to
detect gravity waves.

(b) Suppose that the bar absorbs energy in the form of a graviton and makes a
transition from a state with energy E, to a state with energy E, .. Show that the
change in length of such a bar is given approximately by x¢(2/n)"? for large n.

(c) To what n, on the average, is the oscillator excited by thermal energy if the bar
is cooled to 1 K?

Show that in the superposition of adjacent energy states (7.63) the average value of

the position of the particle is given by

(x) = (Y|x|y) = Acos(wt + )
and the average value of the momentum is given by

(px) = W|p:l¥) = —mwAsin(wr + 6)

in accord with Ehrenfest’s theorem, (6.33) and (6.34).

A small cylindrical tube is drilled through the earth, passing through the center.
A mass m is released essentially at rest at the surface. Assuming the density of
the earth is uniform, show that the mass executes simple harmonic motion and
determine the frequency w. Determine the approximate quantum number n for this
state of the mass, using a typical macroscopic value for the magnitude of the mass
m. Explain why a single quantum number n is inadequate to specify the state.
Prove that the parity operator 1 is Hermitian.

Substitute Y(x) = Ne~°* into the position-space energy eigenvalue equation (7.66)
and determine the value of the constant a that makes this function an eigenfunction.
What is the corresponding energy eigenvalue?

Calculate the probability that a particle in the ground state of the harmonic oscillator
is located in a classically disallowed region, namely, where V(x) > E. Obtain a
numerical value for the probability. Suggestion: Express your integral in terms of a
dimensionless variable and compare with the tabulated values of the error function.
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work because as Ax — 0, Ap, — = in order to satisfy AxA p, = £/2. Similarly,
trying to put the particle in a state with zero momentum to minimize the kinetic
energy implies Ap, — 0, which forces Ax — . Thus nature must choose a
tradeoff in which the particle has both nonzero Ax and Ap, and, therefore,
nonzero energy. Explicitly, for the ground state

4 AL s
Ax? = %(Ol(a + a")ZIO)

= —<0|[ +(@")? + aa' + a'ajlo)
_h
2

= L(olaa*l()) = L(lll) = (7.54)

2mw 2mw
and
2 mowth 1- 2
Ap? = ——(OI( )°|0)

ma)ﬁ ) 2 AA+ At oa

= ———(0l[a* + (a")* - — a'alio)

= '"“"‘(0|“*|0> ’"—“""(Hl) = ﬁ;’—ﬁ (7.55)

Notice that AxAp, = fi/2 for the ground state. That the ground state is a mini-
mum uncertainty state was already apparent from the Gaussian form of the ground-
state wave function (7.44), given the discussion in Section 6.6. For the excited
states, we can establish in a similar fashion that

Ax = [(n+ %);ﬁa—) (7.56)
Apy, = [J(n + )moh (7.57)

AxAp, = (n + )k (7.58)

and

A good illustration of the effects of this zero-point energy is the unusual
behavior of helium. Helium is the only substance that does not solidify at suffi-
ciently low temperatures at atmospheric pressure. Rather, it is necessary to apply
a pressure of at least 25 atmospheres. For substances other than helium, the un-
certainty in the position of the nuclei in the ground state is in general quite small
compared to the spacing between the nuclei, which is why these substances so-
lidify at atmospheric pressure at sufficiently low temperature. In fact, increasing
the temperature populates the higher vibrational states and increases the uncer-
tainty, as (7.56) indicates. These substances melt when the uncertainty becomes
comparable to the spacing between the nuclei in the solid. For helium, even in
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Time dependence for the harmonic oscillator results from the system being in
a superposition of energy eigenstates with different energies. If we assume the
initial state is a superposition of two adjacent energy states,

|¢(0)) = cpln) + cpsaln + 1) (7.62)
then
() = e HRy(0))
= ¢ {n¥12wr (c,,ln) + cpere " n + 1)) (7.63)

In particular, we can take advantage of the expression (7.11) for the position
operator in terms of the raising and lowering operators to evaluate the expectation
value of the position of the particle and show that it behaves as one would expect
for a classical particle, namely,

(x) = (Ylz|¢) = Acos(wt + ) (7.64)
See Problem 7.8.

7.9 SOLVING THE SCHRODINGER
EQUATION IN POSITION SPACE

There is another technique for determining the energy eigenvalues and the position-
space eigenfunctions of the harmonic oscillator that we will find particularly useful
when we solve the three-dimensional Schrodinger equation in Chapter 10. Rather
than take advantage of the operator techniques of Section 7.2, we solve the energy
eigenvalue equation

a2
(x|H|E) = (x|(i’i + lrnw%‘c2)|15) = E(x|E) (7.65)
2m 2

directly in position space, as in Chapter 6. Using the results of that chapter, we
can express this equation as

h? d?
" 2m dx?
The position-space energy eigenvalue equation (7.66) is a nontrivial second-

order differential equation. To make its structure a little more apparent, it is good
to introduce the dimensionless variable

y = /ﬁﬁ‘ix (1.67)

where the factor /mw/f is a factor with the dimensions of inverse length that
occurs naturally in the problem. We call the wave function

(x|E) = ¥(y) (7.68)

(x|E) + %mwzxz(xlE) = E{(x|E) (7.66)
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where in the next to last step we have kept just the leading order in the infinitesimal
8x.% Comparing (6.29) and (6.30), we see that the position operator and the
generator of translations obey the commutation relation

(%, p:] = ifi (6.31)

Given the pivotal role that the commutation relations (3.14) played in our dis-
cussion of angular momentum, it is probably not surprising to find that the com-
mutation relation (6.31) plays a very important role in our discussion of wave
mechanics.

In order to ascertain the physical significance of the generator of translations,
we next examine the time evolution of a particle of mass m moving in one
dimension. Continuing to neglect the spin degrees of freedom of the particle,” we
can write the Hamiltonian as
P

H =
2m

+ V(%) (6.32)
where we have expressed the kinetic energy of the particle in terms of the mo-
mentum and added a potential energy term V. Note that we are denoting the
momentum operator by the same symbol as the generator of translations. We will
now show that for quantum mechanics to yield predictions about the time evolu-
tion that are in accord with classical physics when appropriate, it is necessary that
the momentum operator satisfy the commutation relation (6.31). Using (4.16),
we can calculate the time rate of change of the expectation value of the position
of the particle:

d{x)
dt

. X . a2
= %(.pl[H,fr]llﬁ) = %(tpl [;—,;,flltb)

= F=(W(ps[ B, 2] + | bx. 2] B:)IW)

Wlp<l) _ (px)

= (6.33)
m m
Moreover, you may also check (see Problem 6.1) that
d{ps) _ i, 1~ .
d—tx = g(l/’”H: bl
av
(-4 63

4 If this step bothers you, see also the discussion in going from (6.38) to (6.39). Here too, we can
shift the integration variable (x' = x + 8x), expand the wave function in a Taylor series, and retain
only the leading-order term.

5 It’s hard to worry much about angular momentum in a one-dimensional world.



