
ar
X

iv
:s

ub
m

it/
17

68
22

0
 [

cs
.C

E
]

 4
 J

an
 2

01
7

Discrete Optimal Global Convergence of an Evolutionary Algorithm for

Clusters under the Potential of Lennard Jones

Carlos Barrón-Romero

cbarron@correo.azc.uam.mx

Universidad Autónoma Metropolitana, Unidad Azcapotzalco

Av. San Pablo No. 180, Col. Reynosa Tamaulipas, C.P. 02200,

MEXICO

2016

Abstract

A review of the properties that bond the particles under Lennard Jones Potential allow to states properties
and conditions for building evolutive algorithms using the CB lattice with other different lattices. The new
lattice is called CB lattice and it is based on small cubes, such the number of its vertices in a region is always
greater than the number of the particles of a cluster or a region of a lattice inside of the same size region
of the CB lattice. Moreover, the estimation of a putative optimal cluster of the Lennard Jones can be done
theoretically in short time but, the proof, for such cluster to be the global optimal cannot be determining in
efficient time. The proof of the global optimality for a cluster is related to the binomial coefficient

(

m

n

)

, which
it corresponds with the selection of n particles from a collection with m given particles. A set of propositions
states convergence and optimal conditions over the CB lattice for an evolutionary algorithm. The evolutionary
algorithm is a reload version of previous genetic algorithms based in phenotypes. The novelty using CB
lattice, together with the other lattices, and ad-hoc cluster segmentation and enumeration, is to allow the
combination of genotype (DNA coding for cluster using their particle’s number) and phenotype (geometrical
shapes using particle’s coordinates in 3D). A parallel version of an evolutionary algorithm for determining
the global optimality is depicted. The algorithm for determining global optimality (which it is far from this
research, and it is not included) is just a force brute searching algorithm with complexity

(

m

n

)

, where n is the
number of the cluster’s particles and m ≫ n is the number of particles of an appropriate CB lattice’s region.
The results presented are from a standalone program for a personal computer of the evolutionary algorithm,
which can estimate all putative Optimal Lennard Jones Clusters from 13 to 1612 particles. The novelty are
the theoretical results for the evolutionary algorithm’s efficiency, the strategies with phenotype or genotype,
and the classification of the clusters based in an ad-hoc geometric algorithm for segmenting a cluster into its
nucleus and layers. Also, the standalone program is not only capable to replicate the optimal Lennard Jones
clusters in The Cambridge Cluster Database (CCD), but to find new ones.

Keywords: 02.60.Pn Numerical optimization, 21.60.Gx Cluster models, 31.15.Qg Molecular dynamics and
other numerical methods, 36.40.Qv Stability and fragmentation of clusters, Lennard Jones Potential.

1 Introduction

The problem for determining optimal clusters under Lennard Jones captures my attention for the possible impli-
cations for building an efficient algorithm for the class of NP. My techniques for the NP Class has an application
for building an appropriate algorithms for looking the optimal clusters under Lennard Jones Potential.

Over a decade ago, I states the conjecture in [2] that IF lattice could contain all optimal clusters under the
Potential of Lennard Jones (LJ). The title of the article: Minimum search space and efficient methods for structural
cluster optimization was proposed as result of some inquiries from D. J. Wales, J. P. K. Doye, G.L. Xue and Bern
Hardke about the optimal LJ clusters.

1

http://arxiv.org/submit/1768220/pdf

Figure 1: MIF1739 contains the initial particles’ positions for the C∗
n, n = 2, . . . , 1000.

a) b)

Figure 2: a) C∗
38 and b) C∗

664 inside of a region of the IF lattice.

IF lattice results from overlapping the positions of the IC lattice and FC lattice. The main result was a
minimum region of IF, where all putative global optimal LJ clusters from 2 to 1000 can be found (see figures 1,
and 2).

Figure 1 was constructed by the selection of not repeated positions from where a given initial selection of
particles converges always by a local minimization process to its putative minimal LJ cluster. This set of positions
is finite, and it can be enumerate, such each position corresponds with a unique id number.

Therefore, it could be simple to locate a minimal LJ cluster by the set of its particles’ number of the cluster. I
proposed a telephone algorithm, which is like make a phone call but, here n id particles corresponds to a cluster’s
phone number from a set of an appropriate selection of m id numbers from a region of IF lattice. After the
minimization if the value of the LJ potential is less than a previous cluster’s number, then it is the phone number
of the cluster of n particles. Even, it is like more genotype, I did not introduce this type of DNA mechanics in
my previous genetic and evolutive algorithms in order to keep a phenotype representation (this means geometric
shapes using the 3d particles’ coordinate). The main idea was to look for the putative optimal LJ cluster by
an exhaustive searching. This is a brute force algorithm with complexity related to the Newton binomio for
combinations,

(

m

n

)

.
Even with all putative optimal LJ clusters from 2 to 1000 in the lattice IF, I can not prove my conjecture.

But, reviewing my previous work and the mathematical properties of the LJ potential function, it is possible to
determine from the cubic lattice (CB) all optimal LJ clusters in efficient time.

This paper presents an evolutive algorithm based in our previous Genetic algorithm. It is based on the partial
growing sequence property that the optimal LJ clusters exhibe (To my knowledge, it was Northby [12] the pioneer

2

a) b)

Figure 3: a) C∗
37’s view with nucleus n7 and b) C∗

37’s view with nucleus n1 IC.

a) b)

Figure 4: a) C∗
37’s view with nucleus n1 IR and b) non optimal, symmetric C37 with nucleus n7 .

a) b)

Figure 5: a) C∗
38’s view with nucleus n1, and b) C∗

38’s classical view with nucleus n6

3

a) b)

Figure 6: a) C∗
107 with nucleus n7, b) C∗

107’s shell

a) b)

Figure 7: a) C∗
13 b) C∗

38 with their initial points inside of CB lattice

4

to state the growing sequence property of the optimal LJ cluster over the IC lattice, also Hoare [8] pointed out
the morphology of the microclusters). It means that clusters with relative closed number of particles could have
similar geometry or in other words, they belong to same lattice or they belong to the same geometrical family or
they shares some similar bricks or building blocks.

Some ideas and techniques are difficult to replicate, therefore for this article, I added a simple Matlab programs
to visualice my novel cluster partition and geometry, and to help for verifying my 8 categories of classification by
similar number of particles considered the nucleus.

The corroboration of my results was possible because all the putative optimal LJ clusters are reported in The
Cambridge Cluster Database (CCD) [17].

The next subsection depicts the notation used. Section 2 has the properties and the proposition. The subsec-
tion 2.1 depicts the technique for the creation of a partition of the cluster’s particles into layers, and subsection 2.2
depicts an heuristic for determining a cluster’s nucleus (in the appendix a Matlab program of such heuristic is de-
picted). Section 3 describes my version of parallel evolutionary algorithm. The next section presents the numerical
results, and finally, the last section the conclusions and the future work.

1.1 Notation

Given a set S, |S| is the number of elements of the set. Also if A[·] is an array, |A[·]| is the number of elements
of the array. ∅ is the empty set. || · || is the norm in R

3.
Particularly, C∗

n denotes an optimal LJ cluster with n particles, and Cn denotes an arbitrary cluster with n
particles.

A cluster Cn or C∗
n are sets of natural numbers, where each number correspond to a particle’s properties (pi).

For this research the particle’s properties are the particle’s 3D coordinates. ||pi, pj || is the Euclidian distance
between particles pi and pj .

By example, C∗
n = {1, 2}, p1 = (− d∗

2 , 0, 0), and p2 = (d
∗

2 , 0, 0) where d∗ = 6
√
2 is the optimal distance for two

particles under LJ potential:
LJ(d) = d−12 − 2d−6

Several references explain how to build IC and FC lattices [10, 11, 16, 18]. The CB lattice is very simply is the
set of points that correspond to the intersection of the parallel lines to the axes with a separation of d∗/2 from
the (0,0,0).

2 Properties of LJ

There are several articles about LJ potential function’s properties. The proposition 1 in [2] is repeated as
proposition 2.1 in [3], together with proposition 2.2:

Proposition 2.1 Exist a discrete set, Ω, where ∀j ∈ N , j ≥ 2, the potential of SOCDXX(j) has the same
(”close value”) optimal value of SOCCXX(j) for a potential function such that

1. limri,j→0 VXX (ri,j) = ∞.

2. ∇2VXX (x∗) semi-positive, ‖∇VXX (x∗)‖ ≪ 1 and
‖∇VXX(x∗)‖
|VXX(x∗)| < δ0, where 0 < δ0 ≪ 1

where XX is BU or LJ.
where SOCYXX means search for optimal cluster, D is discrete, C is continues and XX is LJ for Lennard Jones

Potential or BU for Buckingham potential.
Proposition 2.2 Any shape of n particles with edges ≈ d∗ can be approximated from the CB lattice.
This means that with an appropriate region of CB lattice is sufficient to look for optimal clusters of size n. I

did not state the size of the appropriate region of CB. However, today, any optimal LJ cluster in the CCD has an
initial configuration in CB lattice, such that from this initial configuration converges by a minimization process
to its corresponding putative optimal LJ cluster.

5

Proposition 2.1. For any set of particles of a cluster’s CL or a set of particles of a region RL of any lattice
based on a unit u. Then corresponding region RB of the CB lattice such RB covers them under the || · ||∞. Then
particles of CL or RL are less than the number of particles of RB, i.e., |CL| < |RB| or |RL| < |RB|, where | · |
is the number of particles.

Proof. Under the || · ||∞ any region of CB is a 3D cube. By construction, it has a point at the center (0, 0, 0), the
first cube with −u/2, 0, u/2 has 33 points, the second cube with −u,−u/2, 0, u/2, u has 53 points, . . . , the k cube
has (2k + 1)3 points. Any polyhedra or lattice based in the unit u can not have more than 12 neighbors at ratio
u. The icosahedra has 13 points but the corresponding cube to cover it is the second cube, with 53 points, i.e.,
no. particles of icosahedra ¡ no. particles of unit cube of CB lattice. In general, for a given cluster CL or region
RL they can be divided and contained by a set of unit cubes of CB, which is a cube, let’s call RB. Therefore,
|CL| < |RB| or |RL| < |RB|.

It follows that any region of the CB lattice has more points than the same region of a lattice.
But more important, the global continuos optimal LJ cluster can be approximated in a discrete set of 3D

points, Ω. Then a connection between RB an appropriate region and Ω will be provide a discrete set of 3D points
where the continuous optimal global cluster is approximated by a discrete set of points! A local minimization
procedure is the connection to approximate the continuous optimal global in RB. On the other hand, for a cluster
with n particles, let’s suppose to have an appropriate region RB, m = |RB|. The number of the posible clusters
of size n in RB is M =

(

n
m

)

≫ 0.
Note that M is a big number. It follows naturally from prop. 2.1 than for any region of a given lattice, the

number of clusters with n particles is ≪ M.

Proposition 2.2. RB is an appropriate search region of the CB lattice for a cluster with n particles, M =
(

n
m

)

,m = |RB|, M is a huge positive number. |RL| is a region of a lattice where there are different clusters with
n particles, and it is supposed that it contains the optimal LJ cluster. Then

P

(

F1

RB

)

< P

(

F2

RB ∪RL

)

where P(·) is a probability function, F1 is the set of the optimal candidates for being the global optimal LJ cluster
in RB, and F2 is the set of the optimal candidates for being the global optimal LJ cluster in RB ∪RL.

Proof. It follows from
|RL|f1 < f ′M

where f1 = |F1|, f ′ > 0 is the number of candidates for being the global optimal LJ cluster in RL, f ′ > 0, it
is not zero because the assumption that RL contains the optimal LJ cluster, f1 ≪

√
M, and |RL| ≪

√
M. Then

(M+ |RL|)f1 < (f1 + f ′)M,

P

(

F1

RB

)

=
f1
M

<
f1 + f ′

M+ |RL| = P

(

F2

RB ∪RL

)

It is important to assume that F2 ∩ RL 6= ∅, to increase the probability for determining the global optimal
clusters, otherwise the probability does not increase. Many of the ad-hoc, heuristic, genetic, and evolutionary
algorithms for determining the optimal LJ clusters have been used this property as previous knowledge to favorece
some candidates over others with success and speed to replicate the putative optimal LJ clusters.

In a personal communication, I suggested at 2004 to Shao, et al. to use different lattices from [16]. In [15]
appears the acknowledge: ”The authors would like to thank Prof. Carlos Barrón Romero for his personal commu-
nications and collaborations with us in the studies on the lattice-based optimization methods, including also the
work published in J. Phys. Chem. A, 108, 3586-3592 (2004).”

So even, knowing that an appropriate region of the CB lattice has the optimal LJ clusters, to improve the
efficiency for determining optimal LJ cluster is a good strategy to use other sources of candidates to favorece
diversity in the complex process for looking the unknown optimal LJ clusters.

6

Finally, the theoretical results point out that it is posible to increase the speed of any algorithm for determining
optimal LJ clusters but without any proof that they are global optimal. The repeated putative optimal LJ clusters
are stationary states, from where a criteria such of the number of times that the same cluster appears, then stop
and accept it as the putative optimal global LJ cluster.

The number of steps in these cases are clearly very less than M =
(

n
m

)

,m = |RB|. M is the huge number
related to the numbers of candidates to compare for determining global optimality in RB. A force brute algorithm
for the estimation of the different combinations of a set can be found in [3], it is a version for determining the
different cycles of a complete graph, G = (V,A), |V | = n.

2.1 Partition technique for a cluster

The geometry of the LJ clusters have been strongly related to different geometric structures (see [9, 8, 12, 16])
icosahedral, dodecahedral, cuboctahedral, and so on.

My segmentation’s technique provides different cluster’s views as an arbitrary polyhedron with its partitioning
into its core, layers and shell by using the particle’s neighbors. The advantages to segment a cluster with my
technique are 1) to help for interpretation and interaction with other clusters and lattices, and 2) to build a cluster
from lego or building blocks.

These properties are quite important because they support the previous research about the knowledge of the
clusters’ morphology, properties, geometrical families, chemistry, or the well know grow sequence.

A particle’s neighbor structure is defined as follow:

1. Define a unit: u.

2. Define a tolerance t as the porcentaje for accepting the expansion and the compression of u. (0 ≤ t ≤ 1.0).

3. Neighbor’s criteria: Particles pi, pj are neighbor if an only if (1− t)u < dist(pi − pj) < (1 + t)u.

4. for each particle, Nvec(i) is the number of neighbor of the particle pi, and V ec(i, k) is the array for storing
the number of the particles pk that they satisfy the neighbor’s criteria with a given particle pi.

where dist is an appropriate distance function between the particles. pi stands for particle’s representation in
a n dimensional space, a particle is represented by pi, which it could contain all the relevant particle’s attributes.

For this research, u = d∗, pi is the particle’s 3D coordinates, dist = || · || is the Euclidian distance, and t = 0.1.
One characteristic of LJ clusters is the compression-expansion over the distance between particles with respect

to the unit d∗. The value of t = 0.1 allow to differentiate a diagonal from a expanded-compressed unit u and
it works well to identify the ”hard LJ optimal clusters” (see [1], by example clusters with 38, 75, 98,75, 76,
77, 102, and 103 particles). For any possible LJ cluster, the upper limit of 12 neighbors over its particles, i.e.,
Nvec(i) ≤ 12, ∀i. comes from the upper limit inherited by the 3D twelve kissing spheres geometrical property.

With the cluster’s neighbors information, the next algorithm builds an arbitrary partition of a cluster’s particles
into a set of layers:

Algorithm 2.3. Partitioning a cluster Cn

input: Cn: array of int, for the set of particles’ numbers;
Nvec: array of int, with the particles’ number of neighbor;
V ec[i, k] : array of [int, int] with the particles’ neighbors;
Nuc = {i0, i1, . . . , ik}: array of int, for a given set of particles’s number to be the nucleus, with |Nuc| ≤ n;

output: capa: array of int, for the corresponding layer of a particle;
ncapa: int, for the cluster’s number of layers;

memory: fmk: int;

for i := 1 to n do
capa[i] := 0;

end for
ncapa := 1;
for i := 1 to |Nuc| do

capa[Nuc[i]] := ncapa

7

Figure 8: C∗
37 with its layers for an arbitrary selection of its nucleus

end for
fmk := 0;
while (1) do

for i:=1 to n do
if (capa[i] == ncapa) then
for jv := 1 to Nvec[i] do

kv := V ec[i][jv];
if (capa[kv] == 0) then

capa[kv] := ncapa + 1;
fmk := 1;

end if
end for

ncapa := ncapa + 1;
end while
ncapa := ncapa - 1;
return;

Hereafter, layer number 1 is the core or nucleus, and the last layer ncapa is the shell.
It is easy to verify that the set capa of the particles’ numbers is a partition of Cn, i.e,:

• ⋃ncapa

i=1 capa[i] = Cn

• capa[i] ∩ capa[j] = ∅, i 6= j.

The previous algorithm gives an arbitrary cluster partition that it could not correspond to the standard accepted
geometric structures but it can be used for genetic cuts for creating a new offspring as playing with set of figures
of lego. In particular, the results could be similar to the Hoare’s (see [8]) morphology of simple microclusters,
polyhedral structures (PT), and an arbitrary representation of cluster’s isomeros. Figure 8 depicts C∗

37 with its
layers for an arbitrary selection of its nucleus. Figure 6 depicts C∗

107 with nucleus n7 and its shell.

2.2 Heuristic for determining a nucleus for a cluster

The proposed heuristic is simple and it is based in previous knowledge of the LJ cluster structures that other
authors have been point out.

The main concept is to look for a set of cluster’s particles inside of an sphere with center at the cluster’s center
of mass with ratio 1.1d∗.

The particles inside of the sphere are natural candidates for being considering the cluster’s nucleus. There
many cases, for the selection of the cluster’s nucleus. Let PN be the set of particles inside of the sphere, and cm
the cluster’s coordinates of its center of mass:

1. IC or IR when ∃ pk ∈ PN , such that arg k = mink||pi − cm||, and ||pk − cm|| < 0.35d∗. By example,
C∗

13, C
∗
55, . . . are IC (n1 IC), and C∗

75, C
∗
76, . . . are IR (n1 IR).

8

2. IC without a particle as a center when |PN | = 12 and these 12 are closed to the sphere’s shell. This is the
case for IC nucleus with 12 particles (n0 IC). By example, C∗

521, C
∗
533,

3. When 3 ≤ |PN | and |PN ≤ 7, PN is considering the cluster’s nucleus. This criteria gives a nucleus with 3
to 7 particles. By example, n3: 665, 668, 672, 673, 728, . . .; n4: 26, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 98,
. . .; n5: 22, 23, 24, 25, 28, 29, 33, 34, 78, . . .; n6: 31, 32, 38, 43, 44, 99, 121, . . .; n7: 18, 19, 20, 21, 27, 30,
35, 36, 37, 39, . . .

4. when |PN | ≥ 8, adjust the center of the sphere to the center of mass of mass of the the cluster with the PN ’s
particles with 12 neighbors. The new sphere’s ratio is set to 0.9d∗, then take as the nucleus the particles
inside of this new sphere.

It is showed in the appendix the Matlab routine ”S plot geCl LJ.m”. It is a version of an algorithm using this
heuristic. Figure 6 depicts the results of the C∗

107 and its shell with algorithm 2.3 with a nucleus defined by the
heuristic of this section.

The next algorithm builds a set of coordinates or give a set of number that they correspond to a cluster inside
of a region. A region could be and arbitrary set of points, or points of a lattice, or the points of other big cluster.

Algorithm 2.4. Matching a cluster Cn with a given region R
input:

pn: array of 3D, for the particles’ coordinates of the cluster Cn;
Rk: array of 3D, with the points’ coordinates of the region R;
M : int, with the number of points of the region R;

output:

r[·]: array of int, for the corresponding particles’ numbers in the R;
s[·]: array of 3D, for the closed corresponding particles’ coordinates of the points of R;

memory:
dmin: real; // minimum distance imin: int; // particle’ number mk[·] := 0: array of int, set all to 0;

if M < n then
print(”Error, it is insufficient the number of points of R for the cluster”);
return;

end if
for i := 1 to n do

dmin := 108;
for k := 1 to M do

if (ml[k] == 0) then
d := dist(p[i], R[k]);
if (d < dmin) then

dmin := d;
imin := k;

end if
end if

end for
mk[imin] := 1;
r[i] := imin;
s[i] := R[imin];

end for
return;

The previous algorithm always answers with a set of points and with a set on particles’ numbers that they
correspond to a cluster, but the original and the output cluster from the region R could have very different shapes.
By example, when a cluster is centered at (0,0,0), and the region is box [20, 50]× [20, 50]× [20, 50] of the cb lattice.
On the other hand, figure 7 depicts C∗

13 and C∗
38 inside of a CB region, where the light blue small boxes are their

corresponding points of CB lattice.

9

a) b)

Figure 9: Examples of numeration from the nucleus to its shell a) region of the IC lattice, and b) region of the
CB lattice

3 Parallel evolutionary algorithm for searching optimal LJ clusters

The novelty of the Parallel evolutionary algorithm of this section is not a new complete paradigm, as I mentioned
before, it is a reload version of previous ad-hoc and genetic algorithm (see [7, 4, 5, 6, 14, 13, 2, 3]).

The term evolutionary algorithm for my approach is justified by the fact that the results are converted into
input data, and this cause a change of the expected behavior of the program beyond of its programming. What, I
precisely mean is that the efficacy and efficiency of the program for determining optimal LJ clusters is improved.
Also, I added new routines based in phenotype and genotype strategies that my previous algorithms have not.
But in the essence, it is an evolutionary program improved by his creator to increase its efficiency and efficacy
with adding changes into its old routines by hand. One of the aspect to point out, is that previous version was
only based in elitism, here the diversity is favored and it will come from the data of the optimal clusters and for
the data of the CB lattice, particularly.

The algorithm [14]) now includes the following genotype and phenotype mechanisms.
For the genotype mechanisms, a telephone model for the clusters consist to get a set of number to represent a

cluster. This can be done with a region of a lattice and a cluster by using the algorithm 2.4.
An enumeration from the nucleus to its shell can be done by ordering the particles of a region by its ratio, y

coordinate and its angle on the XY plane. Figure 9 depict a IC and CB regions with this numeration. This helps
because for a cluster, lower number are in the core, larger number are in the shell whatever it is respect to a lattice
or to other C∗

n.
With the telephone model for a cluster, a mutation is like to dial the cluster’s telephone with one or more

mistakes. The mistake numbers can be replaced by any number not in the cluster’s telephone with the condition
that such numbers are the indices of particles’ coordinates in a given region.

Children can be created by replacing sequences of the clusters’ telephones of 2 or more parent clusters.
After the creation of the children by any genetic mechanism, a minimization procedure is applied for the

corresponding coordinates of the particles’ numbers of the children to get a local minimal LJ cluster for elitism
selection.

On the other hand, the previous genetic algorithm adds mechanisms to use the algorithm 2.3 with or without
the heuristic given in subsection 2.2. New kind of mutations are incorporate by using the matching algorithm 2.4
to transform a cluster into a CB, IC, IF or any lattice before crossover and make up. Previously, the current
population include the optimal LJ cluster, the cluster with more 12 neighbors, and the worst LJ cluster. The
change is to include the lower and as many clusters as possible of the 8 categories of the heuristic for determining
the nucleus with the current optimal LJ cluster.

The parrallel algorithm defines a player main routine, which consists in two main routines: Cerberus and
Prometheus.

10

Algorithm 3.1. Player
input:

timer: set an interval of time for sending a stop signal.
In: int parameter of the initial cluster (≥ 13);
Fn: int parameter of final cluster (≥ 13 and (≥ In));
Psz: int parameter of the population size (≥ 9).
RCB: set of 3D points of the CB lattice (≫ Fn);
RL1, . . . RLk: set of 3D points of other lattices (≫ Fn);

output:

memory:
C∗

n: private data of the current putative optimal LJ clusters;

while (1) do
execute Cerberus;
execute Prometheus(In, Fn, Psz , RCB, RL1, . . . RLk);
a timer or the user send a signal to stop;

end while

Cerberus is an elitism routine for communicating and keeping the best putative optimal LJ clusters. It take
care of the communication but never interrupt the process of Prometheus.

Algorithm 3.2. Cerberus
input:

Pc: input pile of messages for Ck (LJ clusters);
stP : int, exclusive variable to communicate with Prometheus’s state, 1: Prometheus is searching or 0:Prometheus

is not searching;
output:

signal: semaphore command for waiting or executing;
memory:

C∗
n: private data of the current putative optimal LJ clusters;

signal Prometheous goes;
while (1) do

if (stP == 0) then
while pile(Pc) is not empty do
signal Prometheous to wait;
Ck := pop(Pc);
if LJ(Ck) < LJ(C∗

k) then
(C∗

k) = (Ck);
send message C∗

k to others players;
end if

end while
signal Prometheous to continue;
end while

Prometheus is the implementation of the previous evolutionary algorithm. It has exclusive access to the best
LJ clusters during the evolutionary process.

Algorithm 3.3. Prometheus
input:

In: int parameter of the initial cluster (≥ 13);
Fn: int parameter of final cluster (≥ 13 and (≥ In));
Psz: int parameter of the population size (≥ 9).
RCB: set of 3D points of the CB lattice (≫ Fn);
RL1, . . . RLk: set of 3D points of other lattices (≫ Fn);
signal: semaphore command for waiting or executing;

output:

stP : int, exclusive variable to communicate its state, 1: busy or 0:waiting;

11

Figure 10: Histogram of nucleus type for C∗
n, n = 13, . . . , 1612 particles

memory:
C∗

n: private data of the current putative optimal LJ clusters;

while (1) do
stP : = 0;
for n := In to Fn do

do Cerberus(signal) or player(signal);
stP := 1;
execute: evolutionary algorithm for exploring Cn

stP :=0;
end for

end while

When Prometheus is executing the evolutionary algorithm, there is not access to the private memory even for
others clusters different of the current n. This is because the evolutionary algorithm could use any C∗

j for creating
offsprings at any time. Before or after, the process of the evolutionary algorithm, or when Prometheus is off, there
is access to the best LJ optimal clusters.

The player routine is designed for working with copies of it. This could cause a bootle’s neck for the communi-
cations. Therefore, it is convenient to define a master player. In this case, only the master has the ability to send
and receive messages, meanwhile the slave players can only send messages to it.

4 Results

My previous results [2] are in the figure 1. It depicts a set of particles MIF1739, which contains C∗
n, n =

2, . . . , 1000. I tried to use MIF1739 has a main lattice from where an algorithm could takes advantage of its
building property: ∃ Cn ∈ MIF1739, such that by a minimization process, Cn converges to C∗

n. However, it is not
easy task to locate a ”good” initial set of points closed to an optimal LJ cluster. Figure 2 depicts where C∗

38 and
C∗

664 are located into the IF lattice. It is possible to select points by using sphere in MIF1739. Two parameters
are need, the ratio and the center of sphere.

The efficiency of the evolutionary algorithm changes dramatically with the incorporation of the CB lattice,
and the phenotype and genotype strategies. The best results comes from starting with no optimal clusters but by
using CB lattice and IC, IR, FC, dodecahedral lattices, and 14 as the size of the population.

12

Figure 11: LJ potential, potential difference vs C∗
n, n = 13, . . . , 332 particles

Figure 12: LJ potential, potential difference vs C∗
n, n = 333, . . . , 652 particles

13

Figure 13: LJ potential, potential difference vs cluster with C∗
n, n = 653, . . . , 972 particles

Figure 14: LJ potential, potential difference vs C∗
n, n = 973, . . . , 1292 particles

14

Figure 15: LJ potential, potential difference vs C∗
n, n = 1293, . . . , 1612 particles

The heuristic for determining a nucleus (see subsection 2.2) and the algorithm 2.3, helped to extend the selection
and interaction between clusters to create offspring for mutation or phenotype crossover or genotype crossover.
This heuristic classifies into 8 categories by just using the numbers of particles in a nucleus. The nucleus types n4,
n5, n6, and n7 are not geometrically equal. A refinement of heuristic is possible, but it has a computation cost.

Figure 10 depicts the histogram of 8 categories resulting of this heuristic for the C∗
n, n = 13, . . . , 1612. Ta-

bles 1, 2, 3, and 4 contains the classification of the clusters. It seems that many cases of C∗
n are obtained rapidly

by a the make up operation of its previous or next clusters, but also by considering to extend the diversity of the
current population to 8 categories.

My results could help to answer some old conjetures about the morphology of the microclusters. See Hoare [8]:
”Werfelmer’s essential contribution was to point out the possibility of extremely compact fivefold symmetric
structures for N7, suggesting that the pentagonal bipyrimid (N=7) (fig.3(a)) and the icosahedron (N=13) (fig.3(b))
might be the dominant motifs in larger assemblies.” It is partially true, from table 4the type 7), a nucleus with 7
particles (a pentagonal bipyramid) is the dominant motif for C∗

n, n = 18, . . . , 1530, but IC is not a dominant motif
from table 1, type 1) and type2) without considering type 8) (a nucleus IC with 12 particles, which was unknown
at 1983).

Figures 11, 12, 13, 14, and 15 depict where the different nucleus type appears. At the bottom of each figure
the LJ potential difference bet the consecutive clusters is depicted. Some type of optimal clusters are isolated and
the LJ potential difference is highly variable from n = 13 to 1420. But after this cluster it seems to diminish its
variations for the IR C∗

n, n ≥ 142. My results are 1600 optimal LJ clusters with n = 13, . . . , 1612 particles, (Most
of them are posted in The Cambridge Cluster Database (CCD) [17]), a novel 8 categories of nucleus classification,
and 65 new putative LJ Clusters, which are not reported at December of 2016. See table 5.

5 Conclusions and future work

The advances of the technology and science of Physics and Chemistry are fantastic, together with the molecular
and the nanostructures design. The results presented here have many implications for the computational molecular
design and their models and algorithms.

15

I hope to witness, that it is quite possible to replicate and to improve these results by using one of the top
worldwide supercomputer. Some of the definitions are broad, and this research can be easily extended and applied
for exploring geometries and interactions of clusters under other molecular potentials.

Appendix

Matlab Programs

function S_plot_Cl_LJ(ncl,xcl,ycl,zcl,nv1,nv2)

% This subroutine draws the geometry of

% a minimal Lennard Jones Potential’s cluster

% The input parameters are:

% ncl : numbers of particles

% xcl, ycl, zcl: arrays of numbers corresponding to the 3D

% cluster’s coordinates

% nv1, nv2 : integer number to determine the shells to draw

% With nv1=0 and nv2=2, the cluster’s nucleus and the first shell

% are depicted (layer 1 is the nucleus).

% ==

% More information of this subroutine is in the article:

% Discrete Optimal Global Convergence of a Evolutionary Algorithm

% for Clusters under the Potential of Lennard Jones

% Author: Carlos Barron-Romero

% Universidad Autonoma Metropolitana, campus Azcapotzalco

% Mexico City.

% This subroutine can be freely used, distributed or modified.

% ==

% Compute center of mass

xclm=mean(xcl);

yclm=mean(ycl);

zclm=mean(zcl);

% Arrays for particle’s neighbors and number of neighbors

vec=zeros(ncl,12);

nvc=zeros(ncl,1);

% dmg is the optimal distance of a pair of particles under

% Lennard Jones Potential

dmg=2^(1/6);

% 10% is the factor to define the lower and upper limits

% for accepting a particle’s neighbor

tol=0.1;

d_inf = dmg * (1 - tol);

d_sup = dmg * (1 + tol);

%

% This loop determines the particle’s neighbor

for i=1:ncl-1

for j=i+1:ncl

dij=norm([(xcl(i)-xcl(j)),(ycl(i)-ycl(j)),(zcl(i)-zcl(j))]);

if ((d_inf < dij) && (dij < d_sup))

nvc(i)=nvc(i)+1;

vec(i,nvc(i))=j;

nvc(j)=nvc(j)+1;

vec(j,nvc(j))=i;

end

end

16

end

% Select a set of particles closed to the cluster’s center of mass

ra = dmg*1.1;

pnuc=zeros(13,1);

nnuc=0;

fnuc = 0;

for i=1:ncl

dcl=norm([(xcl(i)-xclm),(ycl(i)-yclm),(zcl(i)-zclm)]);

if (dcl < ra)

nnuc=nnuc+1;

pnuc(nnuc)=i;

end

end

% Analyze the set of particles

if (nnuc >0)

% First case.

% Look for a particle with 12 neighbors

% closed to the CM

inuc = -1;

d12nuc = 99999.999;

for k=1:nnuc

i=pnuc(k);

if (nvc(i) == 12)

dcl=norm([(xcl(i)-xclm),(ycl(i)-yclm),(zcl(i)-zclm)]);

if (dcl < d12nuc)

d12nuc = dcl;

inuc=i;

end

end

end

ra_nuc = dmg * 0.35;

if ((inuc ~= - 1) & (d12nuc < ra_nuc))

% There is a particle with 12 neighbors

pnuc(1) = inuc;

nnuc = 1;

ra = d12nuc;

fnuc = 1;

end

% After verify that there is no center,

% Then it is the nucleus with 12 particles

if ((inuc == - 1) & (nnuc == 12))

fnuc = 1;

end

end

% Final case.

% Skip four (tetrahedron, nnuc=4),

% five (Trigonal bipyramid, nnuc=5),

% six particles (octahedron, nnuc=6),

% (pentagonal polyhedron bipyramide, nnuc=7)

%

if ((fnuc == 0) & (nnuc >= 8))

% Adjust the cluster’s center of mass

% considering only particles with 12 neighbors

% of the selected set pnuc

17

nclm = 1;

for k=1:nnuc

i=pnuc(k);

if (nvc(i) == 12)

xclm = xclm + xcl(i);

yclm = yclm + ycl(i);

zclm = zclm + zcl(i);

nclm = nclm + 1;

end

end

xclm = xclm / nclm;

yclm = yclm / nclm;

zclm = zclm / nclm;

% Adjust the selected set, keeping the closed

% to the adjusted center

ra = dmg*0.9;

pnuc_nw=zeros(13,1);

nnuc_nw=0;

for k=1:nnuc

i=pnuc(k);

dcl=norm([(xcl(i)-xclm),(ycl(i)-yclm),(zcl(i)-zclm)]);

if (dcl < ra)

nnuc_nw=nnuc_nw+1;

pnuc_nw(nnuc_nw)=i;

end

end

% Take this new set as the nucleus

pnuc = pnuc_nw;

nnuc = nnuc_nw;

fnuc = 1;

end

% Determine the cluster’s layers

% with the nucleus particles

capa=zeros(ncl,1);

ncapa=1;

for jp=1:nnuc

capa(pnuc(jp))=1;

end

while (1)

fmk=0;

for i=1:ncl

if (capa(i) == ncapa)

for jv=1:nvc(i)

pvc=vec(i,jv);

if (capa(pvc)== 0)

capa(pvc) = ncapa+1;

fmk=1;

end

end

end

end

if (fmk == 0)

break;

end

18

ncapa = ncapa + 1;

end

% Color table

tclr = [1,0,0; ...

0,1,0; ...

0,0,1; ...

1,1,0; ...

51/255, 153/255, 1; ...

1,0,1; ...

0.5,0.5,1; ...

0.5,0.5,0.5; ...

1,0.5,1; ...

1,0.5,0.5; ...

1,0.5,0.75; ...

1,0.75,0; ...

0,0,0];

hold on;

for i=1:ncl

if (capa(i) < nv1)

continue;

end

if (capa(i) > nv2)

continue;

end

% cluster’s lines

for jv=1:nvc(i)

pvc=vec(i,jv);

if (capa(i) == capa (pvc))

line([xcl(i),xcl(pvc)], ...

[ycl(i),ycl(pvc)], ...

[zcl(i),zcl(pvc)], ...

’Color’,tclr(capa(i),:), ...

’LineWidth’,1);

end

end

% particles

plot3(xcl(i), ...

ycl(i), ...

zcl(i), ’-ko’,...

’LineWidth’,1,...

’MarkerEdgeColor’,’k’, ...

’MarkerFaceColor’,tclr(capa(i),:),...

’MarkerSize’,8);

end

axis equal;

grid on;

linp=sprintf(’Cluster of %d particles’,ncl);

title(linp);

view(45,45);

hold off;

function [n,x,y,z] = S_read_Cl_LJ(file_name)

% This subroutine reads in the format of the file from the

19

% The Cambridge Energy Landscape Database (\protect\vrule width0pt\protect\href{http://www-wales.ch.cam.ac

% of a minimal cluster under Lennard Jones Potential

%

% The input parameters is the file name

% Is is ####.txt, where #### is the cluster’s number of particles

%

% ==

% This subroutine is in the article:

% Discrete Optimal Global Convergence of a Evolutionary Algorithm

% for Clusters under the Potential of Lennard Jones

% Author: Carlos Barron-Romero

% Universidad Autonoma Metropolitana, campus Azcapotzalco

% Mexico City.

% This subroutine can be freely used, distributed or modified under

% your own responsibility.

% ==

%

fid=fopen(file_name);

p = fscanf(fid,’%g %g %g’, [3 inf]);

fclose(fid);

% x, y and z are the cluster’s coordinates

x=p(1,:);

y=p(2,:);

z=p(3,:);

% n is the cluster’s number of particles

n=length(x);

% This program calls the

% subroutine S_plot_geCl_LJ_cl to draw the geometry of

% an optimal Lennard Jones cluster

% ==

% More information of this subroutine is in the article:

% Discrete Optimal Global Convergence of a Evolutionary Algorithm

% for Clusters under the Potential of Lennard Jones

% Author: Carlos Barron-Romero

% Universidad Autonoma Metropolitana, campus Azcapotzalco

% Mexico City.

% This subroutine can be freely used, distributed or modified under

% your own responsibility.

% ==

feature(’UseGenericOpenGL’,0);

[filename,pname] = uigetfile(’*.TXT’);

% Define your own routine to read the particles’ coordinates

% of a optimal cluster under the Leenard Jones Potential

% or S_read_cl_LJ is set to read the files in the

% The Cambridge Energy Landscape Database (\protect\vrule width0pt\protect\href{http://www-wales.ch.cam.ac

%

% The input parameters is the file name

% Is is ####.txt, where #### is the cluster’s number of particles

[ncl, xcl,ycl,zcl] = S_read_Cl_LJ([pname,filename]);

nv1=0;

nv2=2;

clf;

S_plot_geCl_LJ(ncl,xcl,ycl,zcl,nv1,nv2);

20

n1 IC 231 n1 IR 313

13 14 15 16 17 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 126
127 128 129 130 131 132 133
134 135 136 137 138 139 140
141 142 143 144 145 146 147
148 149 150 151 152 153 154
155 156 157 158 159 160 161
162 163 164 165 166 168 272
273 274 275 276 277 278 279
280 281 282 283 284 285 286
287 288 289 290 291 292 293
294 295 296 297 298 299 300
301 302 303 304 305 306 307
308 309 310 311 312 313 314
315 316 317 318 319 320 321
322 323 324 325 326 327 328
329 330 331 332 333 334 335
336 337 338 339 340 495 498
499 503 504 505 507 508 509
510 511 512 513 514 515 516
517 518 519 520 522 523 524
525 526 527 528 529 530 531
532 534 535 539 540 544 545
549 550 551 552 553 554 555
556 557 558 559 560 561 562
563 564 565 566 567 568 569
570 571 572 573 574 575 576
577 578 579 580 581 582 583
584 586 587 588 589 590 591
592 593 594 595 596 598 599
600 601 602 603 604 923

75 76 77 188 189 190 191 192 650 651 652 653 654 655
656 657 658 659 660 661 662 663 664 682 683 684 685
686 687 688 689 691 1027 1029 1031 1033 1035 1036
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
1197 1198 1199 1200 1201 1202 1203 1204 1205 1212
1213 1214 1215 1216 1217 1218 1219 1220 1515 1516
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
1527 1528 1529 1531 1532 1533 1534 1535 1536 1537
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
1608 1609 1610 1611 1612

Table 1: Type 1 and 2 of the C∗
n, n = 13, . . . , 1612

References

[1] Conquering the hard cases of lennard-jones clusters with simple recipes. Computational and Theoretical
Chemistry.

[2] C. Barrón-Romero. Minimum search space and efficient methods for structural cluster optimization. arXiv,
Math-ph:0504030-v4, 2005. To honor the CIMAT’s XXV Anniversary.

[3] C. Barrón-Romero. The Complexity of the NP-Class. arXiv, arxiv.org/abs/ 1006.2218, 2010.

[4] C. Barrón-Romero, S. Gómez, and D. Romero. Archimedean Polyhedron Structure Yields a Lower Energy
Atomic Cluster. Applied Mathematics Letters, 9(5):75–78, 1996.

[5] C. Barrón-Romero, S. Gómez, and D. Romero. Lower Energy Icosahedral Atomic Cluster with Incomplete
Core. Applied Mathematics Letters, 10(5):25–28, 1997.

[6] C. Barrón-Romero, S. Gómez, D. Romero, and A. Saavedra. A Genetic Algorithm for Lennard-Jones Atomic
clusters. Applied Mathematics Letters, 12:85–90, 1999.

21

n3 29 n4 91

665 668 669 672 673
728 729 730 731 732
733 734 735 736 737
738 739 740 741 742
743 744 745 746 747
748 749 751 753

26 86 87 88 89 90 91 92 93 94 95 98 125 167 201 203 204 205 206
207 208 209 210 211 212 213 214 215 216 217 218 219 393 394
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
410 411 412 413 414 415 416 417 418 419 420 421 506 706 709
710 711 712 713 715 717 842 843 844 846 847 848 849 850 851
852 853 854 855 856 857 858 859 860 861 862 863

Table 2: Type 3 and 4 of the C∗
n, n = 13, . . . , 1612

n5 163 n6 185

22 23 24 25 28 29 33 34 78 79 80 81
82 83 84 96 97 100 101 105 122 185
187 193 194 195 196 197 198 199 200
202 221 222 223 224 225 226 227 228
229 230 231 232 233 234 235 243 270
369 370 371 373 374 375 376 377 378
379 380 381 382 383 384 385 386 387
388 389 390 391 392 422 423 424 425
426 427 428 429 430 431 432 433 434
435 436 437 438 439 440 441 442 443
444 445 446 447 448 449 451 585 647
649 666 667 670 671 674 675 676 677
678 679 680 681 727 750 752 763 764
765 766 767 768 769 770 771 772 773
824 825 829 830 831 832 833 834 835
836 837 838 839 840 841 845 956 957
958 959 960 961 962 963 964 965 966
967 968 969 970 971 972

31 32 38 43 44 99 121 123 124 220 264 265 266
267 268 269 271 486 487 488 489 490 491 492 493
494 496 497 597 606 612 614 616 619 620 623 624
634 636 690 692 693 694 695 696 697 698 699 700
701 702 703 704 705 707 708 714 716 718 719 720
721 722 723 724 725 726 777 778 779 780 781 782
783 784 785 786 787 788 789 790 791 792 793 794
795 796 797 798 799 800 801 802 803 804 805 806
807 808 809 810 811 812 813 814 817 826 827 828
973 974 975 976 977 978 979 980 981 982 983 984
985 986 987 988 989 992 993 994 995 996 997 998
999 1000 1001 1002 1003 1004 1005 1006 1007
1008 1009 1010 1011 1012 1013 1014 1015 1016
1017 1018 1019 1020 1021 1022 1023 1025 1028
1030 1032 1034 1315 1316 1317 1318 1319 1320
1321 1322 1323 1324 1325 1326 1327 1328 1329
1330 1331 1332 1333 1335 1336 1347

Table 3: Type 5 and 6 of the C∗
n, n = 13, . . . , 1612

22

n7 430 n0 IC 158

18 19 20 21 27 30 35 36 37 39 40 41 42 68 69 70 71 72 73
74 85 102 103 104 106 107 108 109 110 111 112 113 114 115
116 117 118 119 120 169 170 171 172 173 174 175 176 177 178
179 180 181 182 183 184 186 236 237 238 239 240 241 242 244
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
260 261 262 263 341 342 343 344 345 346 347 348 349 350 351
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
367 368 372 450 452 453 454 455 456 457 458 459 460 461 462
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
478 479 480 481 482 483 484 485 500 501 502 605 607 608 609
610 611 613 615 617 618 621 622 625 626 627 628 629 630 631
632 633 635 637 638 639 640 641 642 643 644 645 646 648 754
755 756 757 758 759 760 761 762 774 775 776 815 816 818 819
820 821 822 823 990 991 1024 1026 1206 1207 1208 1209 1210
1211 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
1308 1309 1310 1311 1312 1313 1314 1334 1337 1338 1339
1340 1341 1342 1343 1344 1345 1346 1348 1349 1350 1351
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
1363 1364 1365 1366 1423 1424 1425 1426 1427 1428 1429
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
1507 1508 1509 1510 1511 1512 1513 1514 1530

521 533 536 537 538 541
542 543 546 547 548 864
865 866 867 868 869 870
871 872 873 874 875 876
877 878 879 880 881 882
883 884 885 886 887 888
889 890 891 892 893 894
895 896 897 898 899 900
901 902 903 904 905 906
907 908 909 910 911 912
913 914 915 916 917 918
919 920 921 922 924 925
926 927 928 929 930 931
932 933 934 935 936 937
938 939 940 941 942 943
944 945 946 947 948 949
950 951 952 953 954 955
1367 1368 1369 1370
1371 1372 1373 1374
1375 1376 1377 1378
1379 1380 1381 1382
1383 1384 1385 1386
1387 1388 1389 1390
1391 1392 1393 1394
1395 1396 1397 1398
1399 1400 1401 1402
1403 1404 1405 1406
1407 1408 1409 1410
1411 1412 1413 1414
1415 1416 1417 1418
1419 1420 1421 1422

Table 4: Type 7 and 8 of the C∗
n, n = 13, . . . , 1612

23

(n, LJold, LJnew) 65

(293,-1888.4271,-1888.4274) (506,-3427.6212,-3427.6875) (521,-3539.3314,-3539.5098)
(533,-3628.2529,-3629.2999) (662,-4581.2049,-4581.2058) (664,-4596.1971,-4596.1978)
(813,-5712.2507,-5712.2517) (974,-6928.5630,-6928.6305) (1064,-7616.1673,-7616.1680)
(1075,-7700.8750,-7700.8755) (1102,-7905.8577,-7905.8651) (1103,-7913.5579,-7913.5631)
(1106,-7935.9638,-7935.9689) (1115,-8004.9485,-8004.9868) (1125,-8081.1711,-8081.1859)
(1126,-8088.8631,-8088.8764) (1143,-8218.2614,-8218.2690) (1144,-8225.9422,-8225.9630)
(1146,-8240.8643,-8240.8662) (1147,-8248.5659,-8248.5706) (1148,-8256.2554,-8256.2609)
(1158,-8333.0767,-8333.0809) (1161,-8355.7255,-8355.7298) (1162,-8363.4124,-8363.4313)
(1163,-8371.1178,-8371.1218) (1166,-8393.5692,-8393.5838) (1167,-8401.2616,-8401.2743)
(1179,-8493.0215,-8493.0221) (1184,-8530.6521,-8530.6600) (1185,-8538.3320,-8538.3532)
(1187,-8553.2573,-8553.2634) (1189,-8568.6507,-8568.6566) (1225,-8844.5625,-8844.5758)
(1243,-8982.2245,-8982.2304) (1244,-8989.9194,-8989.9244) (1275,-9229.3690,-9229.3694)
(1287,-9322.0063,-9322.0069) (1289,-9337.6149,-9337.6157) (1292,-9360.2960,-9360.2969)
(1294,-9375.7081,-9375.7091) (1312,-9515.0285,-9515.0327) (1315,-9537.6838,-9537.6880)
(1317,-9553.0747,-9553.0788) (1324,-9606.7794,-9606.7798) (1336,-9699.4110,-9699.4116)
(1338,-9715.0285,-9715.0314) (1341,-9737.7061,-9737.7094) (1343,-9753.1169,-9753.1200)
(1366,-9930.4757,-9930.4764) (1445,-10538.9878,-10538.9883)
(1457,-10631.4452,-10631.4458) (1483,-10831.4787,-10831.4791)
(1488,-10869.6845,-10869.6917) (1489,-10877.3862,-10877.4015)
(1490,-10885.0944,-10885.1024) (1523,-11139.7180,-11139.7228)
(1526,-11162.5614,-11162.5647) (1528,-11178.2283,-11178.2291)
(1552,-11364.4027,-11364.4088) (1554,-11380.0717,-11380.0735)
(1558,-11410.7180,-11410.7193) (1585,-11620.2304,-11620.2305)
(1595,-11698.0815,-11698.0820) (1611,0.0000,-11821.7581) (1612,0.0000,-11829.4494)

Table 5: New C∗
n

[7] S. Gómez and C. Barrón-Romero. The Exponential Tunneling Method. Technical Report Research Report
3(1), IIMAS-UNAM, Julio 1991 1991.

[8] M. R. Hoare and J. A. McInnes. Morphology and statistical statics of simple microclusters. Advances in
Physics, 32(5):791–821, 1983.

[9] M. R. Hoare and P. Pal. Physical cluster mechanics: statistical thermodynamics and nucleation theory for
monatomic systems. Advances in Physics, 24(5):645–678, 1975.

[10] R. H. Leary. Global Optima of Lennard-Jones Clusters. Journal of Global Optimization, 11(1):35–53, 1997.

[11] R. Maier, J. Rosen, and G. Xue. A discrete-continuous algorithm for molecular energy minimization. In
Proceedings. Supercomputing ’92. (Cat. No.92CH3216-9), 16-20 Nov. 1992, Proceedings. Supercomputing
’92. (Cat. No.92CH3216-9), pages 778–786, Minneapolis, MN, USA, 1992. IEEE Comput. Soc. Press.

[12] J. A. Northby. Structure and binding of Lennard-Jones clusters: 13 ≤ n ≤ 147. Journal of Chemical Physics,
87(10):6166–6177, 1987.

[13] D. Romero, C. Barrón-Romero, and S. Gómez. The optimal configurations of LJ atomic clusters: 148-309.
In Siam Annual Meeting, Atlanta, GA, USA, 1999.

[14] D. Romero, C. Barrón-Romero, and S. Gómez. The optimal geometry of Lennard-Jones clusters: 148-309.
Computer Physics Communications, 123:87–96, 1999.

[15] X. Shao, Y. Xiang, and W. Cai. Structural Transition from Icosahedra to Decahedra of Large Lennard-Jones
Clusters. Personal Communication, 2005.

[16] I. A. Solov’yov, A. V. Solov’yov, and W. Greiner. Fusion process of Lennard-Jones clusters: global minima
and magic numbers formation. ArXiv Physics e-prints, pages 1–47, 2003.

24

[17] D. J. Wales, J. P. K. Doye, A. Dullweber, M. P. Hodges, F. Y. Naumkin, F. Calvo,
J. Hernández-Rojas, and T. F. Middleton. The cambridge cluster database, lennard-jones clusters,
http://www-doye.ch.cam.ac.uk/jon/structures/lj.html.

[18] Y. Xiang, H. Jiang, W. Cai, and X. Shao. An Efficient Method Based on Lattice Construction and the
Genetic Algorithm for Optimization of Large Lennard-Jones Clusters. Journal of Physical Chemistry A,
108(16):3586–92, 2004.

25

http://www-doye.ch.cam.ac.uk/jon/structures/lj.html

	1 Introduction
	1.1 Notation

	2 Properties of LJ
	2.1 Partition technique for a cluster
	2.2 Heuristic for determining a nucleus for a cluster

	3 Parallel evolutionary algorithm for searching optimal LJ clusters
	4 Results
	5 Conclusions and future work

