
ar
X

iv
:s

ub
m

it/
15

74
59

0 
 [

cs
.D

S]
  3

1 
M

ay
 2

01
6

A novel algorithm for solving the Decision

Boolean Satisfiability Problem without algebra

Carlos Barrón-Romero ∗

April 27, 2016

Abstract

This paper depicts an algorithm for solving the Decision Boolean Sat-

isfiability Problem using the binary numerical properties of a Special De-

cision Satisfiability Problem, parallel execution, object oriented, and short

termination. The two operations: expansion and simplification are used

to explains why using algebra grows the resolution steps. It is proved

that its complexity has an upper bound of 2n−1 where n is the number of

logical variables of the given problem.

Algorithms, Complexity, SAT, NP, CNF.
68Q10, 68Q12,68Q19,68Q25.

1 Introduction

This paper focuses in solving the classical Decision Boolean Satisfiability Prob-
lem (SAT) using the results in [3] for an special case of the Decision Boolean
Satisfiability Problem, named Simple SAT (SSAT). In [2], the chapter 6 depicts
Reducibility. This term means the ability to solve a problem by finding and
solving simple subproblems. This idea is used here between SAT and SSAT.

I focused to the CNF version of SAT, which it is justified for the logical
equivalence and the abroad literature. Talking about SAT is immediately related
to NP Class of Problem and its algothms [9, 12, 13, 10, 11, 8, 6, 5, 7].

The dominant characteristic of SSAT is that all its formulas have the same
number of logical variables. Briefly, the main results in [3] are the lower upper
bound 2n−1 of the SSAT’s algorithms for an extreme case with one or none solu-
tion, and such algorithms realize one lecture of the SSAT’s or one exploration of
the research space [0, 2n−1] and they are numerical without algebra. Therefore
the complexity for SSAT(n,m) (where n is the number of boolean variables and
m the number of rows) is that the existence of the solution is O(1) when m < 2n

and it is bounded by O2n−1) for m ≥ 2n or m ≫ 2n. On the other hand, in [4]

∗Universidad Autónoma Metropolitana, Unidad Azcapotzalco, Av. San Pablo No. 180,

Col. Reynosa Tamaulipas, C.P. 02200. MEXICO.

1

http://arxiv.org/submit/1574590/pdf


2 Carlos Barrón-Romero

it is depicted that for SSAT does not exist an efficient algorithm for solving it.
This shortly, because the extreme problem SSAT(n,m) with one or none solu-
tion and repeated rows, (m ≫ 2n) requieres one exploration of the rows. The
extreme problem SSAT(n,m) can be builded selecting randomly one number or
none in [0, 2n−1]. Then the only way to infers the solution is verifying that the
SSAT(n,m)’s rows corresponds to 2n− 1 of 2n different formulas. On the other
hand, the extreme problem SSAT(n,m) corresponds to a very easy SAT(n,m′).
This article analyzes how to solve SAT using properties of SSAT and without
using algebra ([4], and [3]).

The importance of the SAT’s complexity is that SAT is a complete NP
problem, and if it has an efficient algorithm then any NP problem can be solved
efficiently. On the other hand, it has not an efficient algorithm, then O(SAT)
� O(NP-Soft) � O(NP-Hard). In [3], it is depicted that O(SSAT) � O(SAT)
because SSAT could be see as a subproblem of SAT. Here, a carefully resume of
the preeminent properties of the SSAT and SAT are depicted and used to build
an special algorithm for solving any SAT.

Some propositions of my previous works over the NP class, SAT, and SSAT
in [1], [2], [4], and [3] are repeated for making this article self-content. It
is worth to mention that the binary numerical approach depicted here is for
solving any SAT with one lecture of the SAT’s rows with the upper bound 2n−1

steps.

Section 2 contains basic definition, concepts and conventions used. The sec-
tion 3 depicts the propositions that they characterize necessary and sufficient
conditions for building an algorithm for SAT. The next section 4 depicts the al-
gorithms of the parallel algorithm for solving SAT. It is proved that lower upper
bound of the iterations for solving SAT is 2n, where n is the number of logical
variables. Section 5 discusses and justifies why the strategies of using SSAT’s
properties is less complex for solving SAT than algebra procedures. Particularly,
two operations, expansion and simplification are depicted to connect SSAT and
SAT. The last section depicts my conclusions and future work.

2 Notation and conventions

A boolean variable only takes the values: 0 (false) or 1 (true). The logical
operators are not: x; and: ∧, and or: ∨.

Hereafter, Σ = {0, 1} is the corresponding binary alphabet. A binary string
, x ∈ Σn is mapped to its corresponding binary number in [0, 2n − 1] and
reciprocally. Moreover, xn−1 ∨ xn−2 . . . x1 ∨ x0 corresponds to the binary string

bn−1bn−2 . . . b1b0 where bi =

{

0 if xi,
1 otherwise.

Such translation has no cost, if x and x are represented in the ASCII code
by a (097) and â (226).



Lower bound for SAT 3

The table for the translation is C

index C
...

...
097 1
...

...
226 0
...

...

The clause (xn−1 ∨ xn−2 . . . x1 ∨ x0) is written as an−1 ân−2 . . . a1 a0.

The translation is C[cn−1]C[cn−2] . . . C[c1]C[c0] where ci is the logical vari-
able ai or âi in the position i. Hereafter, the SAT’s formulas are translated to
its corresponding binary string.

A SAT(n,m) problem consists to answer if a system of m clauses or row
boolean formulas in conjunctive normal form over n boolean variables has an
assignation of logical values such the system of formulas are true.

The system of formulas is represented as a matrix, where each clause or row
formula corresponds to a disjunctive clause. By example, let SAT(4, 3) be

(x3 ∨ x2 ∨ x0)
∧ (x2 ∨ x1 ∨ x0)
∧ (x2 ∨ x1 ∨ x0)
∧ (x3 ∨ x0).

This problem is satisfactory. The assignation x0 = 1, x1 = 0, x2 = 1, and
x3 = 1 is a solution, as it is depicting by substituting the boolean values:

(1 ∨ 0 ∨ 1)
∧ (1 ∨ 0 ∨ 1)
∧ (0 ∨ 0 ∨ 1)
∧ (1 ∨ 0)

≡ 1.

A simple of SAT [SSAT(n,m)] is a SAT(n,m) with the requirement that its
rows have the same number of boolean variables in a given order. The variables’
order for SAT or SSAT do not imply to rewrite the problem, it has a constant
cost that can be assumed at the lecture of each formula.

Hereafter, the boolean variables of SAT are identified by x with subindexes
from [0, n− 1], i.e., xn−1, xn−2, . . . , x1, x0. For the set X = {xn−1, xn−2, . . . , x1,
x0}, as in [2], Prop. 4. an enumeration for address identification of any subset



4 Carlos Barrón-Romero

of logical variables is as follows:

Set of Boolean Variables N

{} ↔ 0
{x0} ↔ 1 =

(

n
0

)

{x1} ↔ 2 =
(

n
0

)

+ 1
...

...
...

{x1, x0} ↔ l0 =
∑1

k=0

(

n
k

)

{x2, x0} ↔ l1 =
∑1

k=0

(

n
k

)

+ 1

{x2, x1} ↔ l2 =
∑1

k=0

(

n
k

)

+ 2
...

...
...

X = {xn−1, xn−2, . . . , x1, x0} ↔ 2n − 1 =
∑n−1

k=0

(

n
k

)

The function IV : 2X → [0, 2n−1] gives an unique identification as a natural
number for any subset of boolean variables of X . It could be possible to define
an address polynomial for IV , but for the moment the next algorithm can help
for building the previos correspondence.

Algorithm 1. Input: x = {xk, xk−1, . . . , x1, x0}: Set of logical variables.
Output: ix: integer; // the unique index in [0, 2n − 1] for the set x.
Variables in memory: base: integer; v, t: variable set treated as a number

of base {n− 1, n− 2, . . . , 1, 0}

ix = 0;
k = |x|; // where | · | is the cardinality function.
if k equals 0 then

output: ”ix.”;
stop;

end if

base = 0;
for j = 0, k − 1 do

base = base+
(

n
j

)

; //
(

·

·

)

binomial coefficient
end do

build v = vk, . . . , v0; // the lower set of variables in order of size k
While (x < v) do.

t = v;
repeat

t = t+ 1;
if variables in t different and in descending order then

exit

end if

until false;
v = t;
ix = ix+ 1;.

end while

output: ”base+ ix.”;



Lower bound for SAT 5

stop;

Giving any SAT(n,m) and r any clause of it, then r can be associated
to an unique and appropriate SSAT(IV (r)) using the algorithm 1, where r
represents the set of boolean variables in the clause r with the convention that
they subindex are in descending order.

The cross-join operator (×θ) corresponds with two operations: a cross prod-
uct and the natural join or (θ) join. the theta join is like the relational data
base natural join operation. It is used between two set of variables r and r′ and
the solutions of SSAT(·).S as follow:

SSAT(IV (r)) ×θ SSAT(IV (r′)) =

1. if r ∩ r′ = ∅ then SSAT(IV (r)).S × SSAT(IV (r′)).S.

2. if r ∩ r′ 6= ∅ and there are common values between

SSAT(IV (r)).S and SSAT(IV (r′)).S for the variables in r ∩ r′ then

SSAT(IV (r)).S θr∩r′ SSAT (IV (r′)).S

3. if r ∩ r′ 6= ∅ and there are not a common values between

SSAT(IV (r)).S and SSAT(IV (r′)).S for the variables in r ∩ r′ then ∅.

In the case 1 and 2, SSAT(IV (r) and SSAT(IV (r′) are compatibles. In the
case 3) they are incompatibles, i.e., there is not a satisfactory assignation for
both.

An example of the case 1) is the following ϕ1 =SAT(4, 5)

(x3 ∨ x2)
∧ (x3 ∨ x2)
∧ (x3 ∨ x2)
∧ (x1 ∨ x0)
∧ (x1 ∨ x0)

.

A SSAT(2, 3) is the three first clauses of ϕ1, its solution is

[

x3 x2

1 1

]

.

A SSAT(2, 2) is the last two clauses of ϕ1, its solutions are





x1 x0

0 1
1 0



 .

Then the solutions of SAT(4, 5) are {(1, 1)} × {(0, 1) , (1, 0)} =




x3 x2 x1 x0

1 1 0 1
1 1 1 0



 .

An example of the case 2) is the following ϕ2 =SAT(4, 5)

(x3 ∨ x2)
∧ (x3 ∨ x2)
∧ (x3 ∨ x2)
∧ (x2∨ x1 ∨ x0)
∧ (x2∨ x1 ∨ x0)

.



6 Carlos Barrón-Romero

A SSAT(2, 3) is the three first clauses of ϕ2, its solution is

[

x3 x2

0 0

]

.

A SSAT(3, 2) is the last two clauses of ϕ2, its solutions are





















x2 x1 x0

1 0 0
1 0 1
1 1 0
1 1 1
0 0 0
0 1 1





















.

Then SAT(4, 7) has solution, because 0 is the common value for x2. The

solutions are





x3 x2 x1 x0

0 0 0 0
0 0 1 1



 .

An example of the case 3) is the following ϕ3 =SAT(4, 7)

(x3 ∨ x2)
∧ (x3 ∨ x2)
∧ (x3 ∨ x2)
∧ (x2∨ x1 ∨ x0)
∧ (x2∨ x1 ∨ x0)
∧ (x2∨ x1 ∨ x0)
∧ (x2∨ x1 ∨ x0)

.

A SSAT(2, 3) is the three first clauses of ϕ3, its solution is

[

x3 x2

0 0

]

.

A SSAT(3, 4) is the last four clauses of ϕ3, its solutions are













x2 x1 x0

1 0 0
1 0 1
1 1 0
1 1 1













.

Then SAT(4, 7) has not solution because there is not a common value for
the variable x2.

3 Properties for solving SAT

The translation of the SSAT(n,m)’s formulas can be arranged as a ma-

trix Mn×m =







b0
...
bm






where each binary number bi corresponds to a each

SSAT(n,m)’s clause.
SSAT can be see as a logic circuit, it only depends of the selection of the

binary values assigned to n lines, each line inputs the corresponding binary
value to its boolean variable xi. This is an important consideration because the
complexity of the evaluation as a circuit of a logic function is O(k) with k a



Lower bound for SAT 7

Figure 1: SAT(n,m) is a white of box containing a circuit of logical gates
where each clause or row formula has the same number of boolean variables.

fixed time. k corresponds to the time that the electrons activate the circuit in
parallel lines for each variable. Therefore, such evaluation can be considered as
O(1). The figure 1 depicts SAT(n,m)’s logic circuit.

The inner approach means to take the candidates from the translation of the
problem’s formulas.

The outside approach means to the candidates from the problem’s search
space.

A deterministic approach means to take the candidates for solving a problem
with the data in its given order.

A probabilistic approach means to take the candidates for solving a problem
with no repetition and in random order, i.e., it likes a random permutation of
the numbers [0,M ].

Proposition 1. To any disjunctive clause x = (xn−1, . . . , x0) corresponds a
binary number b = bn−1bn . . . b0. Then

1. x ∨ x ≡ 0 where x is the complement of x.

2. b ∨ b ≡ 0 where b and b correspond to the translation of x and x.

3. x(b) ≡ 0 and x(b) ≡ 0 where the values of the boolean variables correspond
to the bits of b and b.

Proof. Without loss of generality, x = xn−1∨xn−2∨ . . .∨x0 the translation of b
and x = xn−1∨xn−2∨ . . .∨x0 the translation of b. Then x∧x = (xn−1∨xn−2∨
. . .∨x0)∧(xn−1∨xn−2∨. . .∨x0) ≡ (xn−1∧xn−1)∨(xn−2∧xn−2)∨. . .∨(x0∧x0)
≡ 0.

The translation of the SSAT’s rows allows to define a table of binary num-
bers. The following boards have not a satisfactory assignation in Σ and Σ2:



8 Carlos Barrón-Romero

x1

1
0

x2 x1

0 0
1 1
0 1
1 0

I called unsatisfactory or blocked boards to the previous ones. It is clear
that they have not a solution because each binary number has its binary com-
plement. To find an unsatisfactory board is like to order the number and its
complement, by example: 000, 101, 110, 001, 010, 111, 011, and 100 correspond
to the unsatisfactory board:

000
111
001
110
010
101
011
100.

By inspection, it is possible to verify that the previous binary numbers
correspond to SSAT(3, 8) of the translated binary numbers with no solution
because any binary number is blocked by its complement binary number (see
prop. 1). By example, 000 and 111 correspond to (x2 ∨x1 ∨x0)∧ (x2 ∨x1 ∨x0).
Substituting by example x2 = 1, x1 = 1, x0 = 1, we get (1 ∨ 1 ∨ 1) ∧ (0 ∨ 0 ∨ 0)
≡ (1) ∧ (0) ≡ 0.

Proposition 2. Let be SSAT(n,m) with m rows and m < 2n. There is a
satisfactory assignation that correspond to a binary string in Σn as a number
from 0 to 2n − 1.

Proof. Let s be any binary string that corresponds to a binary number from 0
to 2n − 1, where s has not its complement into the translated formulas of the
given SSAT(n,m). Then s coincide with at least one binary digit of each binary
number of the translated rows formulas, the corresponding logical variable is 1.
Therefore, all rows are 1, i.e., s makes SSAT(n,m) = 1.

The previous proposition point out when a solution s ∈ [0, 2n − 1] exists for
SSAT. More important, SSAT can be see like the problem to look for a number
s which its complements does not corresponded to the translated numbers of
the SSAT’s formulas.

Proposition 3. Let be SSAT(n, 2n) where its rows correspond to the 0 to 2n−1
binary numbers. Then it is an unsatisfactory board.

Proof. The binary strings of the values from 0 to 2n − 1 are all possible assig-
nation of values for the board. These strings correspond to all combinations of
Σn, and by the prop. 1 SSAT(n, 2n) has not solution.



Lower bound for SAT 9

This proposition 3 states that if m = 2n and SSAT has different rows, then
there is not a solution.

Proposition 4. For any SSAT(n,m) the conditions a) m rows formulas with
m < 2n or b) m different formulas with m = 2n are sufficient conditions for de-
ciding the solution of any SSAT(n,m) without further operations. Under any of
these two conditions the complexity for determining the existence of the solution
of SSAT is O(1).

Proof. The results follow from the prop. 2 and from the prop. 3.

Proposition 5. Given SAT(n,m). There is not solution, if L exists, where
L is any subset of boolean variables, with their rows formulas isomorphic to an
unsatisfactory board.

Proof. The subset L satisfies the proposition 3. Therefore, it is not possible to
find satisfactory set of n values for SAT(n,m).

Here, the last proposition depicts a condition to determine the no existence
of the solution for SAT. This property is easy to implement in an algorithm using
dynamic objects and when the set L is associated with SSAT(IV (L)). In order
to determine that SAT contains a subproblem SSAT which it is an unsatisfactory
board, it is the same to verify that SSAT(IV (L)) has not solution.

In similar way, the next proposition identifies when two SSAT can determine
the no solution of SAT.

Proposition 6. Given SAT(n,m). There is not solution, if L1 and L2 exist,
where L1 and L2 are any subset of logical variables, such L1 ∩ L2 6= ∅, and
the unique solution of SSAT(IV (L1)) and the unique solution of SSAT(IV (L2))
have no same values for the boolean variables in L1 ∩ L2.

Proof. The result follows because the unique solution of SSAT(IV (L1)) blocks
the solution of SSAT(IV (L2)) and reciprocally.

Proposition 7. Given SSAT(n,m) as a circuit.

1. Let k be the translation of any clause of SSAT(n,m).

2. Let k be any binary number, k ∈ [0 : 2n − 1].

if SSAT(n,m)(k) = 0, then

1. SSAT(n,m)(k) = 0 and the formulas of k and k are in SSAT(n,m).

2. SSAT(n,m) (k) = 0 and the translation of k is a formula of SSAT(n,m).

Proof. 1. When SSAT(n,m)(k) = 0 is not satisfied, it is because the formula
of k is 0. SSAT(n,m) contains the formulas of k and (k) = 0 (see prop. 1).



10 Carlos Barrón-Romero

2. SSAT(n,m)(k) = 0, then by prop. 1 the translation of k is a formula of
SSAT(n,m).

Proposition 8. Let be Σ = 0, 1 an alphabet. Given SSAT(n,m), the set S =
{x ∈ Σn| SSAT(n,m)(x)= 1 } ⊂ Σn of the satisfactory assignations is a regular
expression.

Proof. S ⊂ Σn.

The last proposition depicts that a set of binary strings S of the satisfactory
assignations can be computed by testing SSAT(n,m)(x)= 1 for all x ∈ [0, 2n−1],
and the cost to determine S is 2n, the number of different strings in Σn.

With S 6= ∅ there is not opposition to accept that SSAT(n,m) has solution,
no matters if m is huge and the formulas are in disorder or repeated. It is
enough and sufficient to evaluate SSAT(n,m)(x∗), x∗ ∈ S.

On the other hand, S = ∅, there is not a direct verification. This implies the
condition S = ∅ ⇔ ∀x ∈ Σn, SSAT(n,m)(x) = 0. It is necessary, for verifying
S = ∅ to test all numbers in the search space.

Proposition 9.

SSAT(n,m) has different row formulas, and m ≤ 2n. Any subset of Σn

could be a solution for an appropriate SSAT(n,m).

Proof. Any string of Σn corresponds to a number in [0, 2n − 1] and a SSAT’s
formula.

∅ is the solution of a blocked board., i.e., for any SSAT(n,m) with m = 2n.

For m = 2n − 1, it is possible to build a SSAT(n,m) with only x as the
solution. The blocked numbers [0, 2n − 1] \ {x, x} and x are translated to
SSAT’s formulas. By construction, SSAT(n,m)(x) = 1.

For f different solutions. Let x1, . . . , xf be the given expected solutions.
Build the set C from the given solutions without any blocked pairs. Then the
blocked numbers [0, 2n] \ {y ∈ Σn|x ∈ C, y = x or y = x} and the numbers of
C are translated to SSAT’s rows.

Proposition 10. Let be y ∈ Σn, y = yn−1yn−2 · · · y1y0. The following strate-
gies of resolution of SAT(n,m) are equivalent.

1. The evaluation of SAT(n,m)(y) as logic circuit.

2. A matching procedure that consists verifying that each yi match at least
one digit ski ∈ Mn×m, ∀k = 1, . . . ,m.

Proof. SAT(n,m)(y) = 1, it means that at least one variable of each clause
is 1, i.e., each yi, i = 1, . . . , n for at least one bit, this matches to 1 in skj ,
k = 1, . . . ,m.



Lower bound for SAT 11

The evaluation strategies are equivalent but the computational cost is not.
The strategy 2 implies at least m · n iterations. This is a case for using each
step of a cycle to analyze each variable in a clause or to count how many times
a boolean variable is used.

Proposition 11. An equivalent formulation of SSAT(n,m) is to look for a
binary number x∗ from 0 to 2n − 1.

1. If x∗ ∈ Σn and x∗ /∈ Mn×m then SAT(n,m)(x∗) = 1.

2. If m ≤ 2n − 2 and SSAT(n,m) has different rows then ∃y∗ ∈ [0, 2n − 1]
and SSAT(n,m)(y∗) = 1.

Proof.

1. When x∗ /∈ Mn×m, this means that the corresponding formula of x∗ is
not blocked and for each SAT(n,m)’s clause at least one boolean variable
coincides with one variable of x∗. Therefore SAT(n,m)(x∗) = 1.

2. m ≤ 2n − 2, then ∃y1, y2 ∈ [0, 2n − 1] with y1, y2 /∈ Mn×m. There are
two cases. 1) y2 = y1, therefore, SSAT(n,m)(y1) = 1. 2) y1 ∈ Mn×m,
therefore SSAT(n,m)(y1) = 1.

This previous proposition, depicts the equivalence between SSAT with the
numerical problem to determine if there is a binary string, which is not blocked
by the binary translations of the SSAT’s formulas. Only k and its complement
k are opposed (see prop. 1. This point out the lack of other type of relations
between the rows of SSAT. More important, this proposition allows for verifying
and getting a solution for any SSAT(n,m) without to evaluate SSAT(n,m) as
a function. By example, SAT(6, 4) corresponds to the set M6×4:

x5 = 0 x4 = 0 x3 = 0 x2 = 0 x1 = 0 x0 = 0
x5∨ x4∨ x3∨ x2∨ x1∨ x0)

∧( x5∨ x4∨ x3∨ x2∨ x1∨ x0)
∧( x5∨ x4∨ x3∨ x2∨ x1∨ x0)
∧( x5∨ x4∨ x3∨ x2∨ x1∨ x0)

x5 x4 x3 x2 x1 x0

0 0 0 0 0 0
0 0 0 0 0 1
1 1 1 1 1 0
0 1 1 0 1 1

.

How y = 000000 ∈ Σ6 and y = 111111 /∈ M6×4 then SSAT(n,m)(000000) =
1. On the other hand, y1 = 100100 ∈ Σ6 with y1 = 011011 ∈ M6×4 then
SSAT(n,m)(011011) = 1.

The next propositions, depicts the difficult for determining solving extreme
SSAT.



12 Carlos Barrón-Romero

Proposition 12. Let n be large, and SSAT(n,m) an extreme problem, i.e.,
|S| ≤ 1, and m ≫ 2n.

1. The probability for selecting a solution (Pss(f)) after testing f different
candidates (f << 2n) is ≈ 1/22n (it is insignificant).

2. Given C ⊂ [0, 2n − 1] with a polynomial cardinality, i.e., |C| = nk, with
a constant k > 0. The probability that the solution belongs C (Ps(C)) is
insignificant, and more and more insignificant when n grows.

3. Solving SSAT(n,m) is not efficient.

Proof.
Assuming that |S| = 1.

1. The probability Pss(f) corresponds to product of the probabilities for be
selected and be the solution. For the inner approach (i.e., the f candidates
are from the translations of the SSAT(n,m)’s rows) Pss(f) = 1/ (2n − 2f)·
1/2n ≈ 1/22n ≈ 0. For the outside approach (i.e., the f candidates are
from the [0, 2n−1] the search space) Pss(f) = 1/ (2n − f)·1/2n ≈ 1/22n ≈
0.

2. P(C) = nk/2n. Then Ps(C) = nk/2n · 1/2n, and limn→∞Knk/2n (L’Hô-
pital’s rule) = 0+, K > 0. For n large, 2n − Knk ≈ 2n, and Knk ≪
2n. Moreover, for the inner approach, Pss(n

k) = 1/
(

2n − 2nk
)

· 1/2n ≈

1/22n ≈ 0. For the outside approach, Pss(n
k) = 1/

(

2n − nk
)

· 1/2n ≈
1/22n ≈ 0.

3. In any approach, inner or outside, many rows of SSAT(n,m) have large
probability to be blocked, because there is only one solution. Then the
probability after f iterations remains 1/22n ≈ 0. It is almost impossible
to find the solution with f small or a polinomial number of n.

Assuming that |S| = 0. Ps = 0.

1,2 For the inner approach and for the outside approach, Pss(f) = 0.

3 It is equivalent S = ∅ ⇔ SSAT(n,m)(x) = 0, ∀x ∈ [0, 2n− 1]. This means
that it is necessary to test all the numbers in [0, 2n − 1].

One important similarity between the extreme SSAT as a numerical problem
(see prop. 9) for one or none solution is the interpretation to guest such type
of solution. It is like a lottery but with the possibility that there is not winner
number. The exponential constant 2n causes a rapidly decay as it depicted in
fig. 2 where t = 2n − 1, 2n − 8, 2n − 32.



Lower bound for SAT 13

Figure 2: Behavior of the functions Pe(t) and Pi(t).

4 Algorithms for SAT

The previous sections depict characteristics and properties of SSAT.
The complexity for solving any SSAT(n,m) has two cases:

1. It is O(1) when m < 2n.

2. It is O(m) / O(2
n−1

), when giving m ≥ 2n. In this case, it is necessary
at least one carefully review of the SSAT’s rows versus the search space
[0, 2n − 1].

The algorithms using the external approach are based in a random permu-
tation with only one lecture of the SSAT’s rows or they stop if a satisfiable
assignation is found.

There are two source of data for solving SSAT(n,m), 1) its m rows or 2) the
search space of all possible logical values for its variables (Σn). The second is
large and m could be large also. Therefore, the efficient type of algorithms for
solving SSAT must be doing in one way without cycles, and with the constraint
that the total iterations must be related to m < 2n, or 2n−1, or 2n. This is
because the fixed point approach or inside search(taking candidates from the
translation SSAT’s formulas) and the outside approach or probabilistic approach
(taking candidates from the search space [0, 2n − 1].

The situation for solving SSAT(n,m) is subtle. Its number of rows could be
exponential, but for any SSAT(n,m), there are no more than 2n different rows,
then m ≫ 2n means duplicate rows. It is possible to consider duplicate rows
but this is not so important as to determine at least one solution in Σn. The
search space Σn corresponds to a regular expression and it is easy to build by



14 Carlos Barrón-Romero

a finite deterministic automata (Kleene’s Theorem) but in order. However, to
test the binary numbers in order is not adequate.

Based in the algorithm 3 in [4], the update information for any SSAT(IV (r))
is the following algorithm.

Algorithm 2. Input: List of object: SSAT(n′,m′), SSAT(IV (r)), rw: clause
of SAT(n,m), where r ⊂ X.

Output: SSAT(IV (r)), T : List of binary numbers such that, x ∈ T ,
SSAT(IV (r))(x) = 1.

Variables in memory: T [0 : 2n−1]: list as an array of integers, double
link structure previous, next : integer; ct:=0 : integer; first = 0: integer;
last = 2n − 1: integer;

if SSAT(IV (r)) does not exist then

create object SSAT(IV (r))
end if

with SSAT(IV (r))
k = Translate to binary formula (rw);
if T [k].previous not equal −1 or T [k].next not equal −1 then

// Update the links of T
T [T [k].previous].next = T [k].next;
T [T [k].next].previous = T [k].previous;
if k equal first then

first := T [k].next;
end if

if k equal last then
last := T [k].previous;

end if

T [k].next = −1;
T [k].previous = −1;
ct := ct+ 1;

end if

if ct equal 2n then

output: There is not solution for SATn×m;
everything stop;

end if

end with

return

Algorithm 3. Input: n, SAT(n, ·).
Output: It determines if there is a solution or not of SAT(n, ·).
Variables in memory: r: set of variables of X; SSAT(IV (r)): List of

objects SSAT.

While not EOF(SAT(n, ·));
r = SAT(n, ·)’s clause;
// Update the information of SSAT(IV (r))
Algorithm 2(SSAT,r);



Lower bound for SAT 15

end while;
With the variables and the solutions of all SSAT(IV (r)) determine the

set Θ of the corresponding ×θ operation.
if Θ is empty then

Output: ”Algorithm 3. There is not solution for the given SAT.
The solutions of all SSAT(IV (r)) are incompatibles.”

the process stops;
else

output: ”Algorithm 3. There is solution for the given SAT.
Let be s any assignation ∈ Θ. It is a solution for SAT(n.m), i.e.,
All SSAT(IV (r)) are compatible.”

the process stops;
end if

The next algorithm, is a version of the probabilistic algorithm 4 in [4]. It
solves SAT(n,m) in straight forward using an outside approach, i.e, all the
candidates are randomly and univocally selected from search space [0, 2n − 1].

Algorithm 4. Input: n, SAT(n, ·).
Output: s ∈ [0, 2n−1], such that SAT(n, ·)(s) = 1 or SSAT has not solution

(It determines if there is a solution or not of SAT(n, ·)).
Variables in memory: T [0 : 2n−1 − 1]=[0 : 2n − 1]: integer; Mi=2n − 1:

integer; rdm, a: integer.

for i:=0 to 2n−1 − 2
if T [i] equals i then

// select randomly rdm ∈ [i+ 1, 2n−1 − 1];
rdm = floor(rand() · (Mi− i+ 1.5)) + (i+ 1);

// rand() return a random number in (0,1);
// floor(x) return the lower integer of x

a = T [rdm];
T [rdm] = T [i];
T [i] = a;

end if

rdm = 0T [i];
if SAT(n, ·)(rdm) equals 1 then

output: ”Algorithm 4. There is solution for the given SAT.
The assignation x is a solution for SAT(n,m).”

the process stops;
end if

if SAT(n,m)(rdm) equals 1 then

output: ”Algorithm 4. There is solution for the given SAT.
The assignation rdm is a solution for SAT(n, ·).”

the process stops;
end if

end for

rdm = 0T [2n−1 − 1];



16 Carlos Barrón-Romero

if SAT(n,m)(rdm) equals 1 then

output: ”Algorithm 4. There is solution for the given SAT.
The assignation rdm is a solution for SAT(n, ·).”

the process stops;
end if

if SAT(n, ·)(rdm) equals 1 then

output: ”Algorithm 4. There is solution for the given SAT.
The assignation rdm is a solution for SAT(n, ·).”

the process stops;
end if

output: ”Algorithm 4. There is not solution for the given SAT.
Its rows cover all search space [0, 2n], and they are blocked.”

the process stops;

The complexity of the previous algorithm is O
(

2n−1
)

. No matters if the
clauses of SAT(n, ·) are huge or duplicates or disordered, i.e., ≫ 2n.

Algorithm 5. Input: ϕ =SAT(n, ·).
Output: The solution of SAT(n, ·).
Variables in memory: List of object: SSAT(n′,m′).

run in parallel

algorithm 3(n, ϕ);
algorithm 4(n, ϕ);

end run

Proposition 13. Let n be large, and SAT(n, ·), m ≫ 2n. Then SAT is solved
at most 2n−1 steps by running algorithm 5, which it runs in parallel the algo-
rithms 3 and 4.

Proof. Assuming enough time and memory. The two algorithms 3 and 4 run
independently in parallel.

The algorithm 3 runs the algorithm 2 with the current r of SAT(n, ·) un-
til m′ = 2n

′

or finishes at the end of the SAT(n,m)’s rows. Where n′ =
IV (r).n : number of boolean variables, and m′ = IV (r).m′ : number of dif-
ferent rows. When m′ = 2n

′

, the process stops because there is a blocked
SSAT(IV (r)). After finish to read the rows, with the variables and the solu-
tions of all SSAT(IV (r)), it determines from θ join operation the set Θ. if Θ =
∅ then the process stops, all SSAT(IV (r)) are incompatibles. Otherwise, Θ 6=
∅ and any s ∈ Θ is a solution for SAT(n, ·).

On the other hand, the algorithm 4 takes two candidates at the same time
x = 0T [k] and x). If one of them satisfies SAT(n, ·) then stop. Otherwise, after
all candidates are tested, SAT(n,m) has 2n different rows then the process stops
because SAT(n,m)’s rows cover all search space [0, 2n], and they are blocked.

Finally, algorithm 4 limits the steps at most 2n−1 even if the number of
clauses ≫ 2n.



Lower bound for SAT 17

5 Complexity for SAT and SSAT

An extreme SSAT is a problem with one solution or none but without du-
plicates rows. For one solution, the simple comparison m < 2n allows to answer
that the problem has a solution in one step. On the other hand, the no solution
case has complexity O(1), knowing that SSAT(n, 2n) has different rows, there is
nothing to look for. But again, to know that SSAT(n, 2n) has different rows, it
has the cost of at least O(2n−1) by verifying at least one time the SSAT(n, 2n)’s
rows correspond to all combinations of Σn.

By example, the following SSAT(3, 7) has one solution x2 = 0, x1 = 1, and
x0 = 1:

Σ3 [0, 7]
(x2 ∨ x1 ∨ x0) 000 0

∧ (x2 ∨ x1 ∨ x0) 001 1
∧ (x2 ∨ x1 ∨ x0) 010 2
∧ (x2 ∨ x1 ∨ x0) 011 3
∧ (x2 ∨ x1 ∨ x0) 101 5
∧ (x2 ∨ x1 ∨ x0) 110 6
∧ (x2 ∨ x1 ∨ x0) 111 7

By construction, the unique solution is the binary string of 3. It corresponds
to the translation (x2∨x1∨x0). It satisfies SSAT(3, 7), as the assignation x2 = 0,
x1 = 1, and x0 = 1. It is not blocked by 100, which corresponds to the missing
formula (x2 ∨ x1 ∨ x0) (The complement of the formula 3). The other numbers
0, 1, 2 are blocked by 5, 6, 7.

An extreme SSAT has the next relation with a SAT:

1. The unique solution of SSAT(n, 2n − 1) corresponds to a SAT with n rows,
where each row corresponds to each variable of the solution. By example,

for the previous SSAT(3, 7) its corresponding SAT(n, n) is
(x2)

∧ (x1)
∧ (x0)

.

2. The no solution case SSAT(n,m) corresponds to a blocked board, by ex-

ample, SAT(1, 2) could be
(x0)

∧ (x0)
.

The extreme SSAT problem is designed to test how difficult is to deter-
mine one or none solution knowing only n the number of variables, and m the
number of rows. It is extreme because m ≫ 2n could be huge. However, the
corresponding versions of the extreme SSAT have two easy SAT problems. It is
nor complicated but laborious to verify or build both SSAT and SAT. The next
proposition allows to transform SAT in SSAT, and reciprocally.

Proposition 14. Let F be a boolean formula and v a boolean variable, which
is not in F . Then

(F ) ≡
(F ∨ v)

∧ (F ∨ v)



18 Carlos Barrón-Romero

Figure 3: The relationship between SAT and SSAT.

Proof. The result follows from factorization and distribution laws:

(F ) ≡ (F ∧ (v ∨ v))

.

The previous proposition allows to define the operations expansion and sim-
plification (see fig. 3):

1. Expansion. Add the two corresponding clauses for each boolean variable,
which are not in F , where F is a factor or part of a boolean formula.

2. Simplification. Two clauses simplifies into one clause by the factorization:
(F ∨ v) ∧ (F ∨ v) ≡ (F ) .

Proposition 15. SSAT and SAT are equivalent, i.e., any SSAT can be trans-
formed in SAT, and reciprocally by using by prop. 14.

Proof. Giving a SAT, the formulas are completed by expansion (see fig. 3) from
the previous proposition to build a SSAT. Reciprocally, Given a SSAT by using
factorization it could be simplified to a SAT or there is nothing to do. In any
case, SAT and its expansion SSAT or SSAT and its simplified SAT has the same
set of solution by prop. 14.

It is important to note, that for solving SSAT the complexity is bounded
quasi lineal as a function of the number of SSAT’s rows and it is bounded 2n,
because the size of the search space of all possible solutions Σn or [0, 2n−1] but
in function of the n the number of the logical variables of the problem. More
important, it is trivial to solve SSAT when m < 2n and when m = 2n and
SSAT(n, 2n)’s rows are different.

On the other hand, when m ≫ 2n it is by construction that at least one
checking between SSAT and its search space is necessary to determine its solu-
tion. This up an objection to disqualify the extreme problem because it is by
construction exponential in the number of SSAT’s rows. Moreover, what could
be a source of such type of problem or it is a theoretical curiosity. In my opin-
ion, it is not a curiosity but a future technological issue. In [4], the algorithm



Lower bound for SAT 19

5 is an hybrid hardware-software over quantum computation and a SAT as an
appropriate electronic logical circuit. The creation of novel electronic circuits
is near to the level of the crystalline structures. This means that figure 1 could
correspond to a crystalline structure. Here, for technical reasons existence and
solutions are necessary to determine.

On the other hand, SAT as the general problem could have rows with any
length and in any order. It is trivial to build a random SAT generator problems.
The minimum parameter is n the number of logical variables, and the output are
m the numbers of rows and the rows. Solving an arbitrary SAT by using algebra
increase the complexity because it requires to compare and match rows and
variables in some special order and with ad-hoc and appropriate structure for
finding factor or parts where to apply the operations expansion or simplification
(see fig. 3). This has as consequence more than one lecture or access of the SAT’s
rows, i.e., more than m operations, for ordering and matching SAT’s rows and
variables which it is not appropriate when m is large, i.e., m ≥ 2n or m ≫ 2n.

The algorithm 5 and particularly the algorithm 3 do one lecture of the SAT’s
rows for extracting information of its subproblem SSAT. Together with the θ
operation at the step 9, the algorithm 3 determines if such SSAT are compatibles
or not. The iterations are less than m because the detection of a blocked SSAT
is a sufficient condition to determine the no solution of the given SAT. On the
other branch, the algorithm 4 divides the search space in two sections for testing
two candidates at the same time in one iteration. It is possible to divide the
search space in more sections but the candidates for testing in each step grows
exponentially, 4,8, 2k, . . .. The testing of the candidates can be in parallel and
the complexity can be reduced to 2n−k where 2k are the candidates for testing.
In our case, 21 = 2, therefore the search space is exploring in 2n−1 steps. This
means that it is necessary to have 2k processors for testing 2k candidates to
get a lower upper bound of 2n−k iterations. Taking in consideration that 2k

processor with k ≫ 0 is not posible, the lower upper bound is 2n−1.

The algorithm 3 is capable to process under enough memory and time with
complexity O (|ϕ|+ time(×θ ∀ SSAT(IV (r))) any ϕ = r, s-SAT. The r, s-SAT
formulation means formulas in CNF with clauses of r variables where any vari-
able is repeated at most s times. In particular, any r, 1-SAT or r, 2-SAT or
r, r-SAT can be solved as the algorithm of the state of art [9, 12, 13, 10]. Con-
sidering that time(×θ ∀ SSAT(IV (r)) is solved by short-cut strategies. To detect
r, 1-SAT is when

⋂

r∈ϕ IV (r) = ∅, and the solutions(SSAT(IV (r))) 6= ∅. It is
trivial and fast to create any s ∈ × solutions(SSAT(IV (r))). It is similar for
r, 2-SAT. Finally,

Proposition 16. For any ϕ = r, r-SAT with exactly r clauses. The complexity
to determine ϕ ∈ SAT is O (1).

Proof. By constructing, ϕ, it is a SSAT(r, r), i.e., its parameters r, r are giving.
The result follows by the proposition 4.



20 Carlos Barrón-Romero

Conclusions and future work

The results here confirm that there is a upper limit for the SAT’s complexity
(It was predicted in the article [4]). The outside approach and the evaluation
of SSAT as a circuit correspond to the probabilistic type of method allow to
build the stable algorithm 4. This algorithm is a more detailed version of the
probabilistic algorithm 4 of [4]. It states the upper bound 2n−1 steps for solving
any SAT.

The main result is the impossibility to build an efficient algorithm for solving
SAT. This means, O

(

2n−1
)

=O(SAT) � O(NP Complete) � O(NP-Soft) �
O(NP-Hard).

The consequences, when the result of the no existence of an efficient algo-
rithm for the NP problems is accepted, are huge and paramount. Numerical
intensive computers, supercomputers, high very large density of logical gates,
quantum computation and the hybrid hardware-software will open a new era in
the computer science.

References

[1] C. Barrón-Romero. Minimum search space and efficient methods for struc-
tural cluster optimization. arXiv, Math-ph:0504030-v4, 2005.

[2] C. Barrón-Romero. The Complexity of the NP-Class. arXiv, arxiv.org/abs/
1006.2218, 2010.

[3] C. Barrón-Romero. Lower bound for the complexity of the boolean satisfi-
ability problem. ArXiv e-prints, February, 2016.

[4] C. Barrón-Romero. Classical and Quantum Algorithms for the Boolean
Satisfiability Problem. ArXiv e-prints, October, 2015.

[5] S. Cook. THE P VERSUS NP PROBLEM.
http://www.claymath.org/sites/default/files/ pvsnp.pdf, 2000.

[6] L. Fortnow. The Status of the P Versus NP Problem. Commun. ACM,
52(9):78–86, Sept. 2009.

[7] D. Gutfreund, R. Shaltiel, and A. Ta-Shma. If NP Languages Are Hard on
the Worst-Case, Then It is Easy to Find Their Hard Instances. Comput.
Complex., 16(4):412–441, Dec. 2007.

[8] G. J Woeginger. The P-versus-NP page.
http://www.win.tue.nl/∼gwoegi/P-versus-NP.htm.

[9] P. Pudlák. Mathematical Foundations of Computer Science 1998: 23rd
International Symposium, MFCS’98 Brno, Czech Republic, August 24–28,
1998 Proceedings, chapter Satisfiability — Algorithms and Logic, pages
129–141. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.

http://www.claymath.org/sites/default/files/
http://www.win.tue.nl/~gwoegi/P-versus-NP.htm


Lower bound for SAT 21

[10] C. A. Tovey. A simplified np-complete satisfiability problem. Discrete
Applied Mathematics, 8(1):85 – 89, 1984.

[11] G. J. Woeginger. Exact algorithms for np-hard problems: A survey. Combi-
natorial Optimization - Eureka, You Shrink!, LNCS, pages 185–207, 2003.

[12] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Efficient conflict
driven learning in a boolean satisfiability solver. In Proceedings of the 2001
IEEE/ACM International Conference on Computer-aided Design, ICCAD
’01, pages 279–285, Piscataway, NJ, USA, 2001. IEEE Press.

[13] L. Zhang and S. Malik. Computer Aided Verification: 14th International
Conference, CAV 2002 Copenhagen, Denmark, July 27–31, 2002 Proceed-
ings, chapter The Quest for Efficient Boolean Satisfiability Solvers, pages
17–36. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.


	1 Introduction
	2 Notation and conventions
	3 Properties for solving SAT
	4 Algorithms for SAT
	5 Complexity for SAT and SSAT

