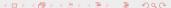
Algoritmos y estructuras de datos

Recursión

Francisco Javier Zaragoza Martínez

Universidad Autónoma Metropolitana Unidad Azcapotzalco Departamento de Sistemas

15 de noviembre de 2023



Tony Hoare

Demos crédito a los diseñadores de Algol 60 que incluyeron la recursión en su lenguaje y me permitieron describir mi invento elegantemente al mundo.

Scott Alexander

"Lo sé", dije yo. "Yo sé que sabes", dijo ella, "pero no sabía que tú sabías que yo sabía que tú sabías y ahora lo sé".

Real Academia Española

Recursión: Recursividad. Recursividad: Cualidad de recursivo. Recursivo: (1) Sujeto a reglas o pautas recurrentes. (2) Proceso que se aplica de nuevo al resultado de haberlo aplicado previamente. (3) Estructura que puede contener como constituyente otra del mismo tipo. Recurrente: Que recurre. Recurrir: Volver al lugar de donde salió.

AMY/\ZC;AMY\ZC;A

La recursión es un método en el cual la solución a un problema se alcanza resolviendo primero instancias más pequeñas del mismo (caso recursivo) hasta que sean tan pequeñas que se puedan resolver directamente (caso base).

Ejemplo

- Cálculo del factorial.
- Cálculo de potencias.
- Máximo común divisor.
- 4 Números de Fibonacci.
- **5** El juego de Nim.

La recursión es una de las ideas centrales de la computación.

Definiciones

Iterativa

Usualmente se define f(n) = n! como el producto $1 \cdot 2 \cdot \cdot \cdot (n-1) \cdot n$.

Recursiva

Si nos damos cuenta que la primera parte de ese producto es $f(n-1) = 1 \cdot 2 \cdots (n-1)$, entonces también podemos definir el factorial recursivamente de esta manera:

$$f(n) = \begin{cases} 1 & \text{si } n = 0 \text{ (caso base)} \\ n \cdot f(n-1) & \text{si } n > 0 \text{ (caso recursivo)} \end{cases}$$

Ejemplo y árbol de recursión

$$f(3) = 3 \cdot f(2)$$

$$= 3 \cdot 2 \cdot f(1)$$

$$= 3 \cdot 2 \cdot 1 \cdot f(0)$$

$$= 3 \cdot 2 \cdot 1 \cdot 1$$

$$= 3 \cdot 2 \cdot 1$$

$$= 3 \cdot 2$$

$$= 6$$

$$f(3) = 3 \cdot f(2)$$

3

$$f(3) = 3 \cdot f(2)$$

$$= 3 \cdot 2 \cdot f(1)$$

$$= 3 \cdot 2 \cdot 1 \cdot f(0)$$

$$= 3 \cdot 2 \cdot 1 \cdot 1$$

$$= 3 \cdot 2 \cdot 1$$

$$= 3 \cdot 2$$

$$= 6$$

$$f(3) = 3 \cdot f(2)$$

$$\downarrow$$

$$f(2) = 2 \cdot f(1)$$

$$f(3) = 3 \cdot f(2)$$

$$= 3 \cdot 2 \cdot f(1)$$

$$= 3 \cdot 2 \cdot 1 \cdot f(0)$$

$$= 3 \cdot 2 \cdot 1 \cdot 1$$

$$= 3 \cdot 2 \cdot 1$$

$$= 3 \cdot 2$$

$$= 6$$

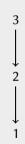
$$f(3) = 3 \cdot f(2)$$

$$\downarrow$$

$$f(2) = 2 \cdot f(1)$$

$$\downarrow$$

$$f(1) = 1 \cdot f(0)$$



$$f(3) = 3 \cdot f(2)$$

$$= 3 \cdot 2 \cdot f(1)$$

$$= 3 \cdot 2 \cdot 1 \cdot f(0)$$

$$= 3 \cdot 2 \cdot 1 \cdot 1$$

$$= 3 \cdot 2 \cdot 1$$

$$= 3 \cdot 2$$

$$= 6$$

$$f(3) = 3 \cdot f(2)$$

$$\downarrow$$

$$f(2) = 2 \cdot f(1)$$

$$\downarrow$$

$$f(1) = 1 \cdot f(0)$$

$$\downarrow$$

$$f(0) = 1$$

XXXXICXXXXXICXXXXXICXXXXXICXXXXXICXXXXXICXXXXXII

Cálculo del factorial

Implementación

Usando la definición recursiva

$$f(n) = \begin{cases} 1 & \text{si } n = 0 \\ n \cdot f(n-1) & \text{si } n > 0 \end{cases}$$

llegamos a esta implementación:

```
int factorial(int n) {
  if (n == 0)
    return 1;
  else
    return n*factorial(n-1);
}
```

XXXXZC*XXXXZC*XXXXZC*XXXXZC*XXXXZC*XXXXZC*XXXXZC*XXXXZC

Cálculo del factorial

Ejercicios

- Cuántas llamadas recursivas hace factorial(n) en términos de n?
- 2 ¿Cuántas multiplicaciones hace factorial(n) en términos de n?
- 3 Escribe una función iterativa int factorial(int n).
- 4 ¿Cuántas multiplicaciones hace tu función en términos de n?
- Escribe funciones iterativa y recursiva int suma(int n) que calculen la suma $t(n) = 1 + 2 + \cdots + n$. Para la versión recursiva observa que si n > 0 entonces t(n) = n + t(n 1).
- Escribe funciones iterativa y recursiva int suma(int n, int a[]) que calculen la suma $s(n) = a_0 + a_1 + \cdots + a_{n-1}$.

Definiciones

Iterativa

Usualmente se define $f(x, n) = x^n$ como el producto $\overbrace{x \cdot x \cdots x \cdot x}$.

Recursiva

Si nos damos cuenta que la primera parte de ese producto es $f(x, n-1) = \overbrace{x \cdot x \cdots x}$, entonces también podemos definir la exponenciación recursivamente de esta manera:

$$f(x,n) = \begin{cases} 1 & \text{si } n = 0 \text{ (caso base)} \\ x \cdot f(x, n-1) & \text{si } n > 0 \text{ (caso recursivo)} \end{cases}$$

n-1 veces

n veces

$$f(2,3) = 2 \cdot f(2,2)$$

$$= 2 \cdot 2 \cdot f(2,1)$$

$$= 2 \cdot 2 \cdot 2 \cdot f(2,0)$$

$$= 2 \cdot 2 \cdot 2 \cdot 1$$

$$= 2 \cdot 2 \cdot 2$$

$$= 2 \cdot 4$$

$$= 8$$

$$f(2,3) = 2 \cdot f(2,2) \tag{2,3}$$

$$f(2,3) = 2 \cdot f(2,2)$$

$$= 2 \cdot 2 \cdot f(2,1)$$

$$= 2 \cdot 2 \cdot 2 \cdot f(2,0)$$

$$= 2 \cdot 2 \cdot 2 \cdot 1$$

$$= 2 \cdot 2 \cdot 2$$

$$= 2 \cdot 4$$

$$= 8$$

$$f(2,3) = 2 \cdot f(2,2)$$

$$\downarrow$$
 $f(2,2) = 2 \cdot f(2,1)$

$$f(2,3) = 2 \cdot f(2,2)$$

$$= 2 \cdot 2 \cdot f(2,1)$$

$$= 2 \cdot 2 \cdot 2 \cdot f(2,0)$$

$$= 2 \cdot 2 \cdot 2 \cdot 1$$

$$= 2 \cdot 2 \cdot 2$$

$$= 2 \cdot 4$$

$$= 8$$

$$f(2,3) = 2 \cdot f(2,2)$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$f(2,2) = 2 \cdot f(2,1)$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$f(2,1) = 2 \cdot f(2,0)$$
(2,3)
$$\downarrow \qquad \qquad \qquad \qquad \downarrow$$
(2,2)

$$f(2,3) = 2 \cdot f(2,2)$$

$$= 2 \cdot 2 \cdot f(2,1)$$

$$= 2 \cdot 2 \cdot 2 \cdot f(2,0)$$

$$= 2 \cdot 2 \cdot 2 \cdot 1$$

$$= 2 \cdot 2 \cdot 2$$

$$= 2 \cdot 4$$

$$= 8$$

$$f(2,3) = 2 \cdot f(2,2)$$

$$\downarrow$$

$$f(2,2) = 2 \cdot f(2,1)$$

$$\downarrow$$

$$f(2,1) = 2 \cdot f(2,0)$$

$$\downarrow$$

$$f(2,0) = 1$$

$$(2,3)$$

$$(2,2)$$

$$\downarrow$$

$$\downarrow$$

$$(2,1)$$

Implementación

Usando la definición recursiva

$$f(x,n) = \begin{cases} 1 & \text{si } n = 0 \\ x \cdot f(x, n-1) & \text{si } n > 0 \end{cases}$$

llegamos a esta implementación:

```
double potencia(double x, int n) {
  if (n == 0)
    return 1.0;
  else
    return x*potencia(x, n-1);
}
```

Ejercicios

- ¿Cuántas llamadas recursivas hace potencia(x,n) en términos de n?
- 2 ¿Cuántas multiplicaciones hace potencia(x,n) en términos de n?
- **3** Escribe una función iterativa double potencia (double x, int n).
- 4 ¿Cuántas multiplicaciones hace tu función en términos de n?
- Escribe una nueva función recursiva que calcule x^n basada en la siguiente idea: Si n=0, entonces $x^n=1$. Si n=1, entonces $x^n=x$. Si $n\geq 2$ es par, entonces $x^n=(x^{n/2})^2$. Finalmente, si $n\geq 3$ es impar, entonces $x^n=x\cdot (x^{(n-1)/2})^2$. ¿Cuántas multiplicaciones y llamadas recursivas se hacen en términos de n?

XXXXXZC*XXXXXZC*XXXXXZC*XXXXXZC*XXXXXZC*XXXXXZC*XXXXXZC

Máximo común divisor

Dados dos enteros positivos *a* y *b*, el máximo común divisor de *a* y *b* es el entero positivo más grande *d* que es divisor tanto de *a* como de *b*.

Ejemplo

Definiciones

Los divisores positivos de 54 son 1, 2, 3, 6, 9, 18, 27, 54 y los divisores positivos de 42 son 1, 2, 3, 6, 7, 14, 21, 42. El máximo común divisor de 54 y 42 es 6.

Algoritmo de Euclides

Podemos calcular recursivamente el máximo común divisor de esta manera:

$$f(a,b) = \begin{cases} a & \text{si } b = 0 \text{ (caso base)} \\ f(b, a \mod b) & \text{si } b > 0 \text{ (caso recursivo)} \end{cases}$$

Máximo común divisor

Ejemplo y árbol de recursión

$$f(54,42) = f(42,54 \mod 42)$$

$$= f(42,12)$$

$$= f(12,42 \mod 12)$$

$$= f(12,6)$$

$$= f(6,12 \mod 6)$$

$$= f(6,0)$$

$$= 6$$

(54, 42)

Xŧ∧ZĊŧĬXŧ∧ZĊŧĬXŧXZĊŧĬXŧXZĊŧĬX¥XZĊŧĬXXŧXZĊŧĬXXŧXZĊ

Máximo común divisor

$$f(54,42) = f(42,54 \mod 42)$$

$$= f(42,12)$$

$$= f(12,42 \mod 12)$$

$$= f(12,6)$$

$$= f(6,12 \mod 6)$$

$$= f(6,0)$$

$$= 6$$

$$f(54,42) = f(42,12)$$

$$\downarrow$$

$$f(42,12) = f(12,6)$$

Xŧ∧ZĊŧĬXŧ∧ZĊŧĬXŧXZĊŧĬXŧXZĊŧĬX¥XZĊŧĬXXŧXZĊŧĬXXŧXZĊ

Máximo común divisor

$$f(54,42) = f(42,54 \mod 42)$$

$$= f(42,12)$$

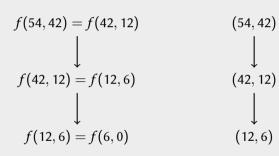
$$= f(12,42 \mod 12)$$

$$= f(12,6)$$

$$= f(6,12 \mod 6)$$

$$= f(6,0)$$

$$= 6$$



Máximo común divisor

$$f(54,42) = f(42,54 \mod 42)$$

$$= f(42,12)$$

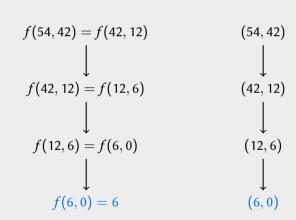
$$= f(12,42 \mod 12)$$

$$= f(12,6)$$

$$= f(6,12 \mod 6)$$

$$= f(6,0)$$

$$= 6$$



Máximo común divisor Implementación

Usando la definición recursiva

$$f(a,b) = \begin{cases} a & \text{si } b = 0\\ f(b, a \mod b) & \text{si } b > 0 \end{cases}$$

llegamos a esta implementación:

```
int euclides(int a, int b) {
  if (b == 0)
    return a;
  else
    return euclides(b, a % b);
}
```

Ejercicios

- Los coeficientes combinatorios C(n, m) se definen recursivamente de la siguiente manera: Si m=0 o m=n, entonces C(n,m)=1. Si 0 < m < n, entonces C(n,m)=C(n-1,m-1)+C(n-1,m). Escribe una función recursiva int combina(int n, int m) que calcule C(n,m). ¿Cuántas sumas hace la llamada combina(n,m)?
- 2 También hay una fórmula para los coeficientes combinatorios:

$$C(n,m)=\frac{n!}{m!(n-m)!}.$$

Escribe una función iterativa que calcule C(n, m). ¿Cuántos productos hace tu función?

XY/\ZC\XXX\\ZC\XXX\\ZC\XXX\\ZC\XXX\\ZC\XXX\\ZC\XXX\\ZC\XXX\\ZZ\ZXXX\\ZZ\XXX\\XX\\ZZ\XXX\\ZZ\XXX\\ZZ\XXX\\ZZ\XXX\\ZZ\XXX\\ZZ\XXX\\ZZ\XXX\\ZZ\XXX\\XX\\ZZ\XXX\\ZZ\XXX\\ZZ\XXX\\ZZ\XXX\\ZZ\XXX\\XX\\ZZ\XXX\\ZZ\XXX\\ZZ\XXX\\ZZ\XXX\\ZZ\XXX\\ZZ\XXX\\XX\\XX\\ZZ\XXX\\XX\X

Números de Fibonacci

Definición

Los números de Fibonacci se definen recursivamente de esta manera:

$$f(n) = \begin{cases} 0 & \text{si } n = 0 \text{ (caso base)} \\ 1 & \text{si } n = 1 \text{ (caso base)} \\ f(n-1) + f(n-2) & \text{si } n > 1 \text{ (caso recursivo)} \end{cases}$$

Ejemplo

$$f(5) = f(4) + f(3)$$

$$= (f(3) + f(2)) + (f(2) + f(1))$$

$$= ((f(2) + f(1)) + (f(1) + f(0))) + ((f(1) + f(0)) + 1)$$

$$= (((f(1) + f(0)) + 1) + (1 + 0)) + ((1 + 0) + 1)$$

$$= (((1 + 0) + 1) + (1 + 0)) + ((1 + 0) + 1)$$

$$= 5$$

XXX/ZC*XXX/ZC*XXX/ZC*XXX/ZC*XXX/ZC*XXX/ZC*XXX/ZC*XXX/ZC

Números de Fibonacci Árbol de recursión

$$f(5) = f(4) + f(3)$$

XXX/\ZC*XXX\\\ZC*XXX\\\ZC*XXX\\\ZC*XXX\\\ZC*XXX\\\ZC*XXX\\\ZC

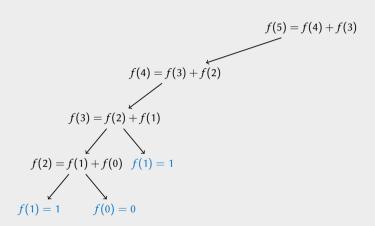
Números de Fibonacci Árbol de recursión

$$f(5) = f(4) + f(3)$$

$$f(4) = f(3) + f(2)$$

Números de Fibonacci

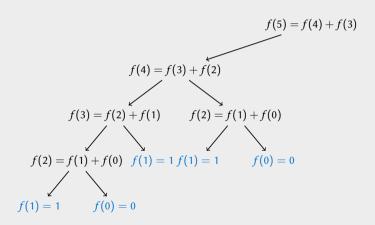
Árbol de recursión



XY^Z*E*XX*XY^Z*E*XX*XY^Z*E*XX*XY^Z*E*XXX*X^Z*E*XX*XY^Z*E*XX*XY^Z*E**XXXY^Z

Números de Fibonacci

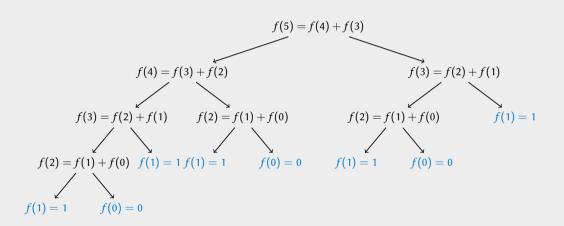
Árbol de recursión



XX/\Z_XXX\Z_XXX\ZEXXX\ZEXXX\ZEXXX\ZEXXX\ZEXXX\ZEXXX\ZEXXX\Z

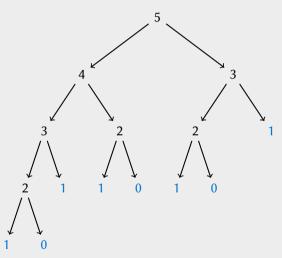
Números de Fibonacci

Árbol de recursión



Números de Fibonacci

Árbol de recursión (simplificado)



Números de Fibonacci

Implementación

Usando la definición recursiva

$$f(n) = \begin{cases} 0 & \text{si } n = 0\\ 1 & \text{si } n = 1\\ f(n-1) + f(n-2) & \text{si } n > 1 \end{cases}$$

llegamos a esta implementación:

```
int fibonacci(int n) {
  if (n == 0)
    return 0;
  else if (n == 1)
    return 1;
  else
    return fibonacci(n-1)+fibonacci(n-2);
}
```


Números de Fibonacci

Ejercicios

- Escribe una función iterativa que encuentre f(n) calculando de forma sucesiva $f(0), f(1), f(2), \ldots$ ¿Cuántas sumas hace en términos de n?
- Escribe una nueva función recursiva que calcule f(n) basada en la siguiente idea: Si n=0, entonces f(n)=0. Si n=1, entonces f(n)=1. Si $n\geq 2$ es par, entonces $f(n)=f(\frac{n}{2}+1)^2-f(\frac{n}{2}-1)^2$. Finalmente, si $n\geq 3$ es impar, entonces $f(n)=f(\frac{n+1}{2})^2+f(\frac{n-1}{2})^2$. ¿Cuántas llamadas recursivas se hacen en términos de n?
- Los números de Lucas se definen como L(0) = 2, L(1) = 1 y L(n) = L(n-1) + L(n-2) para $n \ge 2$. Escribe funciones iterativa y recursiva int lucas(int n) que calculen L(n).
- Los números de Pell se definen como P(0) = 0, P(1) = 1 y P(n) = 2P(n-1) + P(n-2) para $n \ge 2$. Escribe funciones iterativa y recursiva int pell(int n) que calculen P(n).

El juego de Nim

Definición

En este juego se comienza con $n \ge 1$ piedras. Por turnos, dos jugadores quitan 1, 2 o 3 piedras. Gana el jugador que quita la última piedra.

Análisis del juego de Nim

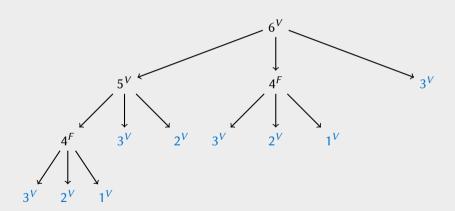
Si $n \in \{1, 2, 3\}$ el jugador que tiene el turno puede ganar, pues puede quitar todas las piedras. Si n > 3 el jugador que tiene el turno puede ganar si y sólo si el otro jugador no puede ganar con alguna de n - 1, n - 2 o n - 3 piedras.

Función de Nim

Sea f(n) verdadero si el jugador que tiene el turno puede ganar con n piedras:

$$f(n) = \begin{cases} \text{verdadero} & \text{si } 1 \leq n \leq 3 \text{ (casos base)} \\ \neg f(n-1) \lor \neg f(n-2) \lor \neg f(n-3) & \text{si } n > 3 \text{ (caso recursivo)} \end{cases}$$

El juego de Nim Árbol de recursión



Juego de Nim Implementación

Usando la definición recursiva

$$f(n) = \begin{cases} \text{verdadero} & \text{si } 1 \le n \le 3\\ \neg f(n-1) \lor \neg f(n-2) \lor \neg f(n-3) & \text{si } n > 3 \end{cases}$$

llegamos a esta implementación:

```
int nim(int n) {
  if (n == 1 || n == 2 || n == 3)
    return 1;
  else
    return !nim(n-1) || !nim(n-2) || !nim(n-3);
}
```