

Miles J. Murdocca

Department of Computer Science
Rutgers University

New Brunswick, NJ 08903 (USA)
murdocca@cs.rutgers.edu

http://www.cs.rutgers.edu/~murdocca/

Vincent P. Heuring

Department of Electrical and Computer Engineering
University of Colorado

Boulder, CO 80309-0425 (USA)
heuring@colorado.edu

http://ece-www.colorado.edu/faculty/heuring.html

Copyright © 1999 Prentice Hall

PRINCIPLES OF
COMPUTER

ARCHITECTURE

CLASS TEST EDITION – AUGUST 1999

For Ellen, Alexandra, and Nicole

and

For Gretchen

PREFACE

iii

About the Book

Our goal in writing this book is to expose the inner workings of the modern
digital computer at a level that demystifies what goes on inside the machine.
The only prerequisite to

Principles of Computer Architecture

 is a working
knowledge of a high-level programming language. The breadth of material has
been chosen to cover topics normally found in a first course in computer
architecture or computer organization. The breadth and depth of coverage
have been steered to also place the beginning student on a solid track for con-
tinuing studies in computer related disciplines.

In creating a computer architecture textbook, the technical issues fall into
place fairly naturally, and it is the organizational issues that bring important
features to fruition. Some of the features that received the greatest attention in

Principles of Computer Architecture

 include the choice of the instruction set
architecture (ISA), the use of case studies, and a voluminous use of examples
and exercises.

THE INSTRUCTIONAL ISA

A textbook that covers assembly language programming needs to deal with the
issue of which instruction set architecture (ISA) to use: a model architecture,
or one of the many commercial architectures. The choice impacts the instruc-
tor, who may want an ISA that matches a local platform used for student
assembly language programming assignments. To complicate matters, the
local platform may change from semester to semester: yesterday the MIPS,
today the Pentium, tomorrow the SPARC. The authors opted for having it
both ways by adopting a SPARC-subset for an instructional ISA, called “A
RISC Computer” (ARC), which is carried through the mainstream of the

PREFACE

iv

PREFACE

book, and complementing it with platform-independent software tools that sim-
ulate the ARC ISA as well as the MIPS and x86 (Pentium) ISAs.

CASE STUDIES, EXAMPLES, AND EXERCISES

Every chapter contains at least one case study as a means for introducing the stu-
dent to “real world” examples of the topic being covered. This places the topic in
perspective, and in the authors’ opinion, lends an air of reality and interest to the
material.

We incorporated as many examples and exercises as we practically could, cover-
ing the most significant points in the text. Additional examples and solutions are
available on-line, at the companion Web site (see below.)

Coverage of Topics

Our presentation views a computer as an integrated system. If we were to choose
a subtitle for the book, it might be “An Integrated Approach,” which reflects high
level threads that tie the material together. Each topic is covered in the context of
the entire machine of which it is a part, and with a perspective as to how the
implementation affects behavior. For example, the finite precision of binary
numbers is brought to bear in observing how many 1’s can be added to a floating
point number before the error in the representation exceeds 1. (This is one rea-
son why floating point numbers should be avoided as loop control variables.) As
another example, subroutine linkage is covered with the expectation that the
reader may someday be faced with writing C or Java programs that make calls to
routines in other high level languages, such as Fortran.

As yet another example of the integrated approach, error detection and correc-
tion are covered in the context of mass storage and transmission, with the expec-
tation that the reader may tackle networking applications (where bit errors and
data packet losses are a fact of life) or may have to deal with an unreliable storage
medium such as a compact disk read-only memory (CD-ROM.)

Computer architecture impacts many of the ordinary things that computer pro-
fessionals do, and the emphasis on taking an integrated approach addresses the
great diversity of areas in which a computer professional should be educated.
This emphasis reflects a transition that is taking place in many computer related
undergraduate curricula. As computer architectures become more complex they
must be treated at correspondingly higher levels of abstraction, and in some ways

PREFACE

v

they also become more technology-dependent. For this reason, the major portion
of the text deals with a high level look at computer architecture, while the appen-
dices and case studies cover lower level, technology-dependent aspects.

THE CHAPTERS

Chapter 1: Introduction

introduces the textbook with a brief history of com-
puter architecture, and progresses through the basic parts of a computer, leaving
the student with a high level view of a computer system. The conventional von
Neumann model of a digital computer is introduced, followed by the System Bus
Model, followed by a topical exploration of a typical computer. This chapter lays
the groundwork for the more detailed discussions in later chapters.

Chapter 2

: Data Representation

 covers basic data representation. One’s comple-
ment, two’s complement, signed magnitude and excess representations of signed
numbers are covered. Binary coded decimal (BCD) representation, which is fre-
quently found in calculators, is also covered in Chapter 2. The representation of
floating point numbers is covered, including the IEEE 754 floating point stan-
dard for binary numbers. The ASCII, EBCDIC, and Unicode character repre-
sentations are also covered.

Chapter 3

: Arithmetic

 covers computer arithmetic and advanced data represen-
tations. Fixed point addition, subtraction, multiplication, and division are cov-
ered for signed and unsigned integers. Nine’s complement and ten’s complement
representations, used in BCD arithmetic, are covered. BCD and floating point
arithmetic are also covered. High performance methods such as carry-lookahead
addition, array multiplication, and division by functional iteration are covered. A
short discussion of residue arithmetic introduces an unconventional high perfor-
mance approach.

Chapter 4

: The Instruction Set Architecture

 introduces the basic architectural
components involved in program execution. Machine language and the
fetch-execute cycle are covered. The organization of a central processing unit is
detailed, and the role of the system bus in interconnecting the arithmetic/logic
unit, registers, memory, input and output units, and the control unit are dis-
cussed.

Assembly language programming is covered in the context of the instructional
ARC (A RISC Computer), which is loosely based on the commercial SPARC
architecture. The instruction names, instruction formats, data formats, and the

vi

PREFACE

suggested assembly language syntax for the SPARC have been retained in the
ARC, but a number of simplifications have been made. Only 15 SPARC instruc-
tions are used for most of the chapter, and only a 32-bit unsigned integer data
type is allowed initially. Instruction formats are covered, as well as addressing
modes. Subroutine linkage is explored in a number of styles, with a detailed dis-
cussion of parameter passing using a stack.

Chapter 5

: Languages and the Machine

connects the programmer’s view of a
computer system with the architecture of the underlying machine. System soft-
ware issues are covered with the goal of making the low level machine visible to a
programmer. The chapter starts with an explanation of the compilation process,
first covering the steps involved in compilation, and then focusing on code gen-
eration. The assembly process is described for a two-pass assembler, and examples
are given of generating symbol tables. Linking, loading, and macros are also cov-
ered.

Chapter 6

: Datapath and Control

 provides a step-by-step analysis of a datapath
and a control unit. Two methods of control are discussed: microprogrammed and
hardwired. The instructor may adopt one method and omit the other, or cover
both methods as time permits. The example microprogrammed and hardwired
control units implement the ARC subset of the SPARC assembly language intro-
duced in Chapter 4.

Chapter 7

: Memory

 covers computer memory beginning with the organization
of a basic random access memory, and moving to advanced concepts such as
cache and virtual memory. The traditional direct, associative, and set associative
cache mapping schemes are covered, as well as multilevel caches. Issues such as
overlays, replacement policies, segmentation, fragmentation, and the translation
lookaside buffer are also discussed.

Chapter 8

: Input and Output

 covers bus communication and bus access meth-
ods. Bus-to-bus bridging is also described. The chapter covers various I/O
devices commonly in use such as disks, keyboards, printers, and displays.

Chapter 9

: Communication

 covers network architectures, focusing on modems,
local area networks, and wide area networks. The emphasis is primarily on

net-
work architecture

, with accessible discussions of protocols that spotlight key fea-
tures of network architecture. Error detection and correction are covered in
depth. The TCP/IP protocol suite is introduced in the context of the Internet.

PREFACE

vii

Chapter 10

: Trends in Computer Architecture

 covers advanced architectural
features that have either emerged or taken new forms in recent years. The early
part of the chapter covers the motivation for reduced instruction set computer
(RISC) processors, and the architectural implications of RISC. The latter portion
of the chapter covers multiple instruction issue machines, and very large instruc-
tion word (VLIW) machines. A case study makes RISC features visible to the
programmer in a step-by-step analysis of a C compiler-generated SPARC pro-
gram, with explanations of the stack frame usage, register usage, and pipelining.
The chapter covers parallel and distributed architectures, and interconnection
networks used in parallel and distributed processing.

Appendix A

: Digital Logic

 covers combinational logic and sequential logic, and
provides a foundation for understanding the logical makeup of components dis-
cussed in the rest of the book. Appendix A begins with a description of truth
tables, Boolean algebra, and logic equations. The synthesis of combinational
logic circuits is described, and a number of examples are explored. Medium scale
integration (MSI) components such as multiplexers and decoders are discussed,
and examples of synthesizing circuits using MSI components are explored.

Synchronous logic is also covered in Appendix A, starting with an introduction
to timing issues that relate to flip-flops. The synthesis of synchronous logic cir-
cuits is covered with respect to state transition diagrams, state tables, and syn-
chronous logic designs.

Appendix A can be paired with

Appendix B

: Reduction of Digital Logic

 which
covers reduction for combinational and sequential logic. Minimization is covered
using algebraic reduction, Karnaugh maps, and the tabular (Quine-McCluskey)
method for single and multiple functions. State reduction and state assignment
are also covered.

CHAPTER ORDERING

The order of chapters is created so that the chapters can be taught in numerical
order, but an instructor can modify the ordering to suit a particular curriculum
and syllabus. Figure P-1 shows prerequisite relationships among the chapters.
Special considerations regarding chapter sequencing are detailed below.

Chapter 2 (Data Representation) should be covered prior to Chapter 3 (Arith-
metic), which has the greatest need for it. Appendix A (Digital Logic) and
Appendix B (Reduction of Digital Logic) can be omitted if digital logic is cov-

viii

PREFACE

ered earlier in the curriculum, but if the material is not covered, then the struc-
ture of some components (such as an arithmetic logic unit or a register) will
remain a mystery in later chapters if at least Appendix A is not covered earlier
than Chapter 3.

Chapter 4 (The Instruction Set Architecture) and Chapter 5 (Languages and the
Machine) appear in the early half of the book for two reasons: (1) they introduce
the student to the workings of a computer at a fairly high level, which allows for
a top-down approach to the study of computer architecture; and (2) it is impor-
tant to get started on assembly language programming early if hands-on pro-
gramming is part of the course.

The material in Chapter 10 (Trends in Computer Architecture) typically appears
in graduate level architecture courses, and should therefore be covered only as
time permits, after the material in the earlier chapters is covered.

Chapter 1: Introduction

Chapter 2: Data Representation

Chapter 3: Arithmetic Appendix A: Digital Logic

Appendix B: Reduction of
Digital Logic

Chapter 4: The Instruction Set
Architecture

Chapter 5: Languages and
the Machine

Chapter 7: Memory

Chapter 6: Datapath and Chapter 8: Input and Output

Chapter 9: Communication

Chapter 10: Trends in
Computer Architecture

Control

Figure P-1 Prerequisite relationships among chapters.

PREFACE

ix

The Companion Web Site

A companion Web site

http://www.cs.rutgers.edu/~murdocca/POCA

pairs with this textbook. The companion Web site contains a wealth of support-
ing material such as software, Powerpoint slides, practice problems with solu-
tions, and errata. Solutions for all of the problems in the book and sample exam
problems with solutions are also available for textbook adopters. (Contact your
Prentice Hall representative if you are an instructor and need access to this infor-
mation.)

SOFTWARE TOOLS

We provide an assembler and a simulator for the ARC, and subsets of the assem-
bly languages of the MIPS and x86 (Pentium) processors. Written as Java appli-
cations for easy portability, these assemblers and simulators are available via
download from the companion Web site.

SLIDES AND FIGURES

All of the figures and tables in

Principles of Computer Architecture

 have been
included in a Powerpoint slide presentation. If you do not have access to Power-
point, the slide presentation is also available in Adobe Acrobat format, which
uses a free-of-charge downloadable reader program. The individual figures are
also available as separate PostScript files.

PRACTICE PROBLEMS AND SOLUTIONS

The practice problems and solutions have been fully class tested; there is no pass-
word protection. The sample exam problems (which also include solutions) and
the solutions to problems in POCA are available to instructors who adopt the
book. (Contact your Prentice Hall representative for access to this area of the
Web site. We only ask that you do not place this material on a Web site some-
place else.)

IF YOU FIND AN ERROR

In spite of the best of the best efforts of the authors, editors, reviewers, and class
testers, this book undoubtedly contains errors. Check on-line at

x

PREFACE

http://www.cs.rutgers.edu/~murdocca/POCA

 to see if it has been cat-
alogued. You can report errors to

pocabugs@cs.rutgers.edu

. Please men-
tion the chapter number where the error occurs in the

Subject:

 header.

Credits and Acknowledgments

We did not create this book entirely on our own, and we gratefully acknowledge
the support of many people for their influence in the preparation of the book
and on our thinking in general. We first wish to thank our Acquisitions Editors:
Thomas Robbins and Paul Becker, who had the foresight and vision to guide this
book and its supporting materials through to completion. Donald Chiarulli was
an important influence on an early version of the book, which was class-tested at
Rutgers University and the University of Pittsburgh. Saul Levy, Donald Smith,
Vidyadhar Phalke, Ajay Bakre, Jinsong Huang, and Srimat Chakradhar helped
test the material in courses at Rutgers, and provided some of the text, problems,
and valuable explanations. Brian Davison and Shridhar Venkatanarisam worked
on an early version of the solutions and provided many helpful comments. Irving
Rabinowitz provided a number of problem sets. Larry Greenfield provided
advice from the perspective of a student who is new to the subject, and is cred-
ited with helping in the organization of Chapter 2. Blair Gabett Bizjak is credited
with providing the framework for much of the LAN material. Ann Yasuhara pro-
vided text on Turing’s contributions to computer science. William Waite pro-
vided a number of the assembly language examples.

The reviewers, whose names we do not know, are gratefully acknowledged for
their help in steering the project. Ann Root did a superb job on the development
of the supporting ARCSim tools which are available on the companion Web site.
The Rutgers University and University of Colorado student populations pro-
vided important proving grounds for the material, and we are grateful for their
patience and recommendations while the book was under development.

I (MJM) was encouraged by my parents Dolores and Nicholas Murdocca, my sis-
ter Marybeth, and my brother Mark. My wife Ellen and my daughters Alexandra
and Nicole have been an endless source of encouragement and inspiration. I do
not think I could have found the energy for such an undertaking without all of
their support.

I (VPH) wish to acknowledge the support of my wife Gretchen, who was exceed-
ingly patient and encouraging throughout the process of writing this book.

PREFACE

xi

There are surely other people and institutions who have contributed to this
book, either directly or indirectly, whose names we have inadvertently omitted.
To those people and institutions we offer our tacit appreciation and apologize for
having omitted explicit recognition here.

Miles J. Murdocca
Rutgers University
murdocca@cs.rutgers.edu

Vincent P. Heuring
University of Colorado at Boulder
heuring@colorado.edu

xii

PREFACE

TABLE OF CONTENTS

xiii

PREFACE iii

 1 INTRODUCTION 1

1.1 O

VERVIEW

 1
1.2 A B

RIEF

 H

ISTORY

 1
1.3 T

HE

 V

ON

 N

EUMANN

 M

ODEL

 4
1.4 T

HE

 S

YSTEM

 B

US

 M

ODEL

 5
1.5 L

EVELS

OF

 M

ACHINES

 7

1.5.1 Upward Compatibility 7
1.5.2 The Levels 7

1.6 A T

YPICAL

 C

OMPUTER

 S

YSTEM

 12
1.7 O

RGANIZATION

OF

THE

 B

OOK

 13
1.8 C

ASE

 S

TUDY

: W

HAT

 H

APPENED

TO

 S

UPERCOMPUTERS

? 14

 2 DATA REPRESENTATION 21

2.1 I

NTRODUCTION

 21
2.2 F

IXED

 P

OINT

 N

UMBERS

 22

2.2.1 Range and Precision in Fixed Point Numbers 22
2.2.2 The Associative Law of Algebra Does Not Always Hold in Computers 23
2.2.3 Radix Number Systems 24
2.2.4 Conversions Among Radices 25
2.2.5 An Early Look at Computer Arithmetic 31
2.2.6 Signed Fixed Point Numbers 32
2.2.7 Binary Coded Decimal 37

2.3 F

LOATING

 P

OINT

 N

UMBERS

 38

2.3.1 Range and Precision In Floating Point Numbers 38
2.3.2 Normalization, and The Hidden Bit 40

TABLE OF CONTENTS

xiv

TABLE OF CONTENTS

2.3.3 Representing Floating Point Numbers in the Computer—Preliminaries 40
2.3.4 Error in Floating Point Representations 44
2.3.5 The IEEE 754 Floating Point Standard 48

2.4 C

ASE

 S

TUDY

: P

ATRIOT

 M

ISSILE

 D

EFENSE

 F

AILURE

 C

AUSED

BY

 L

OSS

OF

 P

RECISION

51
2.5 C

HARACTER

 C

ODES

 53

2.5.1 The ASCII Character Set 53
2.5.2 The EBCDIC Character Set 54
2.5.3 The Unicode Character Set 55

 3 ARITHMETIC 65

3.1 O

VERVIEW

 65
3.2 F

IXED

 P

OINT

 A

DDITION

AND

 S

UBTRACTION

 65

3.2.1 Two’s complement addition and subtraction 66
3.2.2 Hardware implementation of adders and subtractors 69
3.2.3 One’s Complement Addition and Subtraction 71

3.3 F

IXED

 P

OINT

 M

ULTIPLICATION

AND

 D

IVISION

 73

3.3.1 Unsigned Multiplication 73
3.3.2 Unsigned Division 75
3.3.3 Signed Multiplication and Division 77

3.4 F

LOATING

 P

OINT

 A

RITHMETIC

 79

3.4.1 Floating Point Addition and Subtraction 79
3.4.2 Floating Point Multiplication and Division 80

3.5 H

IGH

 P

ERFORMANCE

 A

RITHMETIC

 81

3.5.1 High Performance Addition 81
3.5.2 High Performance Multiplication 83
3.5.3 High Performance Division 87
3.5.4 Residue Arithmetic 90

3.6 C

ASE

 S

TUDY

: C

ALCULATOR

 A

RITHMETIC

 U

SING

 B

INARY

 C

ODED

 D

ECIMAL

 93

3.6.1 The HP9100A Calculator 94
3.6.2 Binary Coded Decimal Addition and subtraction 94
3.6.3 BCD Floating Point Addition and Subtraction 97

 4 T

HE

 I

NSTRUCTION

 S

ET

 A

RCHITECTURE

105

4.1 H

ARDWARE

 C

OMPONENTS

OF

THE

 I

NSTRUCTION

 S

ET

 A

RCHITECTURE

 106

4.1.1 The System Bus Model Revisited 106
4.1.2 Memory 107
4.1.3 The CPU 110

4.2 ARC, A RISC C

OMPUTER

 114

TABLE OF CONTENTS

xv

4.2.1 ARC Memory 115
4.2.2 ARC Instruction set 116
4.2.3 ARC Assembly Language Format 118
4.2.4 ARC Instruction Formats 120
4.2.5 ARC Data Formats 122
4.2.6 ARC Instruction Descriptions 123

4.3 P

SEUDO

-O

PS

 127
4.4 E

XAMPLES

 OF ASSEMBLY LANGUAGE PROGRAMS 128
4.4.1 Variations in machine architectures and addressing 131
4.4.2 Performance of Instruction Set Architectures 134

4.5 ACCESSING DATA IN MEMORY—ADDRESSING MODES 135
4.6 SUBROUTINE LINKAGE AND STACKS 136
4.7 INPUT AND OUTPUT IN ASSEMBLY LANGUAGE 142
4.8 CASE STUDY: THE JAVA VIRTUAL MACHINE ISA 144

 5 LANGUAGES AND THE MACHINE 159

5.1 THE COMPILATION PROCESS 159
5.1.1 The steps of compilation 160
5.1.2 The Compiler Mapping Specification 161
5.1.3 How the compiler maps the three instruction Classes into Assembly Code 161
5.1.4 Data movement 163
5.1.5 Arithmetic instructions 165
5.1.6 program Control flow 166

5.2 THE ASSEMBLY PROCESS 168
5.3 LINKING AND LOADING 176

5.3.1 Linking 177
5.3.2 Loading 180

5.4 MACROS 183
5.5 CASE STUDY: EXTENSIONS TO THE INSTRUCTION SET – THE INTEL MMX™ AND
MOTOROLA ALTIVEC™ SIMD INSTRUCTIONS. 185

5.5.1 Background 186
5.5.2 The Base Architectures 186
5.5.3 VECTOR Registers 187
5.5.4 Vector Arithmetic operations 190
5.5.5 Vector compare operations 191
5.5.6 Case Study Summary 193

 6 DATAPATH AND CONTROL 199

6.1 BASICS OF THE MICROARCHITECTURE 200

xvi TABLE OF CONTENTS

6.2 A MICROARCHITECTURE FOR THE ARC 201
6.2.1 The Datapath 201
6.2.2 The Control Section 210
6.2.3 Timing 213
6.2.4 Developing the Microprogram 214
6.2.5 Traps and Interrupts 225
6.2.6 Nanoprogramming 227

6.3 HARDWIRED CONTROL 228
6.4 CASE STUDY: THE VHDL HARDWARE DESCRIPTION LANGUAGE 237

6.4.1 Background 238
6.4.2 What is VHDL? 239
6.4.3 A VHDL specification of the Majority FUNCTION 240
6.4.4 9-Value logic system 243

 7 MEMORY 255

7.1 THE MEMORY HIERARCHY 255
7.2 RANDOM ACCESS MEMORY 257
7.3 CHIP ORGANIZATION 258

7.3.1 Constructing LARGE RAMS FROm SMALL RAMS 261
7.4 COMMERCIAL MEMORY MODULES 262
7.5 READ-ONLY MEMORY 263
7.6 CACHE MEMORY 266

7.6.1 Associative Mapped Cache 268
7.6.2 Direct Mapped Cache 271
7.6.3 Set Associative Mapped Cache 274
7.6.4 Cache performance 275
7.6.5 Hit Ratios and Effective Access Times 277
7.6.6 Multilevel Caches 279
7.6.7 Cache management 279

7.7 VIRTUAL MEMORY 281
7.7.1 Overlays 281
7.7.2 Paging 283
7.7.3 Segmentation 286
7.7.4 Fragmentation 287
7.7.5 Virtual Memory vs. Cache Memory 289
7.7.6 THE TRANSLATION LOOKASIDE BUFFER 289

7.8 ADVANCED TOPICS 291
7.8.1 Tree decoders 291
7.8.2 Decoders for large RAMs 292

TABLE OF CONTENTS xvii

7.8.3 Content-Addressable (Associative) Memories 293
7.9 CASE STUDY: RAMBUS MEMORY 298
7.10 CASE STUDY: THE INTEL PENTIUM MEMORY SYSTEM 301

 8 INPUT AND OUTPUT 311

8.1 SIMPLE BUS ARCHITECTURES 312
8.1.1 Bus Structure, Protocol, and Control 313
8.1.2 Bus Clocking 314
8.1.3 The Synchronous Bus 314
8.1.4 The Asynchronous Bus 315
8.1.5 Bus Arbitration—Masters and Slaves 316

8.2 BRIDGE-BASED BUS ARCHITECTURES 319
8.3 COMMUNICATION METHODOLOGIES 321

8.3.1 Programmed I/O 321
8.3.2 Interrupt-driven I/O 322
8.3.3 Direct Memory Access (DMA) 324

8.4 CASE STUDY: COMMUNICATION ON THE INTEL PENTIUM ARCHITECTURE 326
8.4.1 System clock, bus clock, and bus speeds 326
8.4.2 Address, data, memory, and I/O capabilities 327
8.4.3 Data words have soft-alignment 327
8.4.4 Bus cycles in the Pentium family 327
8.4.5 Memory read and write bus cycles 328
8.4.6 The burst Read bus cycle 329
8.4.7 Bus hold for request by bus master 330
8.4.8 Data transfer rates 331

8.5 MASS STORAGE 332
8.5.1 Magnetic Disks 332
8.5.2 Magnetic Tape 341
8.5.3 Magnetic Drums 342
8.5.4 Optical Disks 343

8.6 INPUT DEVICES 346
8.6.1 Keyboards 346
8.6.2 Bit Pads 347
8.6.3 Mice and Trackballs 348
8.6.4 Lightpens and TouchScreens 349
8.6.5 Joysticks 350

8.7 OUTPUT DEVICES 351
8.7.1 Laser Printers 351
8.7.2 Video Displays 352

xviii TABLE OF CONTENTS

 9 COMMUNICATION 361

9.1 MODEMS 361
9.2 TRANSMISSION MEDIA 364

9.2.1 Two-Wire Open Lines 365
9.2.2 Twisted-Pair Lines 366
9.2.3 Coaxial Cable 366
9.2.4 Optical Fiber 366
9.2.5 Satellites 367
9.2.6 Terrestrial Microwave 368
9.2.7 Radio 368

9.3 NETWORK ARCHITECTURE: LOCAL AREA NETWORKS 368
9.3.1 The OSI Model 369
9.3.2 Topologies 371
9.3.3 Data Transmission 372
9.3.4 Bridges, Routers, and Gateways 374

9.4 COMMUNICATION ERRORS AND ERROR CORRECTING CODES 375
9.4.1 Bit Error Rate Defined 375
9.4.2 Error Detection and Correction 376
9.4.3 Vertical Redundancy Checking 382
9.4.4 Cyclic Redundancy Checking 383

9.5 NETWORK ARCHITECTURE: THE INTERNET 386
9.5.1 The Internet Model 386
9.5.2 Bridges and Routers Revisited, and Switches 392

9.6 CASE STUDY: ASYNCHRONOUS TRANSFER MODE 393
9.6.1 Synchronous vs. Asynchronous Transfer Mode 395
9.6.2 What is ATM? 395
9.6.3 ATM Network Architecture 396
9.6.4 Outlook on ATM 398

 10 TRENDS IN COMPUTER ARCHITECTURE 403

10.1 QUANTITATIVE ANALYSES OF PROGRAM EXECUTION 403
10.1.1 quantitative performance analysis 406

10.2 FROM CISC TO RISC 407
10.3 PIPELINING THE DATAPATH 409

10.3.1 arithmetic, branch, and load-store instructions 409
10.3.2 Pipelining instructions 411
10.3.3 Keeping the pipeline Filled 411

10.4 OVERLAPPING REGISTER WINDOWS 415
10.5 MULTIPLE INSTRUCTION ISSUE (SUPERSCALAR) MACHINES – THE POWERPC 601

TABLE OF CONTENTS xix

423
10.6 CASE STUDY: THE POWERPC™ 601 AS A SUPERSCALAR ARCHITECTURE 425

10.6.1 Instruction Set Architecture of the PowerPC 601 425
10.6.2 Hardware architecture of the PowerPC 601 425

10.7 VLIW MACHINES 428
10.8 CASE STUDY: THE INTEL IA-64 (MERCED) ARCHITECTURE 428

10.8.1 background—the 80x86 Cisc architecture 428
10.8.2 The merced: an epic architecture 429

10.9 PARALLEL ARCHITECTURE 432
10.9.1 The Flynn Taxonomy 434
10.9.2 Interconnection Networks 436
10.9.3 Mapping an Algorithm onto a Parallel Architecture 442
10.9.4 Fine-Grain Parallelism – The Connection Machine CM-1 447
10.9.5 Course-Grain Parallelism: The CM-5 450

10.10 CASE STUDY: PARALLEL PROCESSING IN THE SEGA GENESIS 453
10.10.1 The SEGA Genesis Architecture 453
10.10.2 Sega Genesis Operation 455
10.10.3 Sega Genesis Programming 455

 A APPENDIX A: DIGITAL LOGIC 461

A.1 INTRODUCTION 461
A.2 COMBINATIONAL LOGIC 461
A.3 TRUTH TABLES 462
A.4 LOGIC GATES 464

A.4.1 Electronic implementation of logic gates 467
A.4.2 Tri-STATE Buffers 470

A.5 PROPERTIES OF BOOLEAN ALGEBRA 470
A.6 THE SUM-OF-PRODUCTS FORM, AND LOGIC DIAGRAMS 473
A.7 THE PRODUCT-OF-SUMS FORM 475
A.8 POSITIVE VS. NEGATIVE LOGIC 477
A.9 THE DATA SHEET 479
A.10 DIGITAL COMPONENTS 481

A.10.1 Levels of Integration 481
A.10.2 Multiplexers 482
A.10.3 Demultiplexers 484
A.10.4 Decoders 485
A.10.5 Priority Encoders 487
A.10.6 Programmable Logic Arrays 487

A.11 SEQUENTIAL LOGIC 492

xx TABLE OF CONTENTS

A.11.1 The S-R Flip-Flop 493
A.11.2 The Clocked S-R Flip-Flop 495
A.11.3 The D Flip-Flop and the Master-Slave Configuration 497
A.11.4 J-K and T Flip-Flops 499

A.12 DESIGN OF FINITE STATE MACHINES 500
A.13 MEALY VS. MOORE MACHINES 509
A.14 REGISTERS 510
A.15 COUNTERS 511

 B APPENDIX B: REDUCTION OF DIGITAL LOGIC 523

B.1 REDUCTION OF COMBINATIONAL LOGIC AND SEQUENTIAL LOGIC 523
B.2 REDUCTION OF TWO-LEVEL EXPRESSIONS 523

B.2.1 The Algebraic Method 524
B.2.2 The K-Map Method 525
B.2.3 The Tabular Method 534
B.2.4 Logic reduction: EFFECT ON speed and performance 542

B.3 STATE REDUCTION 546
B.3.1 The State Assignment Problem 550
B.3.2 Excitation Tables 554

SOLUTIONS TO PROBLEMS 569

INDEX 623

CHAPTER 1 INTRODUCTION

1

INTRODUCTION

 1

1.1 Overview

Computer

architecture

 deals with the functional behavior of a computer system
as viewed by a programmer. This view includes aspects such as the sizes of data
types (

e.g.

 using 16 binary digits to represent an integer), and the types of opera-
tions that are supported (like addition, subtraction, and subroutine calls). Com-
puter

organization

 deals with structural relationships that are not visible to the
programmer, such as interfaces to peripheral devices, the clock frequency, and
the technology used for the memory. This textbook deals with both architecture
and organization, with the term “architecture” referring broadly to both architec-
ture and organization.

There is a concept of

levels

 in computer architecture. The basic idea is that there
are many levels, or views, at which a computer can be considered, from the high-
est level, where the user is running programs, or

using

 the computer, to the low-
est level, consisting of transistors and wires. Between the high and low levels are a
number of intermediate levels. Before we discuss those levels we will present a
brief history of computing in order to gain a perspective on how it all came
about.

1.2 A Brief History

Mechanical devices for controlling complex operations have been in existence
since at least the 1500’s, when rotating pegged cylinders were used in music
boxes much as they are today. Machines that perform calculations, as opposed to
simply repeating a predetermined melody, came in the next century.

Blaise Pascal (1623 – 1662) developed a mechanical calculator to help in his
father’s tax work. The Pascal calculator “Pascaline” contains eight dials that con-

2

CHAPTER 1 INTRODUCTION

nect to a drum (Figure 1-1), with an innovative linkage that causes a dial to

rotate one notch when a carry is produced from a dial in a lower position. A win-
dow is placed over the dial to allow its position to be observed, much like the
odometer in a car except that the dials are positioned horizontally, like a rotary
telephone dial. Some of Pascal’s adding machines, which he started to build in
1642, still exist today. It would not be until the 1800’s, however, until someone
would put the concepts of mechanical control and mechanical calculation
together into a machine that we recognize today as having the basic parts of a
digital computer. That person was Charles Babbage.

Charles Babbage (1791 – 1871) is sometimes referred to as the

grandfather

 of the
computer, rather than the father of the computer, because he never built a practi-
cal version of the machines he designed. Babbage lived in England at a time
when mathematical tables were used in navigation and scientific work. The tables
were computed manually, and as a result, they contained numerous errors. Frus-
trated by the inaccuracies, Babbage set out to create a machine that would com-
pute tables by simply setting and turning gears. The machine he designed could
even produce a plate to be used by a printer, thus eliminating errors that might
be introduced by a typesetter.

Babbage’s machines had a means for reading input data, storing data, performing
calculations, producing output data, and automatically controlling the operation
of the machine. These are basic functions that are found in nearly every modern
computer. Babbage created a small prototype of his

difference engine

, which
evaluates polynomials using the method of finite differences. The success of the

Figure 1-1 Pascal’s calculating machine (Reproduced from an IBM Archives photograph.)

CHAPTER 1 INTRODUCTION

3

difference engine concept gained him government support for the much larger

analytical engine

, which was a more sophisticated machine that had a mecha-
nism for

branching

 (making decisions) and a means for programming, using
punched cards in the manner of what is known as the

Jacquard pattern-weav-
ing loom

.

The analytical engine was designed, but was never built by Babbage because the
mechanical tolerances required by the design could not be met with the technol-
ogy of the day. A version of Babbage’s difference engine was actually built by the
Science Museum in London in 1991, and can still be viewed today.

It took over a century, until the start of World War II, before the next major
thrust in computing was initiated. In England, German

U-boat

 submarines were
inflicting heavy damage on Allied shipping. The U-boats received communica-
tions from their bases in Germany using an encryption code, which was imple-
mented by a machine made by Siemens AG known as

ENIGMA

.

The process of encrypting information had been known for a long time, and
even the United States president Thomas Jefferson (1743 – 1826) designed a
forerunner of ENIGMA, though he did not construct the machine. The process
of decoding encrypted data was a much harder task. It was this problem that
prompted the efforts of Alan Turing (1912 – 1954), and other scientists in
England in creating codebreaking machines. During World War II, Turing was
the leading cryptographer in England and was among those who changed cryp-
tography from a subject for people who deciphered ancient languages to a subject
for mathematicians.

The

Colossus

 was a successful codebreaking machine that came out of Bletchley
Park, England, where Turing worked. Vacuum tubes store the contents of a paper
tape that is fed into the machine, and computations take place among the vac-
uum tubes and a second tape that is fed into the machine. Programming is per-
formed with plugboards. Turing’s involvement in the various Collosi machine
versions remains obscure due to the secrecy that surrounds the project, but some
aspects of his work and his life can be seen in the Broadway play

Breaking the
Code

 which was performed in London and New York in the late 1980’s.

Around the same time as Turing’s efforts, J. Presper Eckert and John Mauchly set
out to create a machine that could be used to compute tables of ballistic trajecto-
ries for the U.S. Army. The result of the Eckert-Mauchly effort was the Elec-
tronic Numerical Integrator And Computer (

ENIAC

). The ENIAC consists of

4

CHAPTER 1 INTRODUCTION

18,000 vacuum tubes, which make up the computing section of the machine.
Programming and data entry are performed by setting switches and changing
cables. There is no concept of a stored program, and there is no central memory
unit, but these are not serious limitations because all that the ENIAC needed to
do was to compute ballistic trajectories. Even though it did not become opera-
tional until 1946, after the War was over, it was considered quite a success, and
was used for nine years.

After the success of ENIAC, Eckert and Mauchly, who were at the Moore School
at the University of Pennsylvania, were joined by John von Neumann (1903 –
1957), who was at the Institute for Advanced Study at Princeton. Together, they
worked on the design of a stored program computer called the

EDVAC

. A con-
flict developed, however, and the Pennsylvania and Princeton groups split. The
concept of a stored program computer thrived, however, and a working model of
the stored program computer, the

EDSAC

, was constructed by Maurice Wilkes,
of Cambridge University, in 1947.

1.3 The Von Neumann Model

Conventional digital computers have a common form that is attributed to von
Neumann, although historians agree that the entire team was responsible for the
design. The

von Neumann model

 consists of five major components as illus-
trated in Figure 1-2. The

Input Unit

 provides instructions and data to the sys-

Input Unit
Arithmetic
and Logic

Unit (ALU)
Output Unit

Memory
Unit

Control Unit

Figure 1-2 The von Neumann model of a digital computer. Thick arrows represent data paths. Thin

arrows represent control paths.

CHAPTER 1 INTRODUCTION

5

tem, which are subsequently stored in the

Memory Unit

. The instructions and
data are processed by the

Arithmetic and Logic Unit

 (ALU) under the direction
of the

Control Unit

. The results are sent to the

Output Unit

. The ALU and
control unit are frequently referred to collectively as the

central processing unit
(CPU)

. Most commercial computers can be decomposed into these five basic
units.

The

stored program

 is the most important aspect of the von Neumann model.
A program is stored in the computer’s memory along with the data to be pro-
cessed. Although we now take this for granted, prior to the development of the
stored program computer programs were stored on external media, such as plug-
boards (mentioned earlier) or punched cards or tape. In the stored program com-
puter the program can be manipulated as if it is data. This gave rise to compilers
and operating systems, and makes possible the great versatility of the modern
computer.

1.4 The System Bus Model

Although the von Neumann model prevails in modern computers, it has been
streamlined. Figure 1-3 shows the

system bus model

 of a computer system. This

model partitions a computer system into three subunits: CPU, Memory, and
Input/Output (I/O). This refinement of the von Neumann model combines the
ALU and the control unit into one functional unit, the CPU. The input and out-
put units are also combined into a single I/O unit.

Most important to the system bus model, the communications among the com-

Sy
st

em
 B

us

Data Bus

Address Bus

Control Bus

(ALU,
Registers,

and Control)

Memory Input and
Output (I/O)

CPU

Figure 1-3 The system bus model of a computer system. [Contributed by Donald Chiarulli, Univ. Pitts-

burgh.]

6

CHAPTER 1 INTRODUCTION

ponents are by means of a shared pathway called the

system bus

, which is made
up of the

data bus

 (which carries the information being transmitted), the

address bus

 (which identifies where the information is being sent), and the

con-
trol bus

 (which describes aspects of how the information is being sent, and in
what manner). There is also a

power bus

 for electrical power to the components,
which is not shown, but its presence is understood. Some architectures may also
have a separate I/O bus.

Physically, busses are made up of collections of wires that are grouped by func-
tion. A 32-bit data bus has 32 individual wires, each of which carries one bit of
data (as opposed to address or control information). In this sense, the system bus
is actually a group of individual busses classified by their function.

The data bus moves data among the system components. Some systems have sep-
arate data buses for moving information to and from the CPU, in which case
there is a

data-in

 bus and a

data-out

 bus. More often a single data bus moves
data in either direction, although never both directions at the same time.

If the bus is to be shared among communicating entities, then the entities must
have distinguished identities: addresses. In some computers all addresses are
assumed to be memory addresses whether they are in fact part of the computer’s
memory, or are actually I/O devices, while in others I/O devices have separate
I/O addresses. (This topic of I/O addresses is covered in more detail in Chapter
8, Input, Output, and Communication.)

A

memory address,

 or location, identifies a memory location where data is
stored, similar to the way a postal address identifies the location where a recipient
receives and sends mail. During a memory read or write operation the address
bus contains the address of the memory location where the data is to be read
from or written to. Note that the terms “read” and “write” are with respect to the
CPU: the CPU

reads

 data from memory and

writes

 data into memory. If data is
to be read from memory then the data bus contains the value read from that
address in memory. If the data is to be written into memory then the data bus
contains the data value to be written into memory.

The control bus is somewhat more complex, and we defer discussion of this bus
to later chapters. For now the control bus can be thought of as coordinating
access to the data bus and to the address bus, and directing data to specific com-
ponents.

CHAPTER 1 INTRODUCTION

7

1.5 Levels of Machines

As with any complex system, the computer can be viewed from a number of per-
spectives, or levels, from the highest “user” level to the lowest, transistor level.
Each of these levels represents an abstraction of the computer. Perhaps one of the
reasons for the enormous success of the digital computer is the extent to which
these levels of abstraction are separate, or independent from one another. This is
readily seen: a user who runs a word processing program on a computer needs to
know nothing about its programming. Likewise a programmer need not be con-
cerned with the logic gate structure inside the computer. One interesting way
that the separation of levels has been exploited is in the development of
upwardly-compatible machines.

1.5.1

UPWARD COMPATIBILITY

The invention of the transistor led to a rapid development of computer hard-
ware, and with this development came a problem of compatibility. Computer
users wanted to take advantage of the newest and fastest machines, but each new
computer model had a new architecture, and the old software would not run on
the new hardware. The hardware / software compatibility problem became so
serious that users often delayed purchasing a new machine because of the cost of
rewriting the software to run on the new hardware. When a new computer was
purchased, it would often sit unavailable to the target users for months while the
old software and data sets were converted to the new systems.

In a successful gamble that pitted compatibility against performance, IBM pio-
neered the concept of a “family of machines” with its 360 series. More capable
machines in the same family could run programs written for less capable
machines without modifications to those programs—upward compatibility.
Upward compatibility allows a user to upgrade to a faster, more capable machine
without rewriting the software that runs on the less capable model.

1.5.2

THE LEVELS

Figure 1-4 shows seven levels in the computer, from the user level down to the
transistor level. As we progress from the top level downward, the levels become
less “abstract” and more of the internal structure of the computer shows through.
We discuss these levels below.

8

CHAPTER 1 INTRODUCTION

User or Application-Program Level

We are most familiar with the user, or application program level of the computer.
At this level, the user interacts with the computer by running programs such as
word processors, spreadsheet programs, or games. Here the user sees the com-
puter through the programs that run on it, and little (if any) of its internal or
lower-level structure is visible.

High Level Language Level

Anyone who has programmed a computer in a high level language such as C,
Pascal, Fortran, or Java, has interacted with the computer at this level. Here, a
programmer sees only the language, and none of the low-level details of the
machine. At this level the programmer sees the data types and instructions of the
high-level language, but needs no knowledge of how those data types are actually
implemented in the machine. It is the role of the

compiler

 to map data types and
instructions from the high-level language to the actual computer hardware. Pro-
grams written in a high-level language can be re-compiled for various machines
that will (hopefully) run the same and provide the same results regardless of
which machine on which they are compiled and run. We can say that programs
are compatible across machine types if written in a high-level language, and this
kind of compatibility is referred to as

source code compatibility

.

High Level

High Level Languages

User Level: Application Programs

Low Level

Functional Units (Memory, ALU, etc.)

Logic Gates

Transistors and Wires

Assembly Language / Machine Code

Microprogrammed / Hardwired Control

Figure 1-4 Levels of machines in the computer hierarchy.

CHAPTER 1 INTRODUCTION

9

Assembly Language/Machine Code Level

As pointed out above, the high-level language level really has little to do with the
machine on which the high-level language is translated. The compiler translates
the source code to the actual machine instructions, sometimes referred to as

machine language

 or

machine code

. High-level languages “cater” to the pro-
grammer by providing a certain set of presumably well-thought-out language
constructs and data types. Machine languages look “downward” in the hierarchy,
and thus cater to the needs of the lower level aspects of the machine design. As a
result, machine languages deal with hardware issues such as registers and the
transfer of data between them. In fact, many machine instructions can be
described in terms of the register transfers that they effect. The collection of
machine instructions for a given machine is referred to as the

instruction set

 of
that machine.

Of course, the actual machine code is just a collection of 1’s and 0’s, sometimes
referred to as

machine binary code

, or just binary code. As we might imagine,
programming with 1’s and 0’s is tedious and error prone. As a result, one of the
first computer programs written was the

assembler

, which translates ordinary
language

mnemonics

 such as

MOVE

Data

,

Acc

, into their corresponding
machine language 1’s and 0’s. This language, whose constructs bear a one-to-one
relationship to machine language, is known as

assembly language

.

As a result of the separation of levels, it is possible to have many different
machines that differ in the lower-level implementation but which have the same
instruction set, or sub- or supersets of that instruction set. This allowed IBM to
design a product line such as the

IBM 360

 series with guaranteed upward com-
patibility of machine code. Machine code running on the 360 Model 35 would
run unchanged on the 360 Model 50, should the customer wish to upgrade to
the more powerful machine. This kind of compatibility is known as “binary
compatibility,” because the binary code will run unchanged on the various family
members. This feature was responsible in large part for the great success of the
IBM 360 series of computers.

Intel Corporation

 has stressed binary compatibility in its family members. In
this case, binaries written for the original member of a family, such as the 8086,
will run unchanged on all subsequent family members, such as the 80186,
80286, 80386, 80486, and the most current family member, the Pentium pro-
cessor. Of course this does not address the fact that there are other computers
that present different instruction sets to the users, which makes it difficult to port
an installed base of software from one family of computers to another.

10

CHAPTER 1 INTRODUCTION

The Control Level

It is the

control unit

 that effects the register transfers described above. It does so
by means of

control signals

 that transfer the data from register to register, possi-
bly through a logic circuit that transforms it in some way. The control unit inter-
prets the machine instructions one by one, causing the specified register transfer
or other action to occur.

How it does this is of no need of concern to the assembly language programmer.
The Intel 80x86 family of processors presents the same behavioral view to an
assembly language programmer regardless of which processor in the family is
considered. This is because each future member of the family is designed to exe-
cute the original 8086 instructions in addition to any new instructions imple-
mented for that particular family member.

As Figure 1-4 indicates, there are several ways of implementing the control unit.
Probably the most popular way at the present time is by “hardwiring” the control
unit. This means that the control signals that effect the register transfers are gen-
erated from a block of digital logic components. Hardwired control units have
the advantages of speed and component count, but until recently were exceed-
ingly difficult to design and modify. (We will study this technique more fully in
Chapter 9.)

A somewhat slower but simpler approach is to implement the instructions as a

microprogram

. A microprogram is actually a small program written in an even
lower-level language, and implemented in the hardware, whose job is to interpret
the machine-language instructions. This microprogram is referred to as

firmware

because it spans both hardware and software. Firmware is executed by a

micro-
controller

, which executes the actual microinstructions. (We will also explore
microprogramming in Chapter 9.)

Functional Unit Level

The register transfers and other operations implemented by the control unit
move data in and out of “functional units,” so-called because they perform some
function that is important to the operation of the computer. Functional units
include internal CPU registers, the ALU, and the computer’s main memory.

CHAPTER 1 INTRODUCTION

11

Logic Gates, Transistors, and Wires

The lowest levels at which any semblance of the computer’s higher-level func-
tioning is visible is at the

logic gate

 and

transistor

 levels. It is from logic gates
that the functional units are built, and from transistors that logic gates are built.
The logic gates implement the lowest-level logical operations upon which the
computer’s functioning depends. At the very lowest level, a computer consists of
electrical components such as transistors and wires, which make up the logic
gates, but at this level the functioning of the computer is lost in details of voltage,
current, signal propagation delays, quantum effects, and other low-level matters.

Interactions Between Levels

The distinctions within levels and between levels are frequently blurred. For
instance, a new computer architecture may contain floating point instructions in
a full-blown implementation, but a minimal implementation may have only
enough hardware for integer instructions. The floating point instructions are

trapped

†

 prior to execution and replaced with a sequence of machine language
instructions that imitate, or

emulate

 the floating point instructions using the
existing integer instructions. This is the case for

microprocessors

 that use
optional floating point coprocessors. Those without floating point coprocessors
emulate the floating point instructions by a series of floating point routines that
are implemented in the machine language of the microprocessor, and frequently
stored in a

ROM

, which is a read-only memory chip. The assembly language and
high level language view for both implementations is the same except for execu-
tion speed.

It is possible to take this emulation to the extreme of emulating the entire
instruction set of one computer on another computer. The software that does
this is known as an

emulator

, and was used by

Apple Computer

 to maintain
binary code compatibility when they began employing Motorola PowerPC chips
in place of Motorola 68000 chips, which had an entirely different instruction set.

The high level language level and the firmware and functional unit levels can be
so intermixed that it is hard to identify what operation is happening at which
level. The value in stratifying a computer architecture into a hierarchy of levels is
not so much for the purpose of classification, which we just saw can be difficult
at times, but rather to simply give us some focus when we study these levels in

†. Traps are covered in Chapter 6.

12

CHAPTER 1 INTRODUCTION

the chapters that follow.

The Programmer’s View—The Instruction Set Architecture

As described in the discussion of levels above, the assembly language programmer
is concerned with the assembly language and functional units of the machine.
This collection of instruction set and functional units is known as the

instruc-
tion set architecture

 (ISA) of the machine.

The Computer Architect’s View

On the other hand, the computer architect views the system at all levels. The
architect that focuses on the design of a computer is invariably driven by perfor-
mance requirements and cost constraints. Performance may be specified by the
speed of program execution, the storage capacity of the machine, or a number of
other parameters. Cost may be reflected in monetary terms, or in size or weight,
or power consumption. The design proposed by a computer architect must
attempt to meet the performance goals while staying within the cost constraints.
This usually requires trade-offs between and among the levels of the machine.

1.6 A Typical Computer System

Modern computers have evolved from the great behemoths of the 1950’s and
1960’s to the much smaller and more powerful computers that surround us
today. Even with all of the great advances in computer technology that have been
made in the past few decades, the five basic units of the von Neumann model are
still distinguishable in modern computers.

Figure 1-5 shows a typical configuration for a desktop computer. The input unit
is composed of the keyboard, through which a user enters data and commands.
A video monitor comprises the output unit, which displays the output in a
visual form. The ALU and the control unit are bundled into a single micropro-
cessor that serves as the CPU. The memory unit consists of individual memory
circuits, and also a hard disk unit, a diskette unit, and a CD-ROM (compact
disk - read only memory) device.

As we look deeper inside of the machine, we can see that the heart of the
machine is contained on a single motherboard, similar to the one shown in Fig-
ure 1-6. The motherboard contains integrated circuits (ICs), plug-in expansion
card slots, and the wires that interconnect the ICs and expansion card slots. The

CHAPTER 1 INTRODUCTION 13

input, output, memory, and ALU/control sections are highlighted as shown. (We
will cover motherboard internals in later chapters.)

1.7 Organization of the Book
We explore the inner workings of computers in the chapters that follow. Chapter
2 covers the representation of data, which provides background for all of the
chapters that follow. Chapter 3 covers methods for implementing computer
arithmetic. Chapters 4 and 5 cover the instruction set architecture, which serves
as a vehicle for understanding how the components of a computer interact.
Chapter 6 ties the earlier chapters together in the design and analysis of a control

Monitor

CD-ROM drive

Hard disk drive

Keyboard

Sockets for
internal memory

CPU (Microprocessor
beneath heat sink)

Sockets for plug-in
expansion cards

Diskette drive

Figure 1-5 A desktop computer system.

14 CHAPTER 1 INTRODUCTION

unit for the instruction set architecture. Chapter 7 covers the organization of
memory units, and memory management techniques. Chapter 8 covers input,
output, and communication. Chapter 9 covers advanced aspects of single-CPU
systems (which might have more than one processing unit). Chapter 10 covers
advanced aspects of multiple-CPU systems, such as parallel and distributed
architectures, and network architectures. Finally, in Appendices A and B, we look
into the design of digital logic circuits, which are the building blocks for the
basic components of a computer.

1.8 Case Study: What Happened to Supercomputers?
[Note from the authors: The following contribution comes from Web page
http://www.paralogos.com/DeadSuper created by Kevin D. Kissell at
kevink@acm.org. Kissell’s Web site lists dozens of supercomputing projects that
have gone by the wayside. One of the primary reasons for the near-extinction of

Memory

Input / output

Battery

Plug-in expansion card slots

Power supply
connector

Pentium II processor slot
(ALU/control)

Figure 1-6 A Pentium II based motherboard. [Source: TYAN Computer,

http://www.tyan.com.]

CHAPTER 1 INTRODUCTION 15

supercomputers is that ordinary, everyday computers achieve a significant frac-
tion of supercomputing power at a price that the common person can afford.
The price-to-performance ratio for desktop computers is very favorable due to
low costs achieved through mass market sales. Supercomputers enjoy no such
mass markets, and continue to suffer very high price-to-performance ratios.

Following Kissell’s contribution is an excerpt from an Electrical Engineering
Times article that highlights the enormous investment in everyday microproces-
sor development, which helps maintain the favorable price-to-performance ratio
for low-cost desktop computers.]

The Passing of a Golden Age?

From the construction of the first programmed computers until the mid 1990s,
there was always room in the computer industry for someone with a clever, if
sometimes challenging, idea on how to make a more powerful machine. Com-
puting became strategic during the Second World War, and remained so during
the Cold War that followed. High-performance computing is essential to any
modern nuclear weapons program, and a computer technology “race” was a logi-
cal corollary to the arms race. While powerful computers are of great value to a
number of other industrial sectors, such as petroleum, chemistry, medicine, aero-
nautical, automotive, and civil engineering, the role of governments, and partic-
ularly the national laboratories of the US government, as catalysts and incubators
for innovative computing technologies can hardly be overstated. Private industry
may buy more machines, but rarely do they risk buying those with single-digit
serial numbers. The passing of Soviet communism and the end of the Cold War

Figure 1-7 The Manchester University Mark I, made operational on 21 June 1948. (Not to be con-

fused with the Harvard Mark I, donated to Harvard University by International Business Machines

in August, 1944.)

16 CHAPTER 1 INTRODUCTION

brought us a generally safer and more prosperous world, but it removed the rai-
son d'etre for many merchants of performance-at-any-price.

Accompanying these geopolitical changes were some technological and economic
trends that spelled trouble for specialized producers of high-end computers.
Microprocessors began in the 1970s as devices whose main claim to fame was
that it was possible to put a stored-program computer on a single piece of silicon.
Competitive pressures, and the desire to generate sales by obsoleting last year’s
product, made for the doubling of microprocessor computing power every 18
months, Moore's celebrated “law.” Along the way, microprocessor designers bor-
rowed almost all the tricks that designers of mainframe and numerical supercom-
puters had used in the past: storage hierarchies, pipelining, multiple functional
units, multiprocessing, out-of-order execution, branch prediction, SIMD pro-
cessing, speculative and predicated execution. By the mid 1990s, research ideas
were going directly from simulation to implementation in microprocessors des-
tined for the desktops of the masses. Nevertheless, it must be noted that most of
the gains in raw performance achieved by microprocessors in the preceding
decade came, not from these advanced techniques of computer architecture, but
from the simple speedup of processor clocks and quantitative increase in proces-
sor resources made possible by advances in semiconductor technology. By 1998,
the CPU of a high-end Windows-based personal computer was running at a
higher clock rate than the top-of-the-line Cray Research supercomputer of 1994.

It is thus hardly surprising that the policy of the US national laboratories has
shifted from the acquisition of systems architected from the ground up to be
supercomputers to the deployment of large ensembles of mass-produced micro-
processor-based systems, with the ASCI project as the flagship of this activity. As
of this writing, it remains to be seen if these agglomerations will prove to be suf-
ficiently stable and usable for production work, but the preliminary results have
been at least satisfactory. The halcyon days of supercomputers based on exotic
technology and innovative architecture may well be over.

[...]

Kevin D. Kissell
kevink@acm.org
February, 1998

[Note from the authors: The following excerpt is taken from the Electronic Engi-

CHAPTER 1 INTRODUCTION 17

neering Times, source:
http://techweb.cmp.com/eet/news/98/994news/invest.html.]

Invest or die: Intel’s life on the edge

 By Ron Wilson and Brian Fuller

SANTA CLARA, Calif. -- With about $600 million to pump
into venture companies this year, Intel Corp. has
joined the major leagues of venture-capital firms. But
the unique imperative that drives the microprocessor
giant to invest gives it influence disproportionate to
even this large sum. For Intel, venture investments
are not just a source of income; they are a vital tool
in the fight to survive.

Survival might seem an odd preoccupation for the
world's largest semiconductor company. But Intel, in a
way all its own, lives hanging in the balance. For
every new generation of CPUs, Intel must make huge
investments in process development, in buildings and
in fabs-an investment too huge to lose.

Gordon Moore, Intel chairman emeritus, gave scale to
the wager. "An R&D fab today costs $400 million just
for the building. Then you put about $1 billion of
equipment in it. That gets you a quarter-micron fab
for maybe 5,000 wafers per week, about the smallest
practical fab. For the next generation," Moore said,
"the minimum investment will be $2 billion, with maybe
$3 billion to $4 billion for any sort of volume produc-
tion. No other industry has such a short life on such
huge investments."

Much of this money will be spent before there is a
proven need for the microprocessors the fab will pro-
duce. In essence, the entire $4 billion per fab is bet
on the proposition that the industry will absorb a
huge number of premium-priced CPUs that are only some-
what faster than the currently available parts. If for
just one generation that didn't happen-if everyone
judged, say, that the Pentium II was fast enough,
thank you-the results would be unthinkable.

"My nightmare is to wake up some day and not need any
more computing power," Moore said.

18 CHAPTER 1 INTRODUCTION

� SUMMARY

Computer architecture deals with those aspects of a computer that are visible to a
programmer, while computer organization deals with those aspects that are at a
more physical level and are not made visible to a programmer. Historically, pro-
grammers had to deal with every aspect of a computer – Babbage with mechanical
gears, and ENIAC programmers with plugboard cables. As computers grew in
sophistication, the concept of levels of machines became more pronounced, allow-
ing computers to have very different internal and external behaviors while man-
aging complexity in stratified levels. The single most significant development that
makes this possible is the stored program computer, which is embodied in the von
Neumann model. It is the von Neumann model that we see in most conventional
computers today.

� Further Reading
The history of computing is riddled with interesting personalities and mile-
stones. (Anderson, 1991) gives a short, readable account of both during the last
century. (Bashe et. al., 1986) give an interesting account of the IBM machines.
(Bromley, 1987) chronicles Babbage’s machines. (Ralston and Reilly, 1993) give
short biographies of the more celebrated personalities. (Randell, 1982) covers the
history of digital computers. A very readable Web based history of computers by
Michelle A. Hoyle can be found at http://www.interpac.net/~eingang/Lec-
ture/toc.html. (SciAm, 1993) covers a readable version of the method of finite
differences as it appears in Babbage’s machines, and the version of the analytical
difference engine created by the Science Museum in London.

(Tanenbaum, 1999) is one of a number of texts that popularizes the notion of
levels of machines.

Anderson, Harlan, Dedication address for the Digital Computer Laboratory at
the University of Illinois, April 17, 1991, as reprinted in IEEE Circuits and Sys-
tems: Society Newsletter, vol. 2, no. 1, pp. 3–6, (March 1991).

Bashe, Charles J., Lyle R. Johnson, John H. Palmer, and Emerson W. Pugh,
IBM’s Early Computers, The MIT Press, (1986).

CHAPTER 1 INTRODUCTION 19

Bromley, A. G., “The Evolution of Babbage’s Calculating Engines,” Annals of the
History of Computing, 9, pp. 113-138, (1987).

Randell, B., The Origins of Digital Computers, 3/e, Springer-Verlag, (1982).

Ralston, A. and E. D. Reilly, eds., Encyclopedia of Computer Science, 3/e, van
Nostrand Reinhold, (1993).

Tanenbaum, A., Structured Computer Organization, 4/e, Prentice Hall, Engle-
wood Cliffs, New Jersey, (1999).

� PROBLEMS
1.1 Moore’s law, which is attributed to Intel founder Gordon Moore, states

that computing power doubles every 18 months for the same price. An unre-
lated observation is that floating point instructions are executed 100 times
faster in hardware than via emulation. Using Moore’s law as a guide, how long
will it take for computing power to improve to the point that floating point
instructions are emulated as quickly as their (earlier) hardware counterparts?

20 CHAPTER 1 INTRODUCTION

CHAPTER 2 DATA REPRESENTATION

21

2.1 Introduction

In the early days of computing, there were common misconceptions about com-
puters. One misconception was that the computer was only a giant adding
machine performing arithmetic operations. Computers could do much more
than that, even in the early days. The other common misconception, in contra-
diction to the first, was that the computer could do “anything.” We now know
that there are indeed classes of problems that even the most powerful imaginable
computer finds intractable with the von Neumann model. The correct percep-
tion, of course, is somewhere between the two.

We are familiar with computer operations that are non-arithmetic: computer
graphics, digital audio, even the manipulation of the computer mouse. Regard-
less of what kind of information is being manipulated by the computer, the
information must be represented by patterns of 1’s and 0’s (also known as
“on-off” codes). This immediately raises the question of how that information
should be described or represented in the machine—this is the

data representa-
tion

, or

data encoding

. Graphical images, digital audio, or mouse clicks must all
be encoded in a systematic, agreed-upon manner.

We might think of the decimal representation of information as the most natural
when we know it the best, but the use of on-off codes to represent information
predated the computer by many years, in the form of Morse code.

This chapter introduces several of the simplest and most important encodings:
the encoding of signed and unsigned fixed point numbers, real numbers (referred
to as

floating point numbers

 in computer jargon), and the printing characters.
We shall see that in all cases there are multiple ways of encoding a given kind of
data, some useful in one context, some in another. We will also take an early look

DATA REPRESENTATION

 2

22

CHAPTER 2 DATA REPRESENTATION

at computer arithmetic for the purpose of understanding some of the encoding
schemes, though we will defer details of computer arithmetic until Chapter 3.

In the process of developing a data representation for computing, a crucial issue
is deciding how much storage should be devoted to each data value. For example,
a computer architect may decide to treat integers as being 32 bits in size, and to
implement an ALU that supports arithmetic operations on those 32-bit values
that return 32 bit results. Some numbers can be too large to represent using 32
bits, however, and in other cases, the operands may fit into 32 bits, but the result
of a computation will not, creating an

overflow

 condition, which is described in
Chapter 3. Thus we need to understand the limits imposed on the accuracy and
range of numeric calculations by the finite nature of the data representations. We
will investigate these limits in the next few sections.

2.2 Fixed Point Numbers

In a fixed point number system, each number has exactly the same number of
digits, and the “point” is always in the same place. Examples from the decimal
number system would be 0.23, 5.12, and 9.11. In these examples each number
has 3 digits, and the decimal point is located two places from the right. Examples
from the

binary

 number system (in which each digit can take on only one of the
values: 0 or 1) would be 11.10, 01.10, and 00.11, where there are 4 binary digits
and the binary point is in the middle. An important difference between the way
that we represent fixed point numbers on paper and the way that we represent
them in the computer is that when fixed point numbers are represented in the
computer

the binary point is not stored anywhere

, but only assumed to be in a cer-
tain position. One could say that the binary point exists only in the mind of the
programmer.

We begin coverage of fixed point numbers by investigating the range and preci-
sion of fixed point numbers, using the decimal number system. We then take a
look at the nature of number bases, such as decimal and binary, and how to con-
vert between the bases. With this foundation, we then investigate several ways of
representing negative fixed point numbers, and take a look at simple arithmetic
operations that can be performed on them.

2.2.1

RANGE AND PRECISION IN FIXED POINT NUMBERS

A fixed point representation can be characterized by the

range

 of expressible
numbers (that is, the distance between the largest and smallest numbers) and the

CHAPTER 2 DATA REPRESENTATION

23

precision

 (the distance between two adjacent numbers on a number line.) For
the fixed-point decimal example above, using three digits and the decimal point
placed two digits from the right, the range is from 0.00 to 9.99 inclusive of the
endpoints, denoted as [0.00, 9.99], the precision is .01, and the

error

 is 1/2 of
the difference between two “adjoining” numbers, such as 5.01 and 5.02, which
have a difference of .01. The error is thus .01/2 = .005. That is, we can represent
any number within the range 0.00 to 9.99 to within .005 of its true or precise
value.

Notice how range and precision trade off: with the decimal point on the far
right, the range is [000, 999] and the precision is 1.0. With the decimal point at
the far left, the range is [.000, .999] and the precision is .001.

In either case, there are only 10

3

 different decimal “objects,” ranging from 000 to
999 or from .000 to .999, and thus it is possible to represent only 1,000 different
items, regardless of how we apportion range and precision.

There is no reason why the range must begin with 0. A 2-digit decimal number
can have a range of [00,99] or a range of [-50, +49], or even a range of [-99, +0].
The representation of negative numbers is covered more fully in Section 2.2.6.

Range and precision are important issues in computer architecture because both
are finite in the implementation of the architecture, but are infinite in the real
world, and so the user must be aware of the limitations of trying to represent
external information in internal form.

2.2.2

THE ASSOCIATIVE LAW OF ALGEBRA DOES NOT ALWAYS HOLD
IN COMPUTERS

In early mathematics, we learned the associative law of algebra:

a

 + (

b

 +

c

) = (

a

 +

b

) +

c

As we will see, the associative law of algebra does not hold for fixed point num-
bers having a finite representation. Consider a 1-digit decimal fixed point repre-
sentation with the decimal point on the right, and a range of [-9, 9], with a = 7,
b=4, and c=–3. Now

a

 + (

b

 +

c

) = 7 + (4 + –3) = 7 + 1 =8. But (

a

 +

b

) +

c =

 (7 +
4) + –3 = 11 + –3, but 11 is outside the range of our number system! We have
overflow in an intermediate calculation, but the final result is within the number
system. This is every bit as bad because the final result will be wrong if an inter-

24

CHAPTER 2 DATA REPRESENTATION

mediate result is wrong.

Thus we can see by example that the associative law of algebra does not hold for
finite-length fixed point numbers. This is an unavoidable consequence of this
form of representation, and there is nothing practical to be done except to detect
overflow wherever it occurs, and either terminate the computation immediately
and notify the user of the condition, or, having detected the overflow, repeat the
computation with numbers of greater range. (The latter technique is seldom
used except in critical applications.)

2.2.3

RADIX NUMBER SYSTEMS

In this section, we learn how to work with numbers having arbitrary bases,
although we will focus on the bases most used in digital computers, such as base
2 (binary), and its close cousins base 8 (octal), and base 16 (hexadecimal.)

The

base

, or

radix

 of a number system defines the range of possible values that a
digit may have. In the base 10 (decimal) number system, one of the 10 values: 0,
1, 2, 3, 4, 5, 6, 7, 8, 9 is used for each digit of a number. The most natural sys-
tem for representing numbers in a computer is base 2, in which data is repre-
sented as a collection of 1’s and 0’s.

The general form for determining the decimal value of a number in a radix

k

fixed point number system is shown below:

 The value of the digit in position

i

 is given by

b

i

. There are

n

 digits to the left of
the radix point and there are

m

 digits to the right of the radix point. This form of
a number, in which each position has an assigned weight, is referred to as a

weighted position code

. Consider evaluating (541.25)

10

, in which the subscript
10 represents the base. We have

n

 = 3,

m

 = 2, and

k

 = 10:

5

×

 10

2

 + 4

×

 10

1

 + 1

×

 10

0

 + 2

×

 10

-1

 + 5

×

 10

-2

=

(500)

10

 + (40)

10

 + (1)

10

 + (2/10)

10

 + (5/100)

10

 = (541.25)

10

Value bi ki⋅
i m–=

n 1–

∑=

CHAPTER 2 DATA REPRESENTATION

25

Now consider the base 2 number (1010.01)

2

 in which

n

 = 4,

m

 = 2, and

k

 = 2:

1

×

 2

3

 + 0

×

 2

2

 + 1

×

 2

1

 + 0

×

 2

0

 + 0

×

 2

-1

 + 1

×

 2

-2

=

(8)

10

 + (0)

10

 + (2)

10

 + (0)

10

 + (0/2)

10

 + (1/4)

10

= (10.25)

10

This suggests how to convert a number from an arbitrary base into a base 10
number using the

polynomial method

. The idea is to multiply each digit by the
weight assigned to its position (powers of two in this example) and then sum up
the terms to obtain the converted number. Although conversions can be made
among all of the bases in this way, some bases pose special problems, as we will
see in the next section.

Note: in these weighted number systems we define the bit that carries the most
weight as the

most significant bit

(MSB)

, and the bit that carries the least
weight as the

least significant bit (LSB)

. Conventionally the MSB is the left-
most bit and the LSB the rightmost bit.

2.2.4

 CONVERSIONS AMONG RADICES

In the previous section, we saw an example of how a base 2 number can be con-
verted into a base 10 number. A conversion in the reverse direction is more
involved. The easiest way to convert fixed point numbers containing both integer
and fractional parts is to convert each part separately. Consider converting
(23.375)

10

 to base 2. We begin by separating the number into its integer and
fractional parts:

(23.375)

10

 = (23)

10

 + (.375)

10

.

Converting the Integer Part of a Fixed Point Number—The Remainder Method

As suggested in the previous section, the general polynomial form for represent-
ing a binary integer is:

bi 2i× bi 1– 2i 1–× … b1 21× b0 20×+ + + +

26 CHAPTER 2 DATA REPRESENTATION

If we divide the integer by 2, then we will obtain:

with a remainder of b0. As a result of dividing the original integer by 2, we dis-
cover the value of the first binary coefficient b0. We can repeat this process on the
remaining polynomial and determine the value of b1. We can continue iterating
the process on the remaining polynomial and thus obtain all of the bi. This pro-
cess forms the basis of the remainder method of converting integers between
bases.

We now apply the remainder method to convert (23)10 to base 2. As shown in
Figure 2-1, the integer is initially divided by 2, which leaves a remainder of 0 or

1. For this case, 23/2 produces a quotient of 11 and a remainder of 1. The first
remainder is the least significant binary digit (bit) of the converted number (the
rightmost bit). In the next step 11 is divided by 2, which creates a quotient of 5
and a remainder of 1. Next, 5 is divided by 2, which creates a quotient of 2 and a
remainder of 1. The process continues until we are left with a quotient of 0. If we
continue the process after obtaining a quotient of 0, we will only obtain 0’s for
the quotient and remainder, which will not change the value of the converted
number. The remainders are collected into a base 2 number in the order shown
in Figure 2-1 to produce the result (23)10 = (10111)2. In general, we can convert
any base 10 integer to any other base by simply dividing the integer by the base
to which we are converting.

bi 2i 1–× bi 1– 2i 2–× … b1 20×+ + +

23/2 = 11 R 1

11/2 = 5 R 1

5/2 = 2 R 1

2/2 = 1 R 0

1/2 = 0 R 1

Integer Remainder

Least significant bit

Most significant bit

(23)10 = (10111)2

Figure 2-1 A conversion from a base 10 integer to a base 2 integer using the remainder method.

CHAPTER 2 DATA REPRESENTATION 27

We can check the result by converting it from base 2 back to base 10 using the
polynomial method:

(10111)2 = 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 1 × 20

= 16 + 0 + 4 + 2 + 1

= (23)10

At this point, we have converted the integer portion of (23.375)10 into base 2.

Converting the Fractional Part of a Fixed Point Number—The Multiplication
Method

The conversion of the fractional portion can be accomplished by successively
multiplying the fraction by 2 as described below.

A binary fraction is represented in the general form:

If we multiply the fraction by 2, then we will obtain:

We thus discover the coefficient b−1. If we iterate this process on the remaining
fraction, then we will obtain successive bi. This process forms the basis of the
multiplication method of converting fractions between bases. For the example
used here (Figure 2-2), the initial fraction (.375)10 is less than 1. If we multiply it
by 2, then the resulting number will be less than 2. The digit to the left of the
radix point will then be 0 or 1. This is the first digit to the right of the radix point
in the converted base 2 number, as shown in the figure. We repeat the process on
the fractional portion until we are either left with a fraction of 0, at which point
only trailing 0’s are created by additional iterations, or we have reached the limit
of precision used in our representation. The digits are collected and the result is
obtained: (.375)10 = (.011)2.

For this process, the multiplier is the same as the target base. The multiplier is 2
here, but if we wanted to make a conversion to another base, such as 3, then we

b 1– 2 1–× b 2– 2 2–× b 3– 2 3–× …+ + +

b 1– b 2– 2 1–× b 3– 2 2–× …+ + +

28 CHAPTER 2 DATA REPRESENTATION

would use a multiplier of 3.1

We again check the result of the conversion by converting from base 2 back to
base 10 using the polynomial method as shown below:

(.011)2 = 0 × 2−1 + 1 × 2−2 + 1 × 2−3 = 0 + 1/4 + 1/8 = (.375)10.

We now combine the integer and fractional portions of the number and obtain
the final result:

(23.375)10 = (10111.011)2.

Non Terminating Fractions

Although this method of conversion will work among all bases, some precision
can be lost in the process. For example, not all terminating base 10 fractions have
a terminating base 2 form. Consider converting (.2)10 to base 2 as shown in Fig-
ure 2-3. In the last row of the conversion, the fraction .2 reappears, and the pro-
cess repeats ad infinitum. As to why this can happen, consider that any
non-repeating base 2 fraction can be represented as i/2k for some integers i and k.
(Repeating fractions in base 2 cannot be so represented.) Algebraically,

i/2k = i×5k/(2k×5k) = i×5k/10k = j/10k

1. Alternatively, we can use the base 10 number system and also avoid the conversion if we
retain a base 2 representation, in which combinations of 1’s and 0’s represent the base 10 digits.
This is known as binary coded decimal (BCD), which we will explore later in the chapter.

.375 × 2 = 0.75

.75 × 2 = 1.50

.5 × 2 = 1.00

Least significant bit

Most significant bit

(.375)10 = (.011)2

Figure 2-2 A conversion from a base 10 fraction to a base 2 fraction using the multiplication meth-

od.

CHAPTER 2 DATA REPRESENTATION 29

where j is the integer i×5k. The fraction is thus non-repeating in base 10. This
hinges on the fact that only non-repeating fractions in base b can be represented
as i/bk for some integers i and k. The condition that must be satisfied for a
non-repeating base 10 fraction to have an equivalent non-repeating base 2 frac-
tion is:

i/10k = i/(5k×2k) = j/2k

where j = i/5k, and 5k must be a factor of i. For one digit decimal fractions, only
(.0)10 and (.5)10 are non-repeating in base 2 (20% of the possible fractions); for
two digit decimal fractions, only (.00)10, (.25)10, (.50)10, and (.75)10 are
non-repeating (4% of the possible fractions); etc. There is a link between rela-
tively prime numbers and repeating fractions, which is helpful in understanding
why some terminating base 10 fractions do not have a terminating base 2 form.
(Knuth, 1981) provides some insight in this area.

Binary versus Decimal Representations

While most computers use base 2 for internal representation and arithmetic,
some calculators and business computers use an internal representation of base
10, and thus do not suffer from this representational problem. The motivation
for using base 10 in business computers is not entirely to avoid the terminating
fraction problem, however, but also to avoid the conversion process at the input
and output units which historically have taken a significant amount of time.

.2

.4

.8

.6

.2

.

.

.

0.4

0.8

1.6

1.2

0.4

=

=

=

=

=

2

2

2

2

2

×

×

×

×

×

Figure 2-3 A terminating base 10 fraction that does not have a terminating base 2 form.

30 CHAPTER 2 DATA REPRESENTATION

Binary, Octal, and Hexadecimal Radix Representations

While binary numbers reflect the actual internal representation used in most
machines, they suffer from the disadvantage that numbers represented in base 2
tend to need more digits than numbers in other bases, (why?) and it is easy to
make errors when writing them because of the long strings of 1’s and 0’s. We
mentioned earlier in the Chapter that base 8, octal radix, and base 16, hexadec-
imal radix, are related to base 2. This is due to the three radices all being divisi-
ble by 2, the smallest one. We show below that converting among the three bases
2, 8, and 16 is trivial, and there are significant practical advantages to represent-
ing numbers in these bases.

Binary numbers may be considerably wider than their base 10 equivalents. As a
notational convenience, we sometimes use larger bases than 2 that are even mul-
tiples of 2. Converting among bases 2, 8, or 16 is easier than converting to and
from base 10. The values used for the base 8 digits are familiar to us as base 10
digits, but for base 16 (hexadecimal) we need six more digits than are used in
base 10. The letters A, B, C, D, E, F or their lower-case equivalents are com-
monly used to represent the corresponding values (10, 11, 12, 13, 14, 15) in
hexadecimal. The digits commonly used for bases 2, 8, 10, and 16 are summa-
rized in Figure 2-4. In comparing the base 2 column with the base 8 and base 16

columns, we need three bits to represent each base 8 digit in binary, and we need
four bits to represent each base 16 digit in binary. In general, k bits are needed to

Binary
(base 2)

0
1

10
11

100
101
110
111

1000
1001
1010
1011
1100
1101
1110
1111

Octal
(base 8)

0
1
2
3
4
5
6
7

10
11
12
13
14
15
16
17

Decimal
(base 10)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Hexadecimal
(base 16)

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Figure 2-4 Values for digits in the binary, octal, decimal, and hexadecimal number systems.

CHAPTER 2 DATA REPRESENTATION 31

represent each digit in base 2k, in which k is an integer, so base 23 = 8 uses three
bits and base 24 = 16 uses four bits.

In order to convert a base 2 number into a base 8 number, we partition the base
2 number into groups of three starting from the radix point, and pad the outer-
most groups with 0’s as needed to form triples. Then, we convert each triple to
the octal equivalent. For conversion from base 2 to base 16, we use groups of
four. Consider converting (10110)2 to base 8:

(10110)2 = (010)2 (110)2 = (2)8 (6)8 = (26)8

Notice that the leftmost two bits are padded with a 0 on the left in order to cre-
ate a full triplet.

Now consider converting (10110110)2 to base 16:

(10110110)2 = (1011)2 (0110)2 = (B)16 (6)16 = (B6)16

(Note that ‘B’ is a base 16 digit corresponding to 1110. B is not a variable.)

The conversion methods can be used to convert a number from any base to any
other base, but it may not be very intuitive to convert something like (513.03)6
to base 7. As an aid in performing an unnatural conversion, we can convert to
the more familiar base 10 form as an intermediate step, and then continue the
conversion from base 10 to the target base. As a general rule, we use the polyno-
mial method when converting into base 10, and we use the remainder and multi-
plication methods when converting out of base 10.

2.2.5 AN EARLY LOOK AT COMPUTER ARITHMETIC

We will explore computer arithmetic in detail in Chapter 3, but for the moment,
we need to learn how to perform simple binary addition because it is used in rep-
resenting signed binary numbers. Binary addition is performed similar to the
way we perform decimal addition by hand, as illustrated in Figure 2-5. Two
binary numbers A and B are added from right to left, creating a sum and a carry
in each bit position. Since the rightmost bits of A and B can each assume one of
two values, four cases must be considered: 0 + 0, 0 + 1, 1 + 0, and 1 + 1, with a
carry of 0, as shown in the figure. The carry into the rightmost bit position
defaults to 0. For the remaining bit positions, the carry into the position can be 0

32 CHAPTER 2 DATA REPRESENTATION

or 1, so that a total of eight input combinations must be considered as shown in
the figure.

Notice that the largest number we can represent using the eight-bit format
shown in Figure 2-5 is (11111111)2 = (255)10 and that the smallest number that
can be represented is (00000000)2 = (0)10. The bit patterns 11111111 and
00000000 and all of the intermediate bit patterns represent numbers on the
closed interval from 0 to 255, which are all positive numbers. Up to this point
we have considered only unsigned numbers, but we need to represent signed
numbers as well, in which (approximately) one half of the bit patterns is assigned
to positive numbers and the other half is assigned to negative numbers. Four
common representations for base 2 signed numbers are discussed in the next sec-
tion.

2.2.6 SIGNED FIXED POINT NUMBERS

Up to this point we have considered only the representation of unsigned fixed
point numbers. The situation is quite different in representing signed fixed point
numbers. There are four different ways of representing signed numbers that are
commonly used: sign-magnitude, one’s complement, two’s complement, and
excess notation. We will cover each in turn, using integers for our examples.
Throughout the discussion, the reader may wish to refer to Table 2.1 which
shows for a 3-bit number how the various representations appear.

Operands
0

0+

00

SumCarry
out

Carry in 0

0

1+

10

0

1

0+

10

0

1

1+

01

0

Example:

Carry

Addend: A

Augend: B

Sum

0 1 1 1 1 1 0 0

0 1 0 1 1 0 1 0

1 1 1 1 0 0 0 0

1 1 0 1 0 1 1 0

+

(124)10

(90)10

(214)10

0

0+

10

1

0

1+

01

1

1

0+

01

1

1

1+

11

1

Figure 2-5 Example of binary addition.

CHAPTER 2 DATA REPRESENTATION 33

Signed Magnitude

The signed magnitude (also referred to as sign and magnitude) representation
is most familiar to us as the base 10 number system. A plus or minus sign to the
left of a number indicates whether the number is positive or negative as in +1210
or −1210. In the binary signed magnitude representation, the leftmost bit is used
for the sign, which takes on a value of 0 or 1 for ‘+’ or ‘−’, respectively. The
remaining bits contain the absolute magnitude. Consider representing (+12)10
and (−12)10 in an eight-bit format:

(+12)10 = (00001100)2

(−12)10 = (10001100)2

The negative number is formed by simply changing the sign bit in the positive
number from 0 to 1. Notice that there are both positive and negative representa-
tions for zero: 00000000 and 10000000.

Decimal Unsigned Sign–Mag. 1’s Comp. 2’s Comp. Excess 4

7 111 – – – –

6 110 – – – –

5 101 – – – –

4 100 – – – –

3 011 011 011 011 111

2 010 010 010 010 110

1 001 001 001 001 101

+0 000 000 000 000 100

-0 – 100 111 000 100

-1 – 101 110 111 011

-2 – 110 101 110 010

-3 – 111 100 101 001

-4 – – – 100 000

Table 2.1: 3-bit Integer Representations

34 CHAPTER 2 DATA REPRESENTATION

There are eight bits in this example format, and all bit patterns represent valid
numbers, so there are 28 = 256 possible patterns. Only 28 − 1 = 255 different
numbers can be represented, however, since +0 and −0 represent the same num-
ber.

We will make use of the signed magnitude representation when we look at float-
ing point numbers in Section 2.3.

One’s Complement

The one’s complement operation is trivial to perform: convert all of the 1’s in
the number to 0’s, and all of the 0’s to 1’s. See the fourth column in Table 2.1 for
examples. We can observe from the table that in the one’s complement represen-
tation the leftmost bit is 0 for positive numbers and 1 for negative numbers, as it
is for the signed magnitude representation. This negation, changing 1’s to 0’s and
changing 0’s to 1’s, is known as complementing the bits. Consider again repre-
senting (+12)10 and (−12)10 in an eight-bit format, now using the one’s comple-
ment representation:

(+12)10 = (00001100)2

(−12)10 = (11110011)2

Note again that there are representations for both +0 and −0, which are
00000000 and 11111111, respectively. As a result, there are only 28 − 1 = 255
different numbers that can be represented even though there are 28 different bit
patterns.

The one’s complement representation is not commonly used. This is at least
partly due to the difficulty in making comparisons when there are two represen-
tations for 0. There is also additional complexity involved in adding numbers,
which is discussed further in Chapter 3.

Two’s Complement

The two’s complement is formed in a way similar to forming the one’s comple-
ment: complement all of the bits in the number, but then add 1, and if that addi-
tion results in a carry-out from the most significant bit of the number, discard
the carry-out. Examination of the fifth column of Table 2.1 shows that in the

CHAPTER 2 DATA REPRESENTATION 35

two’s complement representation, the leftmost bit is again 0 for positive num-
bers and is 1 for negative numbers. However, this number format does not have
the unfortunate characteristic of signed-magnitude and one’s complement repre-
sentations: it has only one representation for zero. To see that this is true, con-
sider forming the negative of (+0)10, which has the bit pattern:

(+0)10 = (00000000)2

Forming the one’s complement of (00000000)2 produces (11111111)2 and add-
ing 1 to it yields (00000000)2, thus (−0)10 = (00000000)2. The carry out of the
leftmost position is discarded in two’s complement addition (except when detect-
ing an overflow condition). Since there is only one representation for 0, and since
all bit patterns are valid, there are 28 = 256 different numbers that can be repre-
sented.

Consider again representing (+12)10 and (−12)10 in an eight-bit format, this
time using the two’s complement representation. Starting with (+12)10 =
(00001100)2, complement, or negate the number, producing (11110011)2.
Now add 1, producing (11110100)2, and thus (−12)10 = (11110100)2:

(+12)10 = (00001100)2

(−12)10 = (11110100)2

There is an equal number of positive and negative numbers provided zero is con-
sidered to be a positive number, which is reasonable because its sign bit is 0. The
positive numbers start at 0, but the negative numbers start at −1, and so the mag-
nitude of the most negative number is one greater than the magnitude of the
most positive number. The positive number with the largest magnitude is +127,
and the negative number with the largest magnitude is −128. There is thus no
positive number that can be represented that corresponds to the negative of
−128. If we try to form the two’s complement negative of −128, then we will
arrive at a negative number, as shown below:

(−128)10 = (10000000)2
⇓

(−128)10 = (01111111
(−128)10 + (+0000001)2
(−128)10 ——————)2
(−128)10 = (10000000)2

36 CHAPTER 2 DATA REPRESENTATION

The two’s complement representation is the representation most commonly used
in conventional computers, and we will use it throughout the book.

Excess Representation

In the excess or biased representation, the number is treated as unsigned, but is
“shifted” in value by subtracting the bias from it. The concept is to assign the
smallest numerical bit pattern, all zeros, to the negative of the bias, and assign the
remaining numbers in sequence as the bit patterns increase in magnitude. A con-
venient way to think of an excess representation is that a number is represented
as the sum of its two’s complement form and another number, which is known as
the “excess,” or “bias.” Once again, refer to Table 2.1, the rightmost column, for
examples.

Consider again representing (+12)10 and (−12)10 in an eight-bit format but now
using an excess 128 representation. An excess 128 number is formed by adding
128 to the original number, and then creating the unsigned binary version. For
(+12)10, we compute (128 + 12 = 140)10 and produce the bit pattern
(10001100)2. For (−12)10, we compute (128 + −12 = 116)10 and produce the
bit pattern (01110100)2:

(+12)10 = (10001100)2

(−12)10 = (01110100)2

Note that there is no numerical significance to the excess value: it simply has the
effect of shifting the representation of the two’s complement numbers.

There is only one excess representation for 0, since the excess representation is
simply a shifted version of the two’s complement representation. For the previous
case, the excess value is chosen to have the same bit pattern as the largest negative
number, which has the effect of making the numbers appear in numerically
sorted order if the numbers are viewed in an unsigned binary representation.
Thus, the most negative number is (−128)10 = (00000000)2 and the most posi-
tive number is (+127)10 = (11111111)2. This representation simplifies making
comparisons between numbers, since the bit patterns for negative numbers have
numerically smaller values than the bit patterns for positive numbers. This is
important for representing the exponents of floating point numbers, in which
exponents of two numbers are compared in order to make them equal for addi-

CHAPTER 2 DATA REPRESENTATION 37

tion and subtraction. We will explore floating point representations in Section
2.3.

2.2.7 BINARY CODED DECIMAL

Numbers can be represented in the base 10 number system while still using a
binary encoding. Each base 10 digit occupies four bit positions, which is known
as binary coded decimal (BCD). Each BCD digit can take on any of 10 values.
There are 24 = 16 possible bit patterns for each base 10 digit, and as a result, six
bit patterns are unused for each digit. In Figure 2-6, there are four decimal signif-

icant digits, so 104 = 10,000 bit patterns are valid, even though 216 = 65,536 bit
patterns are possible with 16 bits.

Although some bit patterns are unused, the BCD format is commonly used in
calculators and in business applications. There are fewer problems in represent-
ing terminating base 10 fractions in this format, unlike the base 2 representation.
There is no need to convert data that is given at the input in base 10 form (as in
a calculator) into an internal base 2 representation, or to convert from an internal
representation of base 2 to an output form of base 10.

Performing arithmetic on signed BCD numbers may not be obvious. Although
we are accustomed to using a signed magnitude representation in base 10, a dif-
ferent method of representing signed base 10 numbers is used in a computer. In
the nine’s complement number system, positive numbers are represented as in
ordinary BCD, but the leftmost digit is less than 5 for positive numbers and is 5
or greater for negative numbers. The nine’s complement negative is formed by
subtracting each digit from 9. For example, the base 10 number +301 is repre-
sented as 0301 (or simply 301) in both nine’s and ten’s complement as shown in

0 0 0 0

(0)10

0 0 1 1

(3)10

0 0 0 0

(0)10

0 0 0 1

(1)10

(+301)10

1 0 0 1

(9)10

0 1 1 0

(6)10

1 0 0 1

(9)10

1 0 0 0

(8)10

(–301)10

1 0 0 1

(9)10

0 1 1 0

(6)10

1 0 0 1

(9)10

1 0 0 1

(9)10

(–301)10

Nine’s complement

Ten’s complement

Nine’s and ten’s
complement

(a)

(b)

(c)

Figure 2-6 BCD representations of 301 (a) and –301 in nine’s complement (b) and ten’s comple-

ment (c).

38 CHAPTER 2 DATA REPRESENTATION

Figure 2-6a. The nine’s complement negative is 9698 (Figure 2-6b), which is
obtained by subtracting each digit in 0301 from 9.

The ten’s complement negative is formed by adding 1 to the nine’s complement
negative, so the ten’s complement representation of −301 is then 9698 + 1 =
9699 as shown in Figure 2-6c. For this example, the positive numbers range from
0 – 4999 and the negative numbers range from 5000 to 9999.

2.3 Floating Point Numbers
The fixed point number representation, which we explored in Section 2.2, has a
fixed position for the radix point, and a fixed number of digits to the left and
right of the radix point. A fixed point representation may need a great many dig-
its in order to represent a practical range of numbers. For example, a computer
that can represent a number as large as a trillion1 maintains at least 40 bits to the
left of the radix point since 240 ≈ 1012. If the same computer needs to represent
one trillionth, then 40 bits must also be maintained to the right of the radix
point, which results in a total of 80 bits per number.

In practice, much larger numbers and much smaller numbers appear during the
course of computation, which places even greater demands on a computer. A
great deal of hardware is required in order to store and manipulate numbers with
80 or more bits of precision, and computation proceeds more slowly for a large
number of digits than for a small number of digits. Fine precision, however, is
generally not needed when large numbers are used, and conversely, large num-
bers do not generally need to be represented when calculations are made with
small numbers. A more efficient computer can be realized when only as much
precision is retained as is needed.

2.3.1 RANGE AND PRECISION IN FLOATING POINT NUMBERS

A floating point representation allows a large range of expressible numbers to be
represented in a small number of digits by separating the digits used for precision
from the digits used for range. The base 10 floating point number representing
Avogadro’s number is shown below:

1. In the American number system, which is used here, a trillion = 1012. In the British
number system, this is a “million million,” or simply a “billion.” The British “milliard,” or a “thou-
sand million” is what Americans call a “billion.”

CHAPTER 2 DATA REPRESENTATION 39

+6.023 × 1023

Here, the range is represented by a power of 10, 1023 in this case, and the preci-
sion is represented by the digits in the fixed point number, 6.023 in this case. In
discussing floating point numbers, the fixed point part is often referred to as the
mantissa, or significand of the number. Thus a floating point number can be
characterized by a triple of numbers: sign, exponent, and significand.

The range is determined primarily by the number of digits in the exponent (two
digits are used here) and the base to which it is raised (base 10 is used here) and
the precision is determined primarily by the number of digits in the significand
(four digits are used here). Thus the entire number can be represented by a sign
and 6 digits, two for the exponent and four for the significand. Figure 2-7 shows
how the triple of sign, exponent, significand, might be formatted in a computer.

Notice how the digits are packed together with the sign first, followed by the
exponent, followed by the significand. This ordering will turn out to be helpful
in comparing two floating point numbers. The reader should be aware that the
decimal point does not need to be stored with the number as long as the decimal
point is always in the same position in the significand. (This will be discussed in
Section 2.3.2.)

If we need a greater range, and if we are willing to sacrifice precision, then we can
use just three digits in the fraction and have three digits left for the exponent
without increasing the number of digits used in the representation. An alterna-
tive method of increasing the range is to increase the base, which has the effect of
increasing the precision of the smallest numbers but decreasing the precision of
the largest numbers. The range/precision trade-off is a major advantage of using
a floating point representation, but the reduced precision can cause problems,
sometimes leading to disaster, an example of which is described in Section 2.4.

+

Sign

2 3 6 0 2

Exponent
(two digits)

Significand
(four digits)

Position of decimal point

3.

Figure 2-7 Representation of a base 10 floating point number.

40 CHAPTER 2 DATA REPRESENTATION

2.3.2 NORMALIZATION, AND THE HIDDEN BIT

A potential problem with representing floating point numbers is that the same
number can be represented in different ways, which makes comparisons and
arithmetic operations difficult. For example, consider the numerically equivalent
forms shown below:

3584.1 × 100 = 3.5841 × 103 = .35841 × 104.

In order to avoid multiple representations for the same number, floating point
numbers are maintained in normalized form. That is, the radix point is shifted
to the left or to the right and the exponent is adjusted accordingly until the radix
point is to the left of the leftmost nonzero digit. So the rightmost number above
is the normalized one. Unfortunately, the number zero cannot be represented in
this scheme, so to represent zero an exception is made. The exception to this rule
is that zero is represented as all 0’s in the mantissa.

If the mantissa is represented as a binary, that is, base 2, number, and if the nor-
malization condition is that there is a leading “1” in the normalized mantissa,
then there is no need to store that “1” and in fact, most floating point formats do
not store it. Rather, it is “chopped off ” before packing up the number for storage,
and it is restored when unpacking the number into exponent and mantissa. This
results in having an additional bit of precision on the right of the number, due to
removing the bit on the left. This missing bit is referred to as the hidden bit, also
known as a hidden 1. For example, if the mantissa in a given format is .11010
after normalization, then the bit pattern that is stored is 1010—the left-most bit
is truncated, or hidden. We will see that the IEEE 754 floating point format uses
a hidden bit.

2.3.3 REPRESENTING FLOATING POINT NUMBERS IN THE COM-
PUTER—PRELIMINARIES

Let us design a simple floating point format to illustrate the important factors in
representing floating point numbers on the computer. Our format may at first
seem to be unnecessarily complex. We will represent the significand in signed
magnitude format, with a single bit for the sign bit, and three hexadecimal digits
for the magnitude. The exponent will be a 3-bit excess-4 number, with a radix of
16. The normalized form of the number has the hexadecimal point to the left of
the three hexadecimal digits.

CHAPTER 2 DATA REPRESENTATION 41

The bits will be packed together as follows: The sign bit is on the left, followed
by the 3-bit exponent, followed by the three hexadecimal digits of the signifi-
cand. Neither the radix nor the hexadecimal point will be stored in the packed
form.

The reason for these rather odd-seeming choices is that numbers in this format
can be compared for =, ≠, ≤, and ≥ in their “packed” format, which is shown in
the illustration below:

Consider representing (358)10 in this format.

The first step is to convert the fixed point number from its original base into a
fixed point number in the target base. Using the method described in Section
2.1.3, we convert the base 10 number into a base 16 number as shown below:

Integer Remainder

358/16 = 22 6

22/16 = 1 6

1/16 = 0 1

Thus (358)10 = (166)16. The next step is to convert the fixed point number into
a floating point number:

(166)16 = (166.)16 × 160

Note that the form 160 reflects a base of 16 with an exponent of 0, and that the
number 16 as it appears on the page uses a base 10 form. That is, (160)10 =
(100)16. This is simply a notational convenience used in describing a floating
point number.

Sign bit
Three-bit
exponent

Implied radix
point

Three base 16 digits

.

42 CHAPTER 2 DATA REPRESENTATION

The next step is to normalize the number:

(166.)16 × 160 = (.166)16 × 163

Finally, we fill in the bit fields of the number. The number is positive, and so we
place a 0 in the sign bit position. The exponent is 3, but we represent it in excess
4, so the bit pattern for the exponent is computed as shown below:

Alternatively, we could have simply computed 3 + 4 = 7 in base 10, and then
made the equivalent conversion (7)10 = (111)2.

Finally, each of the base 16 digits is represented in binary as 1 = 0001, 6 = 0110,
and 6 = 0110. The final bit pattern is shown below:

Notice again that the radix point is not explicitly represented in the bit pattern,
but its presence is implied. The spaces between digits are for clarity only, and do
not suggest that the bits are stored with spaces between them. The bit pattern as
stored in a computer’s memory would look like this:

0111000101100110

The use of an excess 4 exponent instead of a two’s complement or a signed mag-
nitude exponent simplifies addition and subtraction of floating point numbers
(which we will cover in detail in Chapter 3). In order to add or subtract two nor-
malized floating point numbers, the smaller exponent (smaller in degree, not
magnitude) must first be increased to the larger exponent (this retains the range),
which also has the effect of unnormalizing the smaller number. In order to deter-
mine which exponent is larger, we only need to treat the bit patterns as unsigned
numbers and then make our comparison. That is, using an excess 4 representa-

Excess 4

+

0
1

1

1
0

1

1
0

1

(+3)10
(+4)10

 Excess 4 exponent

Sign Exponent Fraction

.0 1 1 1 0 0 0 1 0 1 1 0 0 1 1 0

6 613+

CHAPTER 2 DATA REPRESENTATION 43

tion, the smallest exponent is −4, which is represented as 000. The largest expo-
nent is +3, which is represented as 111. The remaining bit patterns for −3, −2,
−1, 0, +1, and +2 fall in their respective order as 001, 010, 011, 100, 101, and
110.

Now if we are given the bit pattern shown above for (358)10 along with a
description of the floating point representation, then we can easily determine the
number. The sign bit is a 0, which means that the number is positive. The expo-
nent in unsigned form is the number (+7)10, but since we are using excess 4, we
must subtract 4 from it, which results in an actual exponent of (+7 − 4 = +3)10.
The fraction is grouped in four-bit hexadecimal digits, which gives a fraction of
(.166)16. Putting it all together results in (+.166 × 163)16 = (358)10.

Now suppose that only 10 bits are allowed for the fraction in the above example,
instead of the 12 bits that group evenly into fours for hexadecimal digits. How
does the representation change? One approach might be to round the fraction
and adjust the exponent as necessary. Another approach, which we use here, is to
simply truncate the least significant bits by chopping and avoid making adjust-
ments to the exponent, so that the number we actually represent is:

If we treat the missing bits as 0’s, then this bit pattern represents (.164 × 163)16.
This method of truncation produces a biased error, since values of 00, 01, 10,
and 11 in the missing bits are all treated as 0, and so the error is in the range
from 0 to (.003)16. The bias comes about because the error is not symmetric
about 0. We will not explore the bias problem further here, but a more thorough
discussion can be found in (Hamacher et al., 1990).

We again stress that whatever the floating point format is, that it be known to all
parties that intend to store or retrieve numbers in that format. The Institute of
Electrical and Electronics Engineers (IEEE), has taken the lead in standardizing
floating point formats. The IEEE 754 floating point format, which is in nearly
universal usage, is discussed in Section 2.3.5.

Sign Exponent Fraction

.
0 1 1 1 0 0 0 1 0 1 1 0 0 1 x x

6 413+

44 CHAPTER 2 DATA REPRESENTATION

2.3.4 ERROR IN FLOATING POINT REPRESENTATIONS

The fact that finite precision introduces error means that we should consider
how great the error is (by “error”, we mean the distance between two adjacent
representable numbers), and whether it is acceptable for our application. As an
example of a potential pitfall, consider representing one million in floating point,
and then subtracting one million 1’s from it. We may still be left with a million if
the error is greater than 1.1

In order to characterize error, range, and precision, we use the following nota-
tion:

b Base

s Number of significant digits (not bits) in the fraction

M Largest exponent

m Smallest exponent

The number of significant digits in the fraction is represented by s, which is dif-
ferent than the number of bits in the fraction if the base is anything other than 2
(for example, base 16 uses four bits for each digit). In general, if the base is 2k

where k is an integer, then k bits are needed to represent each digit. The use of a
hidden 1 increases s by one bit even though it does not increase the number of
representable numbers. In the previous example, there are three significant digits
in the base 16 fraction and there are 12 bits that make up the three digits. There
are three bits in the excess 4 exponent, which gives an exponent range of [−22 to
22 − 1]. For this case, b = 16, s = 3, M = 3, and m = −4.

In the analysis of a floating point representation, there are five characteristics that
we consider: the number of representable numbers, the numbers that have the
largest and smallest magnitudes (other than zero), and the sizes of the largest and
smallest gaps between successive numbers.

The number of representable numbers can be determined as shown in Figure

1. Most computers these days will let this upper bound get at least as high
as 8 million using the default precision.

CHAPTER 2 DATA REPRESENTATION 45

2-8. The sign bit can take on two values, as indicated by the position marked

with an encircled “A.” The total number of exponents is indicated in position B.
Note that not all exponent bit patterns are valid in all representations. The IEEE
754 floating point standard, which we will study shortly, has a smallest exponent
of −126 even though the eight-bit exponent can support a number as small as
−128. The forbidden exponents are reserved for special numbers, such as zero
and infinity.

The first digit of the fraction is considered next, which can take on any value
except 0 in a normalized representation (except when a hidden 1 is used) as indi-
cated by (b − 1) at position C. The remaining digits of the fraction can take on
any of the b values for the base, as indicated by bs-1 at position D. If a hidden 1 is
used, then position C is removed and position 4 is replaced with bs. Finally, there
must be a representation for 0, which is accounted for in position E.

Consider now the numbers with the smallest and largest magnitudes. The num-
ber with the smallest magnitude has the smallest exponent and the smallest non-
zero normalized fraction. There must be a nonzero value in the first digit, and
since a 1 is the smallest value we can place there, the smallest fraction is b−1. The
number with the smallest magnitude is then bm·b−1 = bm−1. Similarly, the num-
ber with the largest magnitude has the largest exponent and the largest fraction
(when the fraction is all 1’s), which is equal to bM ·(1 − b−s).

The smallest and largest gaps are computed in a similar manner. The smallest gap
occurs when the exponent is at its smallest value and the least significant bit of
the fraction changes. This gap is bm·b−s = bm−s. The largest gap occurs when the
exponent is at its largest value and the least significant bit of the fraction changes.
This gap is bM·b−s = bM−s.

As an example, consider a floating point representation in which there is a sign
bit, a two-bit excess 2 exponent, and a three-bit normalized base 2 fraction in
which the leading 1 is visible; that is, the leading 1 is not hidden. The representa-

2 × ((M - m) + 1) × (b - 1) × bs-1 +

Sign bit
First digit
of fraction

Remaining
digits of
fraction

The number
of exponents Zero

A EB C D

1

Figure 2-8 Calculation of the number of representable numbers in a floating point representation.

46 CHAPTER 2 DATA REPRESENTATION

tion of 0 is the bit pattern 000000. A number line showing all possible numbers
that can be represented in this format is shown in Figure 2-9. Notice that there is

a relatively large gap between 0 and the first representable number, because the
normalized representation does not support bit patterns that correspond to num-
bers between 0 and the first representable number.

The smallest representable number occurs when the exponent and the fraction
are at their smallest values. The smallest exponent is −2, and the smallest normal-
ized fraction is (.100)2. The smallest representable number is then bm×b−1 =
bm−1 = 2−2−1 = 1/8.

Similarly, the largest representable number occurs when the exponent and the
fraction are both at their largest values. The largest fraction occurs when the frac-
tion is all 1’s, which is a number that is 2−3 less than 1 since there are three digits
in the fraction. The largest representable number is then bM ×(1 - b−s) = 21 × (1 -
2−3) = 7/4.

The smallest gap occurs when the exponent is at its smallest value and the least
significant bit of the fraction changes, which is bm×b−s = bm−s = 2−2−3 = 1/32.

Similarly, the largest gap occurs when the exponent is at its largest value and the
least significant bit of the fraction changes, which is bM×b−s = bM−s = 21−3 = 1/4.

The number of bit patterns that represent valid numbers is less than the number
of possible bit patterns, due to normalization. As discussed earlier, the number of
representable numbers consists of five parts, which take into account the sign bit,
the exponents, the first significant digit, the remaining digits, and the bit pattern
for 0. This is computed as shown below:

2 × ((M − m) + 1) × (b − 1) × bs−1 + 1

–3 –1 –1 0 1 1 3
– 1

4
1
4

– 1
8

1
8

22 2 2

b = 2 M = +1
s = 3 m = –2

Figure 2-9 A number line showing all representable numbers in a simple floating point format.

CHAPTER 2 DATA REPRESENTATION 47

= 2 × ((1 − (−2)) + 1) × (2 − 1) × 23−1 + 1

= 33.

Notice that the gaps are small for small numbers and that the gaps are large for
large numbers. In fact, the relative error is approximately the same for all num-
bers. If we take the ratio of a large gap to a large number, and compare that to the
ratio of a small gap to a small number, then the ratios are the same:

and

The representation for a “small number” is used here, rather than the smallest
number, because the large gap between zero and the first representable number is
a special case.

EXAMPLE

Consider the problem of converting (9.375 × 10−2)10 to base 2 scientific notation.
That is, the result should have the form x.yy × 2z. We start by converting from
base 10 floating point to base 10 fixed point by moving the decimal point two
positions to the left, which corresponds to the −2 exponent: .09375. We then con-
vert from base 10 fixed point to base 2 fixed point by using the multiplication
method:

.09375 × 2 = 0.1875

.1875 × 2 = 0.375

.375 × 2 = 0.75

.75 × 2 = 1.5

bM × (1 – b–s)

bM–s

1 – b–s

b–s

= =
bs–1A large number

A large gap 1

bm × (1 – b–s)

bm–s

1 – b–s

b–s

= =
bs–1A small number

A small gap 1

48 CHAPTER 2 DATA REPRESENTATION

.5 × 2 = 1.0

so (.09375)10 = (.00011)2. Finally, we convert to normalized base 2 floating point:
.00011 = .00011 × 20 = 1.1 × 2−4. �

2.3.5 THE IEEE 754 FLOATING POINT STANDARD

There are many ways to represent floating point numbers, a few of which we
have already explored. Each representation has its own characteristics in terms of
range, precision, and the number of representable numbers. In an effort to
improve software portability and ensure uniform accuracy of floating point cal-
culations, the IEEE 754 floating point standard for binary numbers was devel-
oped (IEEE, 1985). There are a few entrenched product lines that predate the
standard that do not use it, such as the IBM/370, the DEC VAX, and the Cray
line, but virtually all new architectures generally provide some level of IEEE 754
support.

The IEEE 754 standard as described below must be supported by a computer sys-
tem, and not necessarily by the hardware entirely. That is, a mixture of hardware
and software can be used while still conforming to the standard.

2.3.5.1 Formats

There are two primary formats in the IEEE 754 standard: single precision and
double precision. Figure 2-10 summarizes the layouts of the two formats. The

single precision format occupies 32 bits, whereas the double precision format
occupies 64 bits. The double precision format is simply a wider version of the

Single
precision

Sign
(1 bit)

Exponent Fraction

8 bits 23 bits

Double
precision

Exponent Fraction

11 bits 52 bits

32 bits

64 bits

Figure 2-10 Single precision and double precision IEEE 754 floating point formats.

CHAPTER 2 DATA REPRESENTATION 49

single precision format.

The sign bit is in the leftmost position and indicates a positive or negative num-
ber for a 0 or a 1, respectively. The 8-bit excess 127 (not 128) exponent follows,
in which the bit patterns 00000000 and 11111111 are reserved for special cases,
as described below. For double precision, the 11-bit exponent is represented in
excess 1023, with 00000000000 and 11111111111 reserved. The 23-bit base 2
fraction follows. There is a hidden bit to the left of the binary point, which when
taken together with the single-precision fraction form a 23 + 1 = 24-bit signifi-
cand of the form 1.fff...f where the fff...f pattern represents the 23-bit fractional
part that is stored. The double-precision format also uses a hidden bit to the left
of the binary point, which supports a 52 + 1 = 53 bit significand. For both for-
mats, the number is normalized unless denormalized numbers are supported, as
described later.

There are five basic types of numbers that can be represented. Nonzero normal-
ized numbers take the form described above. A so-called “clean zero” is repre-
sented by the reserved bit pattern 00000000 in the exponent and all 0’s in the
fraction. The sign bit can be 0 or 1, and so there are two representations for zero:
+0 and −0.

Infinity has a representation in which the exponent contains the reserved bit pat-
tern 11111111, the fraction contains all 0’s, and the sign bit is 0 or 1. Infinity is
useful in handling overflow situations or in giving a valid representation to a
number (other than zero) divided by zero. If zero is divided by zero or infinity is
divided by infinity, then the result is undefined. This is represented by the NaN
(not a number) format in which the exponent contains the reserved bit pattern
11111111, the fraction is nonzero and the sign bit is 0 or 1. A NaN can also be
produced by attempting to take the square root of −1.

As with all normalized representations, there is a large gap between zero and the
first representable number. The denormalized, “dirty zero” representation allows
numbers in this gap to be represented. The sign bit can be 0 or 1, the exponent
contains the reserved bit pattern 00000000 which represents −126 for single pre-
cision (−1022 for double precision), and the fraction contains the actual bit pat-
tern for the magnitude of the number. Thus, there is no hidden 1 for this format.
Note that the denormalized representation is not an unnormalized representation.
The key difference is that there is only one representation for each denormalized
number, whereas there are infinitely many unnormalized representations.

50 CHAPTER 2 DATA REPRESENTATION

Figure 2-11 illustrates some examples of IEEE 754 floating point numbers.

Examples (a) through (h) are in single precision format and example (i) is in dou-
ble precision format. Example (a) shows an ordinary single precision number.
Notice that the significand is 1.101, but that only the fraction (101) is explicitly
represented. Example (b) uses the smallest single precision exponent (–126) and
example (c) uses the largest single precision exponent (127).

Examples (d) and (e) illustrate the two representations for zero. Example (f) illus-
trates the bit pattern for +∞. There is also a corresponding bit pattern for –∞.
Example (g) shows a denormalized number. Notice that although the number
itself is 2−128, the smallest representable exponent is still −126. The exponent for
single precision denormalized numbers is always −126, which is represented by
the bit pattern 00000000 and a nonzero fraction. The fraction represents the
magnitude of the number, rather than a significand. Thus we have +2−128 = +.01
× 2–126, which is represented by the bit pattern shown in Figure 2-11g.

Example (h) shows a single precision NaN. A NaN can be positive or negative.
Finally, example (i) revisits the representation of 2–128 but now using double pre-
cision. The representation is for an ordinary double precision number and so
there are no special considerations here. Notice that 2–128 has a significand of
1.0, which is why the fraction field is all 0’s.

In addition to the single precision and double precision formats, there are also
single extended and double extended formats. The extended formats are not

(a) +1.101 × 25

Value

0

Sign Exponent Fraction

Bit Pattern

1000 0100 101 0000 0000 0000 0000 0000

(b) −1.01011 × 2−126 1 0000 0001 010 1100 0000 0000 0000 0000

(c) +1.0 × 2127 0 1111 1110 000 0000 0000 0000 0000 0000

(d) +0 0 0000 0000 000 0000 0000 0000 0000 0000

(e) −0 1 0000 0000 000 0000 0000 0000 0000 0000

(f) +∞ 0 1111 1111 000 0000 0000 0000 0000 0000

(g) +2−128 0 0000 0000 010 0000 0000 0000 0000 0000

(h) +NaN 0 1111 1111 011 0111 0000 0000 0000 0000

(i) +2−128 0 011 0111 1111 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000

Figure 2-11 Examples of IEEE 754 floating point numbers in single precision format (a – h) and

double precision format (i). Spaces are shown for clarity only: they are not part of the representation.

CHAPTER 2 DATA REPRESENTATION 51

visible to the user, but they are used to retain a greater amount of internal preci-
sion during calculations to reduce the effects of roundoff errors. The extended
formats increase the widths of the exponents and fractions by a number of bits
that can vary depending on the implementation. For instance, the single
extended format adds at least three bits to the exponent and eight bits to the frac-
tion. The double extended format is typically 80 bits wide, with a 15-bit expo-
nent and a 64-bit fraction.

2.3.5.2 Rounding

An implementation of IEEE 754 must provide at least single precision, whereas
the remaining formats are optional. Further, the result of any single operation on
floating point numbers must be accurate to within half a bit in the least signifi-
cant bit of the fraction. This means that some additional bits of precision may
need to be retained during computation (referred to as guard bits), and there
must be an appropriate method of rounding the intermediate result to the num-
ber of bits in the fraction.

There are four rounding modes in the IEEE 754 standard. One mode rounds to
0, another rounds toward +∞, and another rounds toward −∞. The default mode
rounds to the nearest representable number. Halfway cases round to the number
whose low order digit is even. For example, 1.01101 rounds to 1.0110 whereas
1.01111 rounds to 1.1000.

2.4 Case Study: Patriot Missile Defense Failure Caused by Loss of
Precision
During the 1991-1992 Operation Desert Storm conflict between Coalition
forces and Iraq, the Coalition used a military base in Dhahran, Saudi Arabia that
was protected by six U.S. Patriot Missile batteries. The Patriot system was origi-
nally designed to be mobile and to operate for only a few hours in order to avoid
detection.

The Patriot system tracks and intercepts certain types of objects, such as cruise
missiles or Scud ballistic missiles, one of which hit a U.S. Army barracks at
Dhahran on February 5, 1991, killing 28 Americans. The Patriot system failed to
track and intercept the incoming Scud due to a loss of precision in converting
integers to a floating point number representation.

A radar system operates by sending out a train of electromagnetic pulses in vari-

52 CHAPTER 2 DATA REPRESENTATION

ous directions and then listening for return signals that are reflected from objects
in the path of the radar beam. If an airborne object of interest such as a Scud is
detected by the Patriot radar system, then the position of a range gate is deter-
mined (see Figure 2-12), which estimates the position of the object being tracked

during the next scan. The range gate also allows information outside of its
boundaries to be filtered out, which simplifies tracking. The position of the
object (a Scud for this case) is confirmed if it is found within the range gate.

The prediction of where the Scud will next appear is a function of the Scud’s
velocity. The Scud’s velocity is determined by its change in position with respect
to time, and time is updated in the Patriot’s internal clock in 100 ms intervals.
Velocity is represented as a 24-bit floating point number, and time is represented
as a 24-bit integer, but both must be represented as 24-bit floating point num-
bers in order to predict where the Scud will next appear.

The conversion from integer time to real time results in a loss of precision that
increases as the internal clock time increases. The error introduced by the conver-
sion results in an error in the range gate calculation, which is proportional to the
target’s velocity and the length of time that the system is running. The cause of
the Dhahran incident, after the Patriot battery had been operating continuously

Range
Gate
Area

Missile

Search action
locates missile
somewhere
within beam

Validation
action

Missile
outside of
range gate

Patriot
Radar
System

Figure 2-12 Effect of conversion error on range gate calculation.

CHAPTER 2 DATA REPRESENTATION 53

for over 100 hours, is that the range gate shifted by 687 m, resulting in the failed
interception of a Scud.

The conversion problem was known two weeks in advance of the Dhahran inci-
dent as a result of data provided by Israel, but it took until the day after the
attack for new software to arrive due to the difficulty of distributing bug fixes in
a wartime environment. A solution to the problem, until a software fix could be
made available, would have been to simply reboot the system every few hours
which would have the effect of resetting the internal clock. Since field personnel
were not informed of how long was too long to keep a system running, which
was in fact known at the time from data provided by Israel, this solution was
never implemented. The lesson for us is to be very aware of the limitations of
relying on calculations that use finite precision.

2.5 Character Codes
Unlike real numbers, which have an infinite range, there is only a finite number
of characters. An entire character set can be represented with a small number of
bits per character. Three of the most common character representations, ASCII,
EBCDIC, and Unicode, are described here.

2.5.1 THE ASCII CHARACTER SET

The American Standard Code for Information Interchange (ASCII) is summa-
rized in Figure 2-13, using hexadecimal indices. The representation for each
character consists of 7 bits, and all 27 possible bit patterns represent valid charac-
ters. The characters in positions 00 – 1F and position 7F are special control char-
acters that are used for transmission, printing control, and other non-textual
purposes. The remaining characters are all printable, and include letters, num-
bers, punctuation, and a space. The digits 0-9 appear in sequence, as do the
upper and lower case letters1. This organization simplifies character manipula-
tion. In order to change the character representation of a digit into its numerical
value, we can subtract (30)16 from it. In order to convert the ASCII character ‘5,’
which is in position (35)16, into the number 5, we compute (35 – 30 = 5)16. In

1. As an aside, the character ‘a’ and the character ‘A’ are different, and have different codes
in the ASCII table. The small letters like ‘a’ are called lower case, and the capital letters like ‘A’ are
called upper case. The naming comes from the positions of the characters in a printer’s typecase.
The capital letters appear above the small letters, which resulted in the upper case / lower case nam-
ing. These days, typesetting is almost always performed electronically, but the traditional naming is
still used.

54 CHAPTER 2 DATA REPRESENTATION

order to convert an upper case letter into a lower case letter, we add (20)16. For
example, to convert the letter ‘H,’ which is at location (48)16 in the ASCII table,
into the letter ‘h,’ which is at position (68)16, we compute (48 + 20 = 68)16.

2.5.2 THE EBCDIC CHARACTER SET

A problem with the ASCII code is that only 128 characters can be represented,
which is a limitation for many keyboards that have a lot of special characters in
addition to upper and lower case letters. The Extended Binary Coded Decimal
Interchange Code (EBCDIC) is an eight-bit code that is used extensively in IBM
mainframe computers. Since seven-bit ASCII characters are frequently repre-
sented in an eight-bit modified form (one character per byte), in which a 0 or a 1
is appended to the left of the seven-bit pattern, the use of EBCDIC does not

00 NUL
01 SOH
02 STX
03 ETX
04 EOT
05 ENQ
06 ACK
07 BEL
08 BS
09 HT
0A LF
0B VT
0C FF
0D CR
0E SO
0F SI

10 DLE
11 DC1
12 DC2
13 DC3
14 DC4
15 NAK
16 SYN
17 ETB
18 CAN
19 EM
1A SUB
1B ESC
1C FS
1D GS
1E RS
1F US

20 SP
21 !
22 "
23 #
24 $
25 %
26 &
27 '
28 (
29)
2A *
2B +
2C ´
2D -
2E .
2F /

30 0
31 1
32 2
33 3
34 4
35 5
36 6
37 7
38 8
39 9
3A :
3B ;
3C <
3D =
3E >
3F ?

40 @
41 A
42 B
43 C
44 D
45 E
46 F
47 G
48 H
49 I
4A J
4B K
4C L
4D M
4E N
4F O

50 P
51 Q
52 R
53 S
54 T
55 U
56 V
57 W
58 X
59 Y
5A Z
5B [
5C \
5D]
5E ^
5F _

60 `
61 a
62 b
63 c
64 d
65 e
66 f
67 g
68 h
69 i
6A j
6B k
6C l
6D m
6E n
6F o

70 p
71 q
72 r
73 s
74 t
75 u
76 v
77 w
78 x
79 y
7A z
7B {
7C |
7D }
7E ~
7F DEL

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL

Null
Start of heading
Start of text
End of text
End of transmission
Enquiry
Acknowledge
Bell

BS
HT
LF
VT

Backspace
Horizontal tab
Line feed
Vertical tab

FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB

Form feed
Carriage return
Shift out
Shift in
Data link escape
Device control 1
Device control 2
Device control 3
Device control 4
Negative acknowledge
Synchronous idle
End of transmission block

CAN
EM
SUB
ESC
FS
GS
RS
US
SP
DEL

Cancel
End of medium
Substitute
Escape
File separator
Group separator
Record separator
Unit separator
Space
Delete

Figure 2-13 The ASCII character code, shown with hexadecimal indices.

CHAPTER 2 DATA REPRESENTATION 55

place a greater demand on the storage of characters in a computer. For serial
transmission, however, (see Chapter 8), an eight-bit code takes more time to
transmit than a seven-bit code, and for this case the wider code does make a dif-
ference.

The EBCDIC code is summarized in Figure 2-14. There are gaps in the table,
which can be used for application specific characters. The fact that there are gaps
in the upper and lower case sequences is not a major disadvantage because char-
acter manipulations can still be done as for ASCII, but using different offsets.

2.5.3 THE UNICODE CHARACTER SET

The ASCII and EBCDIC codes support the historically dominant (Latin) char-
acter sets used in computers. There are many more character sets in the world,
and a simple ASCII-to-language-X mapping does not work for the general case,
and so a new universal character standard was developed that supports a great
breadth of the world’s character sets, called Unicode.

Unicode is an evolving standard. It changes as new character sets are introduced
into it, and as existing character sets evolve and their representations are refined.
In version 2.0 of the Unicode standard, there are 38,885 distinct coded charac-
ters that cover the principal written languages of the Americas, Europe, the Mid-
dle East, Africa, India, Asia, and Pacifica.

The Unicode Standard uses a 16-bit code set in which there is a one-to-one cor-
respondence between 16-bit codes and characters. Like ASCII, there are no com-
plex modes or escape codes. While Unicode supports many more characters than
ASCII or EBCDIC, it is not the end-all standard. In fact, the 16-bit Unicode
standard is a subset of the 32-bit ISO 10646 Universal Character Set (UCS-4).

Glyphs for the first 256 Unicode characters are shown in Figure 2-15, according
to Unicode version 2.1. Note that the first 128 characters are the same as for
ASCII.

� SUMMARY

All data in a computer is represented in terms of bits, which can be organized and
interpreted as integers, fixed point numbers, floating point numbers, or characters.

56 CHAPTER 2 DATA REPRESENTATION

00 NUL 20 DS 40 SP 60 – 80 A0 C0 { E0 \
01 SOH 21 SOS 41 61 / 81 a A1 ~ C1 A E1
02 STX 22 FS 42 62 82 b A2 s C2 B E2 S
03 ETX 23 43 63 83 c A3 t C3 C E3 T
04 PF 24 BYP 44 64 84 d A4 u C4 D E4 U
05 HT 25 LF 45 65 85 e A5 v C5 E E5 V
06 LC 26 ETB 46 66 86 f A6 w C6 F E6 W
07 DEL 27 ESC 47 67 87 g A7 x C7 G E7 X
08 28 48 68 88 h A8 y C8 H E8 Y
09 29 49 69 89 i A9 z C9 I E9 Z
0A SMM 2A SM 4A ¢ 6A ‘ 8A AA CA EA
0B VT 2B CU2 4B 6B , 8B AB CB EB
0C FF 2C 4C < 6C % 8C AC CC EC
0D CR 2D ENQ 4D (6D _ 8D AD CD ED
0E SO 2E ACK 4E + 6E > 8E AE CE EE
0F SI 2F BEL 4F | 6F ? 8F AF CF EF
10 DLE 30 50 & 70 90 B0 D0 } F0 0
11 DC1 31 51 71 91 j B1 D1 J F1 1
12 DC2 32 SYN 52 72 92 k B2 D2 K F2 2
13 TM 33 53 73 93 l B3 D3 L F3 3
14 RES 34 PN 54 74 94 m B4 D4 M F4 4
15 NL 35 RS 55 75 95 n B5 D5 N F5 5
16 BS 36 UC 56 76 96 o B6 D6 O F6 6
17 IL 37 EOT 57 77 97 p B7 D7 P F7 7
18 CAN 38 58 78 98 q B8 D8 Q F8 8
19 EM 39 59 79 99 r B9 D9 R F9 9
1A CC 3A 5A ! 7A : 9A BA DA FA |
1B CU1 3B CU3 5B $ 7B # 9B BB DB FB
1C IFS 3C DC4 5C . 7C @ 9C BC DC FC
1D IGS 3D NAK 5D) 7D ' 9D BD DD FD
1E IRS 3E 5E ; 7E = 9E BE DE FE
1F IUS 3F SUB 5F ¬ 7F " 9F BF DF FF

STX Start of text RS Reader Stop DC1 Device Control 1 BEL Bell
DLE Data Link Escape PF Punch Off DC2 Device Control 2 SP Space
BS Backspace DS Digit Select DC4 Device Control 4 IL Idle
ACK Acknowledge PN Punch On CU1 Customer Use 1 NUL Null
SOH Start of Heading SM Set Mode CU2 Customer Use 2
ENQ Enquiry LC Lower Case CU3 Customer Use 3
ESC Escape CC Cursor Control SYN Synchronous Idle
BYP Bypass CR Carriage Return IFS Interchange File Separator
CAN Cancel EM End of Medium EOT End of Transmission
RES Restore FF Form Feed ETB End of Transmission Block
SI Shift In TM Tape Mark NAK Negative Acknowledge
SO Shift Out UC Upper Case SMM Start of Manual Message
DEL Delete FS Field Separator SOS Start of Significance
SUB Substitute HT Horizontal Tab IGS Interchange Group Separator
NL New Line VT Vertical Tab IRS Interchange Record Separator
LF Line Feed UC Upper Case IUS Interchange Unit Separator

Figure 2-14 The EBCDIC character code, shown with hexadecimal indices.

CHAPTER 2 DATA REPRESENTATION 57

Character codes, such as ASCII, EBCDIC, and Unicode, have finite sizes and can
thus be completely represented in a finite number of bits. The number of bits used

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
000C
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B
001C
001D
001E
001F

NUL
STX
ETX

Start of text
End of text

ENQ
ACK
BEL

Enquiry
Acknowledge
Bell

BS
HT
LF

Backspace
Horizontal tab
Line feed VT Vertical tab

SOH Start of heading
EOT End of transmission

DLE Data link escape

DC1
DC2
DC3
DC4
NAK
NBS
ETB

Device control 1
Device control 2
Device control 3
Device control 4
Negative acknowledge
Non-breaking space
End of transmission block

EM
SUB
ESC
FS
GS
RS
US

End of medium
Substitute
Escape
File separator
Group separator
Record separator
Unit separator

Null CAN Cancel

NUL 0020
SOH 0021
STX 0022
ETX 0023
EOT 0024
ENQ 0025
ACK 0026
BEL 0027

0028
0029

LF 002A
VT 002B
FF 002C
CR 002D
SO 002E
SI 002F
DLE 0030
DC1 0031
DC2 0032
DC3 0033
DC4 0034
NAK 0035
SYN 0036
ETB 0037
CAN 0038
EM 0039
SUB 003A
ESC 003B
FS 003C
GS 003D
RS 003E
US 003F

BS
HT

0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
004A
004B
004C
004D
004E
004F
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
005A
005B
005C
005D
005E
005F

SP
!
"
#
$
%
&
'
(
)
*
+
´
-
.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?

0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
006A
006B
006C
006D
006E
006F
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
007A
007B
007C
007D
007E
007F

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_

0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
008A
008B
008C
008D
008E
008F
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
009A
009B
009C
009D
009E
009F

`
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
{
|
}
~

DEL

00A0
00A1
00A2
00A3
00A4
00A5
00A6
00A7
00A8
00A9
00AA
00AB
00AC
00AD
00AE
00AF
00B0
00B1
00B2
00B3
00B4
00B5
00B6
00B7
00B8
00B9
00BA
00BB
00BC
00BD
00BE
00BF

Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl

00C0
00C1
00C2
00C3
00C4
00C5
00C6
00C7
00C8
00C9
00CA
00CB
00CC
00CD
00CE
00CF
00D0
00D1
00D2
00D3
00D4
00D5
00D6
00D7
00D8
00D9
00DA
00DB
00DC
00DD
00DE
00DF

NBS
¡
¢
£
¤
¥

§
¨
©
a

«
¬
–
®
–

˚
±
2

3

´
µ
¶
˙

1

o

»
1/4
1/2
3/4
¿

Ç



00E0
00E1
00E2
00E3
00E4
00E5
00E6
00E7
00E8
00E9
00EA
00EB
00EC
00ED
00EE
00EF
00F0
00F1
00F2
00F3
00F4
00F5
00F6
00F7
00F8
00F9
00FA
00FB
00FC
00FD
00FE
00FF

À
Á
Â
Ã
Ä
Å
Æ
Ç
È
É
Ê
Ë
Ì
Í
Î
Ï

Ñ
Ò
Ó
Ô
Õ
Ö
×
Ø
Ù
Ú
Û
Ü
Y
y

D

´
´

à
á
â
ã
ä
å
æ
ç
è
é
ê
ë
ì
í
î
ï

ñ
ò
ó
ô
õ
ö
÷
ø
ù
ú
û
ü

ÿ

¶

P
P

pp

CR Carriage return
SO Shift out
SI Shift in

FF Form feed

SP
DEL

Space
Delete

Ctrl Control

SYN Synchronous idle

§

Figure 2-15 The first 256 glyphs in Unicode, shown with hexadecimal indices.

58 CHAPTER 2 DATA REPRESENTATION

for representing numbers is also finite, and as a result only a subset of the real
numbers can be represented. This leads to the notions of range, precision, and
error. The range for a number representation defines the largest and smallest mag-
nitudes that can be represented, and is almost entirely determined by the base and
the number of bits in the exponent for a floating point representation. The preci-
sion is determined by the number of bits used in representing the magnitude
(excluding the exponent bits in a floating point representation). Error arises in
floating point representations because there are real numbers that fall within the
gaps between adjacent representable numbers.

� Further Reading
(Hamacher et al., 1990) provides a good explanation of biased error in floating
point representations. The IEEE 754 floating point standard is described in
(IEEE, 1985). The analysis of range, error, and precision in Section 2.3 was
influenced by (Forsythe, 1970). The GAO report (U.S. GAO report
GAO/IMTEC-92-26) gives a very readable account of the software problem that
led to the Patriot failure in Dhahran. See http://www.unicode.org for informa-
tion on the Unicode standard.

� PROBLEMS
2.1 Given a signed, fixed point representation in base 10, with three digits to

the left and right of the decimal point:

a) What is the range? (Calculate the highest positive number and the lowest
negative number.)

b) What is the precision? (Calculate the difference between two adjacent num-
bers on a number line. Remember that the error is 1/2 the precision.)

2.2 Convert the following numbers as indicated, using as few digits in the
results as necessary.

a) (47)10 to unsigned binary.

b) (−27)10 to binary signed magnitude.

c) (213)16 to base 10.

CHAPTER 2 DATA REPRESENTATION 59

d) (10110.101)2 to base 10.

e) (34.625)10 to base 4.

2.3 Convert the following numbers as indicated, using as few digits in the
results as necessary.

a) (011011)2 to base 10.

b) (−27)10 to excess 32 in binary.

c) (011011)2 to base 16.

d) (55.875)10 to unsigned binary.

e) (132.2)4 to base 16.

2.4 Convert .2013 to decimal.

2.5 Convert (43.3)7 to base 8 using no more than one octal digit to the right
of the radix point. Truncate any remainder by chopping excess digits. Use an
ordinary unsigned octal representation.

2.6 Represent (17.5)10 in base 3, then convert the result back to base 10. Use
two digits of precision to the right of the radix point for the intermediate base
3 form.

2.7 Find the decimal equivalent of the four-bit two’s complement number:
1000.

2.8 Find the decimal equivalent of the four-bit one’s complement number:
1111.

2.9 Show the representation for (305)10 using three BCD digits.

2.10 Show the 10’s complement representation for (−305)10 using three BCD
digits.

2.11 For a given number of bits, are there more representable integers in one’s

60 CHAPTER 2 DATA REPRESENTATION

complement, two’s complement, or are they the same?

2.12 Complete the following table for the 5-bit representations (including the
sign bits) indicated below. Show your answers as signed base 10 integers.

2.13 Complete the following table using base 2 scientific notation and an
eight-bit floating point representation in which there is a three-bit exponent
in excess 3 notation (not excess 4), and a four-bit normalized fraction with a
hidden ‘1’. In this representation, the hidden 1 is to the left of the radix point.
This means that the number 1.0101 is in normalized form, whereas .101 is
not.

2.14 The IBM short floating point representation uses base 16, one sign bit, a
seven-bit excess 64 exponent and a normalized 24-bit fraction.

a) What number is represented by the bit pattern shown below?

1 0111111 01110000 00000000 00000000

Show your answer in decimal. Note: the spaces are included in the number for
readability only.

b) Represent (14.3)6 in this notation.

2.15 For a normalized floating point representation, keeping everything else

Largest number

Most negative number

No. of distinct numbers

5-bit signed magnitude 5-bit excess 16

–1.0101 × 2-2

Floating point representationBase 2 scientific notation
Sign Exponent Fraction

+1.1 × 22

0

1

001

110

0000

1111

CHAPTER 2 DATA REPRESENTATION 61

the same but:

a) decreasing the base will increase / decrease / not change the number of rep-
resentable numbers.

b) increasing the number of significant digits will increase / decrease / not
change the smallest representable positive number.

c) increasing the number of bits in the exponent will increase / decrease / not
change the range.

d) changing the representation of the exponent from excess 64 to two’s com-
plement will increase / decrease / not change the range.

2.16 For parts (a) through (e), use a floating point representation with a sign
bit in the leftmost position, followed by a two-bit two’s complement expo-
nent, followed by a normalized three-bit fraction in base 2. Zero is represented
by the bit pattern: 0 0 0 0 0 0. There is no hidden ‘1’.

a) What decimal number is represented by the bit pattern: 1 0 0 1 0 0?

b) Keeping everything else the same but changing the base to 4 will: increase /
decrease / not change the smallest representable positive number.

c) What is the smallest gap between successive numbers?

d) What is the largest gap between successive numbers?

e) There are a total of six bits in this floating point representation, and there
are 26 = 64 unique bit patterns. How many of these bit patterns are valid?

2.17 Represent (107.15)10 in a floating point representation with a sign bit, a
seven-bit excess 64 exponent, and a normalized 24-bit fraction in base 2.
There is no hidden 1. Truncate the fraction by chopping bits as necessary.

2.18 For the following single precision IEEE 754 bit patterns show the numer-
ical value as a base 2 significand with an exponent (e.g. 1.11 × 25).

a) 0 10000011 01100000000000000000000

62 CHAPTER 2 DATA REPRESENTATION

b) 1 10000000 00000000000000000000000

c) 1 00000000 00000000000000000000000

d) 1 11111111 00000000000000000000000

e) 0 11111111 11010000000000000000000

f) 0 00000001 10010000000000000000000

g) 0 00000011 01101000000000000000000

2.19 Show the IEEE 754 bit patterns for the following numbers:

a) +1.1011 × 25 (single precision)

b) +0 (single precision)

c) −1.00111 × 2−1 (double precision)

d) −NaN (single precision)

2.20 Using the IEEE 754 single precision format, show the value (not the bit
pattern) of:

a) The largest positive representable number (note: ∞ is not a number).

b) The smallest positive nonzero number that is normalized.

c) The smallest positive nonzero number in denormalized format.

d) The smallest normalized gap.

e) The largest normalized gap.

f) The number of normalized representable numbers (including 0; note that
∞ and NaN are not numbers).

2.21 Two programmers write random number generators for normalized float-

CHAPTER 2 DATA REPRESENTATION 63

ing point numbers using the same method. Programmer A’s generator creates
random numbers on the closed interval from 0 to 1/2, and programmer B’s
generator creates random numbers on the closed interval from 1/2 to 1. Pro-
grammer B’s generator works correctly, but Programmer A’s generator pro-
duces a skewed distribution of numbers. What could be the problem with
Programmer A’s approach?

2.22 A hidden 1 representation will not work for base 16. Why not?

2.23 With a hidden 1 representation, can 0 be represented if all possible bit
patterns in the exponent and fraction fields are used for nonzero numbers?

2.24 Given a base 10 floating point number (e.g. .583 × 103), can the number
be converted into the equivalent base 2 form: .x × 2y by separately converting
the fraction (.583) and the exponent (3) into base 2?

64 CHAPTER 2 DATA REPRESENTATION

CHAPTER 3 ARITHMETIC

65

3.1 Overview

In the previous chapter we explored a few ways that numbers can be represented
in a digital computer, but we only briefly touched upon arithmetic operations
that can be performed on those numbers. In this chapter we cover four basic
arithmetic operations: addition, subtraction, multiplication, and division. We
begin by describing how these four operations can be performed on fixed point
numbers, and continue with a description of how these four operations can be
performed on floating point numbers.

Some of the largest problems, such as weather calculations, quantum mechanical
simulations, and land-use modeling, tax the abilities of even today’s largest com-
puters. Thus the topic of high-performance arithmetic is also important. We
conclude the chapter with an introduction to some of the algorithms and tech-
niques used in speeding arithmetic operations.

3.2 Fixed Point Addition and Subtraction

The addition of binary numbers and the concept of overflow were briefly dis-
cussed in Chapter 2. Here, we cover addition and subtraction of both signed and
unsigned fixed point numbers in detail. Since the two’s complement representa-
tion of integers is almost universal in today’s computers, we will focus primarily
on two’s complement operations. We will briefly cover operations on 1’s comple-
ment and BCD numbers, which have a foundational significance for other areas
of computing, such as networking (for 1’s complement addition) and hand-held
calculators (for BCD arithmetic.)

ARITHMETIC

 3

66

CHAPTER 3 ARITHMETIC

3.2.1

TWO’S COMPLEMENT ADDITION AND SUBTRACTION

In this section, we look at the addition of signed two’s complement numbers. As
we explore the

addition

 of signed numbers, we also implicitly cover

subtraction

 as
well, as a result of the arithmetic principle:

a - b = a + (

−

b).

We can negate a number by complementing it (and adding 1, for two’s comple-
ment), and so we can perform subtraction by complementing and adding. This
results in a savings of hardware because it avoids the need for a hardware subtrac-
tor. We will cover this topic in more detail later.

We will need to modify the interpretation that we place on the results of addition
when we add two’s complement numbers. To see why this is the case, consider
Figure 3-1. With addition on the real number line, numbers can be as large or as

small as desired—the number line goes to

±∞

, so the real number line can
accommodate numbers of any size. On the other hand, as discussed in Chapter
2, computers represent data using a finite number of bits, and as a result can only
store numbers within a certain range. For example, an examination of Table 2.1
shows that if we restrict the size of a number to, for example, 3 bits, there will
only be eight possible two’s complement values that the number can assume. In
Figure 3-1 these values are arranged in a circle beginning with 000 and proceed-
ing around the circle to 111 and then back to 000. The figure also shows the dec-
imal equivalents of these same numbers.

Some experimentation with the number circle shows that numbers can be added
or subtracted by traversing the number circle clockwise for addition and counter-

100

010110

000

111

101 011

001

0

1

2

3

-4

-3

-2

-1

Adding
numbers

Subtracting
numbers

Figure 3-1 Number circle for 3-bit two’s complement numbers.

CHAPTER 3 ARITHMETIC

67

clockwise for subtraction. Numbers can also be subtracted by two’s complement-
ing the subtrahend and adding. Notice that overflow can only occur for addition
when the operands (“addend” and “augend”) are of the same sign. Furthermore,
overflow occurs if a transition is made from +3 to

−

4 while proceeding around
the number circle when adding, or from

−

4 to +3 while subtracting. (Two’s com-
plement overflow is discussed in more detail later in the chapter.)

Here are two examples of 8-bit two’s complement addition, first using two posi-
tive numbers:

 0 0 0 0 1 0 1 0 (+10)

10

+ 0 0 0 1 0 1 1 1 (+23)

10

 ———————

 0 0 1 0 0 0 0 1 (+33)

10

A positive and a negative number can be added in a similar manner:

 0 0 0 0 0 1 0 1 (+5)

10

 + 1 1 1 1 1 1 1 0 (

−

2)

10

Discard carry

→

(1) 0 0 0 0 0 0 1 1 (+3)

10

The carry produced by addition at the highest (leftmost) bit position is discarded
in two’s complement addition. A similar situation arises with a carry out of the
highest bit position when adding two negative numbers:

 1 1 1 1 1 1 1 1 (

−

1)

10

+ 1 1 1 1 1 1 0 0 (

−

4)

10

 ——————

Discard carry

→

(1) 1 1 1 1 1 0 1 1 (

−

5)

10

The carry out of the leftmost bit is discarded because the number system is

mod-
ular

—it “wraps around” from the largest positive number to the largest negative
number as Figure 3-1 shows.

Although an addition operation may have a (discarded) carry-out from the MSB,
this does not mean that the result is erroneous. The two examples above yield

68

CHAPTER 3 ARITHMETIC

correct results in spite of the fact that there is a carry-out of the MSB. The next
section discusses overflow in two’s complement addition in more detail.

Overflow

When two numbers are added that have large magnitudes and the same sign, an

overflow

 will occur if the result is too large to fit in the number of bits used in
the representation. Consider adding (+80)

10

 and (+50)

10

 using an eight bit for-
mat. The result should be (+130)

10

, however, as shown below, the result is
(

−

126)

10

:

+ 0 1 0 1 0 0 0 0 (+80)

10

+ 0 0 1 1 0 0 1 0 (+50)

10

———————

+ 1 0 0 0 0 0 1 0 (

−

126)

10

This should come as no surprise, since we know that the largest positive 8-bit
two’s complement number is +(127)

10

, and it is therefore impossible to represent
(+130)

10

. Although the result 10000010

2

 “looks” like 130

10

 if we think of it in
unsigned form, the sign bit indicates a negative number in the signed form,
which is clearly wrong.

In general, if two numbers of opposite signs are added, then an overflow cannot
occur. Intuitively, this is because the magnitude of the result can be no larger
than the magnitude of the larger operand. This leads us to the definition of two’s
complement overflow:

If the numbers being added are of the same sign and the result is of the
opposite sign, then an overflow occurs and the result is incorrect. If the
numbers being added are of opposite signs, then an overflow will never
occur. As an alternative method of detecting overflow for addition, an
overflow occurs if and only if the carry into the sign bit differs from the
carry out of the sign bit.

If a positive number is subtracted from a negative number and the result
is positive, or if a negative number is subtracted from a positive number
and the result is negative, then an overflow occurs. If the numbers being
subtracted are of the same sign, then an overflow will never occur.

CHAPTER 3 ARITHMETIC

69

3.2.2

HARDWARE IMPLEMENTATION OF ADDERS AND SUBTRACTORS

Up until now we have focused on algorithms for addition and subtraction. Now
we will take a look at implementations of simple adders and subtractors.

Ripple-Carry Addition and Ripple-Borrow Subtraction

In Appendix A, a design of a four-bit ripple-carry adder is explored. The adder is
modeled after the way that we normally perform decimal addition by hand, by
summing digits in one column at a time while moving from right to left. In this
section, we review the

ripple-carry adder

, and then take a look at a

ripple-bor-
row subtractor

. We then combine the two into a single addition/subtraction
unit.

Figure 3-2 shows a 4-bit ripple-carry adder that is developed in Appendix A. Two

binary numbers

A

 and

B

 are added from right to left, creating a sum and a carry
at the outputs of each full adder for each bit position.

Four 4-bit ripple-carry adders are cascaded in Figure 3-3 to add two 16-bit num-
bers. The rightmost full adder has a carry-in of 0. Although the rightmost full
adder can be simplified as a result of the carry-in of 0, we will use the more gen-
eral form and force

c

0

 to 0 in order to simplify subtraction later on.

Subtraction

 of binary numbers proceeds in a fashion analogous to addition. We
can subtract one number from another by working in a single column at a time,
subtracting digits of the

subtrahend

b

i

, from the

minuend

a

i

, as we move from
right to left. As in decimal subtraction, if the subtrahend is larger than the minu-
end or there is a borrow from a previous digit then a borrow must be propagated

Full
adder

b0 a0

s0

Full
adder

b1 a1

s1

Full
adder

b2 a2

s2

Full
adder

b3 a3

c4

s3

0
c0c1c2c3

Figure 3-2 Ripple-carry adder.

70

CHAPTER 3 ARITHMETIC

to the next most significant bit. Figure 3-4 shows the truth table and a
“black-box” circuit for subtraction.

Full subtractors can be cascaded to form

ripple-borrow

 subtractors in the same
manner that full adders are cascaded to form ripple-carry adders. Figure 3-5 illus-

s0

b1

a1

s1

b2

a2

s2

b3

a3

c4

s3

04-Bit Adder #0

b0

a0

s12

b13

a13

s13

b14

a14

s14

b15

a15

c16

s15

4-Bit Adder #3

b12

a12

. . .
c12 c0

Figure 3-3 A 16-bit adder is made up of a cascade of four 4-bit ripple-carry adders.

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

bi bori

0
0
0
0
1
1
1
1

ai

0
1
1
0
1
0
0
1

diffi

0
1
1
1
0
0
0
1

bori+1

Full
sub-

tractor

bi ai

bori

bori+1

diffi
(ai – bi)

Figure 3-4 Truth table and schematic symbol for a ripple-borrow subtractor.

b0 a0

diff0

b1 a1

diff1

b2 a2

diff2

Full
sub-

tractor

b3 a3

bor4

diff3

0

Full
sub-

tractor

Full
sub-

tractor

Full
sub-

tractor

bor0

Figure 3-5 Ripple-borrow subtractor.

CHAPTER 3 ARITHMETIC

71

trates a four-bit ripple-borrow subtractor that is made up of four full subtractors.

As discussed above, an alternative method of implementing subtraction is to
form the two’s complement negative of the subtrahend and

add

 it to the minu-
end. The circuit that is shown in Figure 3-6 performs both addition and subtrac-

tion on four-bit two’s complement numbers by allowing the

b

i

 inputs to be
complemented when subtraction is desired. An /SUBTRACT control line
determines which function is performed. The bar over the ADD symbol indi-
cates the ADD operation is active when the signal is low. That is, if the control
line is 0, then the

a

i

 and

b

i

 inputs are passed through to the adder, and the sum is
generated at the

s

i

 outputs. If the control line is 1, then the

a

i

 inputs are passed
through to the adder, but the

b

i

 inputs are one’s complemented by the XOR
gates before they are passed on to the adder. In order to form the two’s comple-
ment negative, we must add 1 to the one’s complement negative, which is
accomplished by setting the

carry_in

 line (

c

0

) to 1 with the control input. In this
way, we can share the adder hardware among both the adder and the subtractor.

3.2.3

ONE’S COMPLEMENT ADDITION AND SUBTRACTION

Although it is not heavily used in mainstream computing anymore, the one’s
complement representation was used in early computers. One’s complement
addition is handled somewhat differently from two’s complement addition: the
carry out of the leftmost position is not discarded, but is added back into the
least significant position of the integer portion as shown in Figure 3-7. This is

Full
adder

b0

a0

s0

Full
adder

b1

a1

s1

Full
adder

b2

a2

s2

Full
adder

b3

a3

c4

s3

c0

ADD /
SUBTRACT

Figure 3-6 Addition / subtraction unit.

ADD

72

CHAPTER 3 ARITHMETIC

known as an

end-around carry

.

We can better visualize the reason that the end-around carry is needed by exam-
ining the 3-bit one’s complement number circle in Figure 3-8. Notice that the

number circle has two positions for 0. When we add two numbers, if we traverse
through both

−

0 and +0, then we must compensate for the fact that 0 is visited
twice. The end-around carry advances the result by one position for this situa-
tion.

Notice that the distance between

−

0 and +0 on the number circle is the distance
between two integers, and is

not

 the distance between two successive represent-
able numbers. As an illustration of this point, consider adding (5.5)

10

 and
(

−

1.0)

10

 in one’s complement arithmetic, which is shown in Figure 3-9. (Note
that we can also treat this as a subtraction problem, in which the subtrahend is
negated by complementing all of the bits, before adding it to the minuend.) In

+

1

1
0

0

0
1

0

0
1

0

1
0

0

1
1

0

(–12)10
(+13)10

+

0

0

0

0

1

1 (+1)10

End-around carry

Figure 3-7 An example of one’s complement addition with an end-around carry.

100

010110

000

111

101 011

001

+0

1

2

3

-3

-2

-1

-0

Adding
numbers

Subtracting
numbers

Figure 3-8 Number circle for a three-bit signed one’s complement representation.

CHAPTER 3 ARITHMETIC

73

order to add (+5.5)

10

 and (

−

1.0)

10

 and obtain the correct result in one’s comple-
ment, we add the end-around carry into the one’s position as shown. This adds
complexity to our number circle, because in the gap between +0 and

−

0, there
are valid numbers that represent fractions that are less than 0, yet they appear on
the number circle before

−

0 appears. If the number circle is reordered to avoid
this anomaly, then addition must be handled in a more complex manner.

The need to look for two different representations for zero, and the potential
need to perform another addition for the end-around carry are two important
reasons for preferring the two’s complement arithmetic to one’s complement
arithmetic.

3.3 Fixed Point Multiplication and Division
Multiplication and division of fixed point numbers can be accomplished with
addition, subtraction, and shift operations. The sections that follow describe
methods for performing multiplication and division of fixed point numbers in
both unsigned and signed forms using these basic operations. We will first cover
unsigned multiplication and division, and then we will cover signed multiplica-
tion and division.

3.3.1 UNSIGNED MULTIPLICATION

Multiplication of unsigned binary integers is handled similar to the way it is car-
ried out by hand for decimal numbers. Figure 3-10 illustrates the multiplication
process for two unsigned binary integers. Each bit of the multiplier determines
whether or not the multiplicand, shifted left according to the position of the
multiplier bit, is added into the product. When two unsigned n-bit numbers are
multiplied, the result can be as large as 2n bits. For the example shown in Figure
3-10, the multiplication of two four-bit operands results in an eight-bit product.
When two signed n-bit numbers are multiplied, the result can be as large as only

1

0
1

0

1
1

0

0
1

1

1
0

1

.

.

.

(+5.5)10
(–1.0)10

+

 (+4.5)10

1
0

1

+

0

1

0

1

0

.

.

0

1

Figure 3-9 The end-around carry complicates addition for non-integers.

74 CHAPTER 3 ARITHMETIC

2(n-1)+1 = (2n-1) bits, because this is equivalent to multiplying two (n-1)-bit
unsigned numbers and then introducing the sign bit.

A hardware implementation of integer multiplication can take a similar form to
the manual method. Figure 3-11 shows a layout of a multiplication unit for

four-bit numbers, in which there is a four-bit adder, a control unit, three four-bit
registers, and a one-bit carry register. In order to multiply two numbers, the mul-
tiplicand is placed in the M register, the multiplier is placed in the Q register, and
the A and C registers are cleared to zero. During multiplication, the rightmost bit
of the multiplier determines whether the multiplicand is added into the product
at each step. After the multiplicand is added into the product, the multiplier and
the A register are simultaneously shifted to the right. This has the effect of shift-
ing the multiplicand to the left (as for the manual process) and exposing the next
bit of the multiplier in position q0.

Figure 3-12 illustrates the multiplication process. Initially, C and A are cleared,

1 1 0 1

1 0 1 1×
1 1 0 1

1 1 0 1
0 0 0 0

1 1 0 1

1 0 0 0 1 1 1 1

(11)10

(13)10 Multiplicand M

Multiplier Q

(143)10 Product P

Partial products

Figure 3-10 Multiplication of two unsigned binary integers.

Multiplicand (M)

m0m1m2m3

a0a1a2a3 q0q1q2q3

Multiplier (Q)

C

4–Bit Adder

Shift and
Add Control

Logic
Add

4

4

4

Shift Right
q0

A
Register

Figure 3-11 A serial multiplier.

CHAPTER 3 ARITHMETIC 75

and M and Q hold the multiplicand and multiplier, respectively. The rightmost
bit of Q is 1, and so the multiplier M is added into the product in the A register.
The A and Q registers together make up the eight-bit product, but the A register
is where the multiplicand is added. After M is added to A, the A and Q registers
are shifted to the right. Since the A and Q registers are linked as a pair to form
the eight-bit product, the rightmost bit of A is shifted into the leftmost bit of Q.
The rightmost bit of Q is then dropped, C is shifted into the leftmost bit of A,
and a 0 is shifted into C.

The process continues for as many steps as there are bits in the multiplier. On the
second iteration, the rightmost bit of Q is again 1, and so the multiplicand is
added to A and the C/A/Q combination is shifted to the right. On the third iter-
ation, the rightmost bit of Q is 0 so M is not added to A, but the C/A/Q combi-
nation is still shifted to the right. Finally, on the fourth iteration, the rightmost
bit of Q is again 1, and so M is added to A and the C/A/Q combination is
shifted to the right. The product is now contained in the A and Q registers, in
which A holds the high-order bits and Q holds the low-order bits.

3.3.2 UNSIGNED DIVISION

In longhand binary division, we must successively attempt to subtract the divisor
from the dividend, using the fewest number of bits in the dividend as we can.
Figure 3-13 illustrates this point by showing that (11)2 does not “fit” in 0 or 01,

C

0

0
0

1
0

0

1
0

0

A

0 0 0

1 1 0 1
0 1 1 0

0 0 1 1
1 0 0 1

0 1 0 0

0 0 0 1
1 0 0 0

1

Q

0 1 1

1 0 1 1
1 1 0 1

1 1 0 1
1 1 1 0

1 1 1 1

1 1 1 1
1 1 1 1

Multiplicand (M):

1 1 0 1
Initial values

Add M to A
Shift

Add M to A
Shift

Shift (no add)

Add M to A
Shift

Product

Figure 3-12 An example of multiplication using the serial multiplier.

76 CHAPTER 3 ARITHMETIC

but does fit in 011 as indicated by the pattern 001 that starts the quotient.

Computer-based division of binary integers can be handled similar to the way
that binary integer multiplication is carried out, but with the complication that
the only way to tell if the dividend does not “fit” is to actually do the subtraction
and test if the remainder is negative. If the remainder is negative then the sub-
traction must be “backed out” by adding the divisor back in, as described below.

In the division algorithm, instead of shifting the product to the right as we did
for multiplication, we now shift the quotient to the left, and we subtract instead
of adding. When two n-bit unsigned numbers are being divided, the result is no
larger than n bits.

Figure 3-14 shows a layout of a division unit for four-bit numbers in which there

is a five-bit adder, a control unit, a four-bit register for the dividend Q, and two
five-bit registers for the divisor M and the remainder A. Five-bit registers are used
for A and M, instead of 4-bit registers as we might expect, because an extra bit is

1 1

0 0 1 0

0 1 1 1
1 1

0

R 1

1

Figure 3-13 Example of base 2 division.

Divisor (M)

m0m1m2m3

a0a1a2a3 q0q1q2q3

Dividend (Q)

5–Bit Adder

Shift and
Add / Sub

Control Logic
Add /

Sub

5

5

5

Shift Left
q0

A
Register

a4

0

a4

Figure 3-14 A serial divider.

CHAPTER 3 ARITHMETIC 77

needed to indicate the sign of the intermediate result. Although this division
method is for unsigned numbers, subtraction is used in the process and negative
partial results sometimes arise, which extends the range from −16 through +15,
thus there is a need for 5 bits to store intermediate results.

In order to divide two four-bit numbers, the dividend is placed in the Q register,
the divisor is placed in the M register, and the A register and the high order bit of
M are cleared to zero. The leftmost bit of the A register determines whether the
divisor is added back into the dividend at each step. This is necessary in order to
restore the dividend when the result of subtracting the divisor is negative, as
described above. This is referred to as restoring division, because the dividend is
restored to its former value when the remainder is negative. When the result is
not negative, then the least significant bit of Q is set to 1, which indicates that
the divisor “fits” in the dividend at that point.

Figure 3-15 illustrates the division process. Initially, A and the high order bit of
M are cleared, and Q and the low order bits of M are loaded with the dividend
and divisor, respectively. The A and Q registers are shifted to the left as a pair and
the divisor M is subtracted from A. Since the result is negative, the divisor is
added back to restore the dividend, and q0 is cleared to 0. The process repeats by
shifting A and Q to the left, and by subtracting M from A. Again, the result is
negative, so the dividend is restored and q0 is cleared to 0. On the third iteration,
A and Q are shifted to the left and M is again subtracted from A, but now the
result of the subtraction is not negative, so q0 is set to 1. The process continues
for one final iteration, in which A and Q are shifted to the left and M is sub-
tracted from A, which produces a negative result. The dividend is restored and q0
is cleared to 0. The quotient is now contained in the Q register and the remain-
der is contained in the A register.

3.3.3 SIGNED MULTIPLICATION AND DIVISION

If we apply the multiplication and division methods described in the previous
sections to signed integers, then we will run into some trouble. Consider multi-
plying −1 by +1 using four-bit words, as shown in the left side of Figure 3-16.
The eight-bit equivalent of +15 is produced instead of −1. What went wrong is
that the sign bit did not get extended to the left of the result. This is not a prob-
lem for a positive result because the high order bits default to 0, producing the
correct sign bit 0.

A solution is shown in the right side of Figure 3-16, in which each partial prod-

78 CHAPTER 3 ARITHMETIC

uct is extended to the width of the result, and only the rightmost eight bits of the
result are retained. If both operands are negative, then the signs are extended for
both operands, again retaining only the rightmost eight bits of the result.

Signed division is more difficult. We will not explore the methods here, but as a

0

0
1

0
0

0

A

0 0 0

0 0 0 0
1 1 0 1

0 0 1 1
0 0 0 0

0

Q

1 1 1

1 1 1 0
1 1 1 0

1 0 0 0
1 0 0 0

Divisor (M):

0 0 1 1
Initial values

Shift left
Subtract M from A

Shift left
Subtract M from A

0 0 0 0 0 1 1 1 0 Restore A (Add M to A)

0
1

0 0 0 1
1 1 1 0

1 1 0 0
1 1 0 0

Shift left
Subtract M from A

0 0 0 0 1 1 1 0 0 Restore A

0 0 0 0 0 1 1 1 0 Clear q0

0 0 0 0 1 1 1 0 0 Clear q0

0 0 0 0 0 1 0 0 1 Set q0

0
1

0 0 0 1
1 1 1 0

0 0 1 0
0 0 1 0

Shift left
Subtract M from A

0 0 0 0 1 0 0 1 0 Restore A
0 0 0 0 1 0 0 1 0 Clear q0

Remainder Quotient

0

Figure 3-15 An example of division using the serial divider.

1 1 1 1

0 0 0 1×
1 1 1 1

0 0 0 0
0 0 0 0

0 0 0 0

0 0 0 0 1 1 1 1

(+1)10

(–1)10

(+15)10

(Incorrect; result should be –1)

1 1 1 1

0 0 0 1×
1 1 1 1

0 0 0 0
0 0 0 0

0 0 0 0

1 1 1 1 1 1 1 1

(+1)10

(–1)10

(–1)10

1 1 1 1

1 1 1 1
0 0 0
0 0
0

Figure 3-16 Multiplication of signed integers.

CHAPTER 3 ARITHMETIC 79

general technique, we can convert the operands into their positive forms, per-
form the division, and then convert the result into its true signed form as a final
step.

3.4 Floating Point Arithmetic
Arithmetic operations on floating point numbers can be carried out using the
fixed point arithmetic operations described in the previous sections, with atten-
tion given to maintaining aspects of the floating point representation. In the sec-
tions that follow, we explore floating point arithmetic in base 2 and base 10,
keeping the requirements of the floating point representation in mind.

3.4.1 FLOATING POINT ADDITION AND SUBTRACTION

Floating point arithmetic differs from integer arithmetic in that exponents must
be handled as well as the magnitudes of the operands. As in ordinary base 10
arithmetic using scientific notation, the exponents of the operands must be made
equal for addition and subtraction. The fractions are then added or subtracted as
appropriate, and the result is normalized.

This process of adjusting the fractional part, and also rounding the result can
lead to a loss of precision in the result. Consider the unsigned floating point
addition (.101 × 23 + .111 × 24) in which the fractions have three significant dig-
its. We start by adjusting the smaller exponent to be equal to the larger exponent,
and adjusting the fraction accordingly. Thus we have .101 × 23 = .010 × 24, los-
ing .001 × 23 of precision in the process. The resulting sum is

(.010 + .111) × 24 = 1.001 × 24 = .1001 × 25,

and rounding to three significant digits, .100 × 25, and we have lost another
0.001 × 24 in the rounding process.

Why do floating point numbers have such complicated formats?

We may wonder why floating point numbers have such a complicated structure,
with the mantissa being stored in signed magnitude representation, the exponent
stored in excess notation, and the sign bit separated from the rest of the magni-
tude by the intervening exponent field. There is a simple explanation for this
structure. Consider the complexity of performing floating point arithmetic in a
computer. Before any arithmetic can be done, the number must be unpacked

80 CHAPTER 3 ARITHMETIC

from the form it takes in storage. (See Chapter 2 for a description of the IEEE
754 floating point format.) The exponent and mantissa must be extracted from
the packed bit pattern before an arithmetic operation can be performed; after the
arithmetic operation(s) are performed, the result must be renormalized and
rounded, and then the bit patterns are re-packed into the requisite format.

The virtue of a floating point format that contains a sign bit followed by an
exponent in excess notation, followed by the magnitude of the mantissa, is that
two floating point numbers can be compared for >, <, and = without unpacking.
The sign bit is most important in such a comparison, and it appropriately is the
MSB in the floating point format. Next most important in comparing two num-
bers is the exponent, since a change of ± 1 in the exponent changes the value by a
factor of 2 (for a base 2 format), whereas a change in even the MSB of the frac-
tional part will change the value of the floating point number by less than that.

In order to account for the sign bit, the signed magnitude fractions are repre-
sented as integers and are converted into two’s complement form. After the addi-
tion or subtraction operation takes place in two’s complement, there may be a
need to normalize the result and adjust the sign bit. The result is then converted
back to signed magnitude form.

3.4.2 FLOATING POINT MULTIPLICATION AND DIVISION

Floating point multiplication and division are performed in a manner similar to
floating point addition and subtraction, except that the sign, exponent, and frac-
tion of the result can be computed separately. If the operands have the same sign,
then the sign of the result is positive. Unlike signs produce a negative result. The
exponent of the result before normalization is obtained by adding the exponents
of the source operands for multiplication, or by subtracting the divisor exponent
from the dividend exponent for division. The fractions are multiplied or divided
according to the operation, followed by normalization.

Consider using three-bit fractions in performing the base 2 computation: (+.101
× 22) × (−.110 × 2-3). The source operand signs differ, which means that the
result will have a negative sign. We add exponents for multiplication, and so the
exponent of the result is 2 + −3 = −1. We multiply the fractions, which produces
the product .01111. Normalizing the product and retaining only three bits in the
fraction produces −.111 × 2−2.

Now consider using three-bit fractions in performing the base 2 computation:

CHAPTER 3 ARITHMETIC 81

(+.110 × 25) / (+.100 × 24). The source operand signs are the same, which means
that the result will have a positive sign. We subtract exponents for division, and
so the exponent of the result is 5 – 4 = 1. We divide fractions, which can be done
in a number of ways. If we treat the fractions as unsigned integers, then we will
have 110/100 = 1 with a remainder of 10. What we really want is a contiguous
set of bits representing the fraction instead of a separate result and remainder,
and so we can scale the dividend to the left by two positions, producing the
result: 11000/100 = 110. We then scale the result to the right by two positions to
restore the original scale factor, producing 1.1. Putting it all together, the result
of dividing (+.110 × 25) by (+.100 × 24) produces (+1.10 × 21). After normaliza-
tion, the final result is (+.110 × 22).

3.5 High Performance Arithmetic
For many applications, the speed of arithmetic operations are the bottleneck to
performance. Most supercomputers, such as the Cray, the Tera, and the Intel
Hypercube are considered “super” because they excel at performing fixed and
floating point arithmetic. In this section we discuss a number of ways to improve
the speed of addition, subtraction, multiplication, and division.

3.5.1 HIGH PERFORMANCE ADDITION

The ripple-carry adder that we reviewed in Section 3.2.2 may introduce too
much delay into a system. The longest path through the adder is from the inputs
of the least significant full adder to the outputs of the most significant full adder.
The process of summing the inputs at each bit position is relatively fast (a small
two-level circuit suffices) but the carry propagation takes a long time to work its
way through the circuit. In fact, the propagation time is proportional to the
number of bits in the operands. This is unfortunate, since more significant fig-
ures in an addition translates to more time to perform the addition. In this sec-
tion, we look at a method of speeding the carry propagation in what is known as
a carry lookahead adder.

In Appendix B, reduced Boolean expressions for the sum (si) and carry outputs
(ci+1) of a full adder are created. These expressions are repeated below, with sub-
scripts added to denote the relative position of a full adder in a ripple-carry
adder:

si aibici aibici aibici aibici+ + +=

82 CHAPTER 3 ARITHMETIC

We can factor the second equation and obtain:

which can be rewritten as:

where: Gi = aibi and Pi = ai + bi.

The Gi and Pi terms are referred to as generate and propagate functions, respec-
tively, for the effect they have on the carry. When Gi = 1, a carry is generated at
stage i. When Pi = 1, then a carry is propagated through stage i if either ai or bi is
a 1. The Gi and Pi terms can be created in one level of logic since they only
depend on an AND or an OR of the input variables, respectively.

The carries again take the most time. The carry c1 out of stage 0 is G0 + P0c0, and
since c0 = 0 for addition, we can rewrite this as c1 = G0. The carry c2 out of stage
1 is G1 + P1c1, and since c1 = G0, we can rewrite this as: c2 = G1 + P1G0. The
carry c3 out of stage 2 is G2 + P2c2, and since c2 = G1 + P1G0, we can rewrite this
as: c3 = G2 + P2G1 + P2P1G0. Continuing one more time for a four-bit adder, the
carry out of stage 3 is G3 + P3c3, and since c3 = G2 + P2G1 + P2P1G0, we can
rewrite this as: c4 = G3 + P3G2 + P3P2G1 + P3P2P1G0.

We can now create a four-bit carry lookahead adder as shown in Figure 3-17. We
still have the delay through the full adders as before, but now the carry chain is
broken into independent pieces that require one gate delay for Gi and Pi and two
more gate delays to generate ci+1. Thus, a depth of three gate delays is added, but
the ripple-carry chain is removed. If we assume that each full adder introduces a
gate delay of two, then a four-bit carry lookahead adder will have a maximum
gate delay of five, whereas a four-bit ripple-carry adder will have a maximum gate
delay of eight. The difference between the two approaches is more pronounced
for wider operands. This process is limited to about eight bits of carry-lookahead,
because of gate fanin limitations discussed in Appendix A. For additions of num-
bers having more than eight bits, the carry-lookahead circuits can be cascaded to
compute the carry in and carry out of each carry-lookahead unit. (See the
EXAMPLE at the end of the chapter.)

ci 1+ bici aici aibi+ +=

ci 1+ aibi ai bi+()ci+=

ci 1+ Gi Pici+=

CHAPTER 3 ARITHMETIC 83

3.5.2 HIGH PERFORMANCE MULTIPLICATION

A number of methods exist for speeding the process of multiplication. Two
methods are described in the sections below. The first approach gains perfor-
mance by skipping over blocks of 1’s, which eliminates addition steps. A parallel
multiplier is described next, in which a cross product among all pairs of multi-
plier and multiplicand bits is formed. The result of the cross product is summed
by rows to produce the final product.

The Booth Algorithm

The Booth algorithm treats positive and negative numbers uniformly. It operates
on the fact that strings of 0’s or 1’s in the multiplier require no additions – just
shifting. Additions or subtractions take place at the boundaries of the strings,
where transitions take place from 0 to 1 or from 1 to 0. A string of 1’s in the mul-
tiplier from bit positions with weights 2u to 2v can be treated as 2u+1 – 2v. For
example, if the multiplier is 001110 (+14)10, then u = 3 and v = 1, so 24 – 21 =
14.

Full
adder

s0

Full
adder

s1

Full
adder

s2

Full
adder

s3

0
c0

b3 a3b3 a3 b2 a2 b1 a1 b0 a0

G0P1G1P2G2

c1c2c3

P3G3

c4

Figure 3-17 Carry-lookahead adder.

84 CHAPTER 3 ARITHMETIC

In a hardware implementation, the multiplier is scanned from right to left. The
first transition is observed going from 0 to 1, and so 21 is subtracted from the ini-
tial value (0). On the next transition, from 1 to 0, 24 is added, which results in
+14. A 0 is considered to be appended to the right side of the multiplier in order
to define the situation in which a 1 is in the rightmost digit of the multiplier.

If the multiplier is recoded according to the Booth algorithm, then fewer steps
may be needed in the multiplication process. Consider the multiplication exam-
ple shown in Figure 3-18. The multiplier (14)10 contains three 1’s, which means

that three addition operations are required for the shift/add multiplication proce-
dure that is described in Section 3.3.1. The Booth recoded multiplier is obtained
by scanning the original multiplier from right to left, and placing a −1 in the
position where the first 1 in a string is encountered, and placing a +1 in the posi-
tion where the next 0 is seen. The multiplier 001110 thus becomes 0 +1 0 0 −1
0. The Booth recoded multiplier contains just two nonzero digits: +1 and −1,
which means that only one addition operation and one subtraction operation are
needed, and so a savings is realized for this example.

A savings is not always realized, however, and in some cases the Booth algorithm
may cause more operations to take place than if it is not used at all. Consider the
example shown in Figure 3-19, in which the multiplier consists of alternating 1’s
and 0’s. This is the same example shown in Figure 3-18 but with the multipli-
cand and multiplier swapped. Without Booth recoding of the multiplier, three
addition operations are required for the three 1’s in the multiplier. The Booth
recoded multiplier, however, requires six addition and subtraction operations,
which is clearly worse. We improve on this in the next section.

0 1 0 1

1 1 1 0

1 0 1 1

1

(14)10

(21)10 Multiplicand

Multiplier

(294)10 Product

1

0

0

0

0

1

0 0 −1 0× Booth recoded
multiplier

+10

Shift
Add

Shift
Subtract

Shift

1111

01010

0 0 1 11001000

(−21 × 2)10

(21 × 16)10

1

00

0

0

0

000

Figure 3-18 Multiplication of signed integers.

CHAPTER 3 ARITHMETIC 85

The Modified Booth Algorithm

One solution to this problem is to group the recoded multiplier bits in pairs,
known as bit pair recoding, which is also known as the modified Booth algo-
rithm. Grouping bit pairs from right to left produces three “+1,−1” pairs as
shown in Figure 3-20. Since the +1 term is to the left of the −1 term, it has a

weight that is twice as large as the weight for the −1 position. Thus, we might
think of the pair as having the collective value +2 – 1 = +1.

In a similar manner, the pair −1,+1 is equivalent to −2 + 1 = −1. The pairs +1,+1
and −1,−1 cannot occur. There are a total of seven pairs that can occur, which are
shown in Figure 3-21. For each case, the value of the recoded bit pair is multi-

1 1 1 0

0 1 0 1

1 0 0 1

1

(21)10

(14)10 Multiplicand

Multiplier

(294)10 Product

0

1

1

0

0

1

+1 −1 +1 −1× Booth recoded
multiplier

−1+1

Add

Subtract

1111

00000

0 0 1 11001000

(−14 × 1)10

(14 × 2)10

1

00

0

0

0

011

1 0 0 1

1

11111

00000 0

0

011

1 0 0 1

1

111

000 0

0

011 0

0

0

0

0

0

0

0

0

0

0

0 (−14 × 4)10

(14 × 8)10

(−14 × 16)10

(14 × 32)10

Figure 3-19 A worst case Booth recoded multiplication example.

1 1 1 0

0 1 0 1

0

(14)10

(21)10 Multiplicand

Multiplier

(294)10 Product

0

1

0

0

+1 −1 +1 −1× Booth recoded multiplier−1+1

00000

0 0 1 11001000

(14 × 1)1000

0

0111

0 1 1 1

1

00000

10000 0

0

001 0

0

0

0 (14 × 4)10

(14 × 16)10

Bit pair recoded multiplier+1 +1+1

Figure 3-20 Multiplication with bit-pair recoding of the multiplier.

86 CHAPTER 3 ARITHMETIC

plied by the multiplicand and is added to the product. In an implementation of
bit pair recoding, the Booth recoding and bit pair recoding steps are collapsed
into a single step, by observing three multiplier bits at a time, as shown in the
corresponding multiplier bit table.

The process of bit pair recoding of a multiplier guarantees that in the worst case,
only w/2 additions (or subtractions) will take place for a w-bit multiplier.

Array Multipliers

The serial method we used for multiplying two unsigned integers in Section
3.2.1 requires only a small amount of hardware, but the time required to multi-
ply two numbers of length w grows as w2. We can speed the multiplication pro-
cess so that it completes in just 2w steps by implementing the manual process
shown in Figure 3-10 in parallel. The general idea is to form a one-bit product
between each multiplier bit and each multiplicand bit, and then sum each row of
partial product elements from the top to the bottom in systolic (row by row)
fashion.

The structure of a systolic array multiplier is shown in Figure 3-22. A partial
product (PP) element is shown at the bottom of the figure. A multiplicand bit
(mi) and a multiplier bit (qj) are multiplied by the AND gate, which forms a par-
tial product at position (i,j) in the array. This partial product is added with the
partial product from the previous stage (bj) and any carry that is generated in the
previous stage (aj). The result has a width of 2w, and appears at the bottom of the
array (the high order w bits) and at the right of the array (the low order w bits).

0
0
0

+1
+1
+1
−1
−1
−1

0
+1
−1

0
+1
−1

0
+1
−1

=
=
=
=
=
=
=
=
=

0
+1
−1
+2
––
+1
−2
−1
––

Recoded
bit pair (i)

Booth pair
(i + 1, i)

Corresponding
multiplier bits
(i + 1, i, i − 1)

000 or 111
001
110
011

010
100
101

Figure 3-21 Recoded bit pairs.

CHAPTER 3 ARITHMETIC 87

3.5.3 HIGH PERFORMANCE DIVISION

We can extend the unsigned integer division technique of Section 3.3.2 to pro-
duce a fractional result in computing a/b. The general idea is to scale a and b to
look like integers, perform the division process, and then scale the quotient to

. . .

q 0 q 0 q 0 q 0

0 0 0 0 0 0 0 0
m0m1m2mw

Multiplicand

0
. . .

p 0

q 1 q 1 q 1 q 1

p1

q w q w q w q w

. . .

0

p2w-1

pw+3
pw+2 pw+1

0

p w

.

.

.

.

.

.

.

.

.

M
ultiplier

Product

0

Full
adder

Carry-in

Carry-out

sum

qj

aj bj

m out

mi

mi

PP 0,w PP 0,2 PP 0,1 PP0,0

PP1,w PP1,2 PP1,1 PP1,0

PPw,w PPw,2 PPw,1 PPw,0

FA FA FA FA
w+1,0w+1,1w+1,2w+1,wPP PP PP PP

Figure 3-22 Parallel pipelined array multiplier.

88 CHAPTER 3 ARITHMETIC

correspond to the actual result of dividing a by b.

A faster method of division makes use of a lookup table and iteration. An itera-
tive method of finding a root of a polynomial is called Newton’s iteration, which
is illustrated in Figure 3-23. The goal is to find where the function f(x) crosses the

x axis by starting with a guess xi and then using the error between f(xi) and zero
to refine the guess.

The tangent line at f(xi) can be represented by the equation:

y − f(xi) = f ’(xi)(x − xi).

The tangent line crosses the x axis at:

The process repeats while f(x) approaches zero.

The number of bits of precision doubles on each iteration (see [Goldberg,
1990]), and so if we are looking to obtain 32 bits of precision and we start with a
single bit of precision, then five iterations are required to reach our target preci-
sion. The problem now is to cast division in the form of finding a zero for f(x).

Consider the function 1/x − b which has a zero at 1/b. If we start with b, then we
can compute 1/b by iteratively applying Newton’s method. Since f ’(x) = −1/x2,

f(x)

x
xi+1x i

Figure 3-23 Newton’s iteration for zero finding. Adapted from [Goldberg, 1990].

xi 1+ xi
f xi()
f′ xi()
--------------–=

CHAPTER 3 ARITHMETIC 89

we now have:

Thus, we only need to perform multiplication and subtraction in order to per-
form division. Further, if our initial guess for x0 is good enough, then we may
only need to perform the iteration a few times.

Before using this method on an example, we need to consider how we will obtain
our initial guess. If we are working with normalized fractions, then it is relatively
easy to make use of a lookup table for the first few digits. Consider computing
1/.101101 using a 16-bit normalized base 2 fraction in which the leading 1 is not
hidden. The first three bits for any binary fraction will be one of the patterns:
.100, .101, .110, or .111. These fractions correspond to the base 10 numbers
1/2, 5/8, 3/4, and 7/8, respectively. The reciprocals of these numbers are 2, 8/5,
4/3, and 8/7, respectively. We can store the binary equivalents in a lookup table,
and then retrieve x0 based on the first three bits of b.

The leading 1 in the fraction does not contribute to the precision, and so the
leading three bits of the fraction only provide two bits of precision. Thus, the
lookup table only needs two bits for each entry, as shown in Figure 3-24.

Now consider computing 1/.1011011 using this floating point representation.
We start by finding x0 using the table shown in Figure 3-24. The first three bits
of the fraction b are 101, which corresponds to x0 = 01. We compute x1 = x0(2 −
x0b) and obtain, in unsigned base 2 arithmetic: x1 = 01(10 − (01)(.1011011)) =
1.0100101. Our two bits of precision have now become four bits of precision.
For this example, we will retain as much intermediate precision as we can. In
general, we only need to retain at most 2p bits of intermediate precision for a
p-bit result. We iterate again, obtaining eight bits of precision:

xi 1+ xi
1 xi⁄ b–

1 xi
2⁄–

--------------------– xi xi xi
2–+ b xi 2 xib–()= = =

.100 2 10

B = First three
bits of b

Corresponding
lookup table entry

Actual base 10
value of 1/B

.101 1 3/5 01

.110 1 1/3 01

.111 1 1/7 01

Figure 3-24 A three-bit lookup table for computing x0.

90 CHAPTER 3 ARITHMETIC

x2 = x1(2 − x1b) = 1.0100101(10 − (1.0100101)(.1011011))

= 1.011001011001001011101.

We iterate again, obtaining our target 16 bits of precision:

x3 = x2(2 − x2b) = (1.011001011001001011101)(2 −

 (1.011001011001001011101)(.1011011)) = 1.011010000001001

= (1.40652466)10. The precise value is (1.40659341)10, but our 16-bit value is
as close to the precise value as it can be.

3.5.4 RESIDUE ARITHMETIC

Addition, subtraction, and multiplication can all be performed in a single, carry-
less step using residue arithmetic. The residue number system is based on rela-
tively prime integers called moduli. The residue of an integer with respect to a
particular modulus is the least positive integer remainder of the division of the
integer by the modulus. A set of possible moduli are 5, 7, 9, and 4. With these
moduli, 5 × 7 × 9 × 4 = 1260 integers can be uniquely represented. A table show-
ing the representation of the first twenty decimal integers using moduli 5, 7, 9,
and 4 is shown in Figure 3-25.

Addition and multiplication in the residue number system result in valid residue
numbers, provided the size of the chosen number space is large enough to con-

Decimal Residue Decimal Residue
5794

0 0000 10 0312

5794

1 1111 11 1423
2 2222 12 2530
3 3333 13 3641
4 4440 14 4052
5 0551 15 0163
6 1662 16 1270
7 2073 17 2381
8 3180 18 3402
9 4201 19 4513

Figure 3-25 Representation of the first twenty decimal integers in the residue number system for

the given moduli.

CHAPTER 3 ARITHMETIC 91

tain the results. Subtraction requires each residue digit of the subtrahend to be
complemented with respect to its modulus before performing addition. Addition
and multiplication examples are shown in Figure 3-26. For these examples, the

moduli used are 5, 7, 9, and 4. Addition is performed in parallel for each col-
umn, with no carry propagation. Multiplication is also performed in parallel for
each column, independent of the other columns.

Although residue arithmetic operations can be very fast, there are a number of
disadvantages to the system. Division and sign detection are difficult, and a rep-
resentation for fractions is also difficult. Conversions between the residue num-
ber system and weighted number systems are complex, and often require
involved methods such as the Chinese remainder theorem. The conversion
problem is important because the residue number system is not very useful with-
out being translated to a weighted number system so that magnitude compari-
sons can be made. However, for integer applications in which the time spent in
addition, subtraction, and multiplication outweighs the time spent in division,
conversion, etc., the residue number system may be a practical approach. An
important application area is matrix-vector multiplication, which is used exten-
sively in signal processing.

EXAMPLE: WIDE WORD HIGH PERFORMANCE
ADDER

A practical word width for a carry lookahead adder (CLA) is four bits, whereas a
16-bit word width is not as practical because of the large fan-ins and fan-outs of
the internal logic. We can subdivide a 16-bit addition problem into four 4-bit
groups in which carry lookahead is used within the groups, and in which carry
lookahead is also used among the groups. This organization is referred to as a
group carry lookahead adder (GCLA). For this example, we will compare a

Decimal Residue
5794

29 4121
27 2603
56 1020

29 + 27 = 56

Decimal Residue
5794

10 0312
17 2381

170 0282

10 × 17 = 170

Figure 3-26 Examples of addition and multiplication in the residue number system.

92 CHAPTER 3 ARITHMETIC

16-bit CLA with a 16-bit GCLA in terms of gate delays, fan-ins, and fan-outs.

Figure 3-27 shows a 16-bit GCLA that is composed of four 4-bit CLAs, with

some additional logic that generates the carries between the four-bit groups.
Each group behaves as an ordinary CLA, except that the least significant carry
into each CLA is treated as a variable instead of as a 0, and that group generate
(GG) and group propagate (GP) signals are generated. A GG signal is generated
when a carry is generated somewhere within a group, and all of the more signifi-
cant propagate signals are true. This means that a carry into a group will propa-
gate all the way through the group. The corresponding equations for the least
significant GG and GP signals in Figure 3-27 are shown below:

GG0 = G3 + P3G2 + P3P2G1 + P3P2P1G0

GP0 = P3P2P1P0

The remaining GG and GP signals are computed similarly.

The carry into each group, except for the carry into CLA0, is computed from the
GG and GP signals. For example, c4 is true when GG0 is true or when GP0 and
c0 are both true. The corresponding equation is:

c4 = GG0 + GP0c0.

c16
Group Carry Lookahead Logic

CLA0

4

a0 – a3

4

b0 – b3

4

s0 – s3

GG0GP0

CLA1

4

a4 – a7

4

b4 – b7

4

s4 – s7

GG1GP1

CLA2

4

a8 – a11

4

b8 – b11

4

s8 – s11

GG2GP2

CLA3

4

a12 – a15

4

b12 – b15

4

s12 – s15

GG3GP3

c4c8c12

c0

Figure 3-27 A 16-bit group carry lookahead adder.

CHAPTER 3 ARITHMETIC 93

Higher order carries out of each group are computed in a similar manner:

c8 = GG1 + GP1c4 = GG1 + GP1GG0 + GP1GP0c0.

c12 = GG2 + GP2c8 = GG2 + GP2GG1 + GP2GP1GG0 +

GP2GP1GP0c0.

c16 = GG3 + GP3c12 = GG3 + GP3GG2 + GP3GP2GG1 +

GP3GP2GP1GG0 + GP3GP2GP1GP0c0.

In terms of gate delays, a 16-bit CLA has a longest path of five gate delays to pro-
duce the most significant sum bit, as discussed in Section 3.5.1. Each of the
CLAs in the 16-bit GCLA also has at least five gate delays on the longest path.
The GG and GP signals are generated in three gate delays, and the carry signals
out of each group are generated in two more gate delays, resulting in a total of
five gate delays to generate the carry out of each group. In the highest bit posi-
tion (s15), five gate delays are needed to generate c12, and another five gate delays
are needed to generate s15, for a worst case path of 10 gate delays through the
16-bit GCLA.

With regard to fan-in and fan-out, the maximum fan-in of any gate in a four-bit
CLA is four (refer to Figure 3-17), and in general, the maximum fan-in of any
gate in an n-bit CLA is n. Thus, the maximum fan-in of any gate in a 16-bit
CLA is 16. In comparison, the maximum fan-in for a 16-bit GCLA is five (for
generating c16). The fan-outs for both cases are the same as the fan-ins.

In summary, the 16-bit CLA has only half of the depth of the 16-bit GCLA (five
gate delays vs. 10 gate delays). The highest fan-in for a 16-bit CLA is 16, which is
more than three times the highest fan-in for a 16-bit GCLA (16 vs. five). The
highest fan-outs are the same as the highest fan-ins for each case. �

3.6 Case Study: Calculator Arithmetic Using Binary Coded Decimal
Calculator arithmetic has traditionally been done in base 10, rather than in base
2. Calculators need to be small and inexpensive, and for that reason base 10
numbers are represented in binary coded decimal (BCD – see Chapter 2) using 4
bits per BCD digit, instead of using base 2 which would require a somewhat
resource-intensive base conversion. A small 4-bit ALU can then do the computa-
tions in serial fashion, BCD digit by BCD digit.

94 CHAPTER 3 ARITHMETIC

3.6.1 THE HP9100A CALCULATOR

The popular HP9100A calculator, which came out in the late 1960’s, performed
the basic arithmetic functions: addition, subtraction, multiplication, and divi-
sion, as well as square root, ex, ln x, log x, trigonometric functions, and other
functions, all using base 10 arithmetic. The HP9100A is actually a desktop cal-
culator (see Figure 3-28), but was considered small for what it accomplished with

the technology of the day. The HP9100 display shows 10 significant digits, but
all calculations are performed to 12 significant digits, with the two last significant
digits (which are known as guard digits) being used for truncation and
round-off errors. Although the HP9100A may seem like a relic today, the arith-
metic methods are still relevant.

The next two sections describe general techniques for performing fixed point and
floating point BCD addition and subtraction. Other calculator operations
described in the remaining sections are performed in a similar manner, making
use of the addition and subtraction operations.

3.6.2 BINARY CODED DECIMAL ADDITION AND SUBTRACTION

Consider adding (+255)10 and (+63)10 in BCD representation, as illustrated in
Figure 3-29. Each base 10 digit occupies four bit positions, and addition is per-
formed on a BCD digit by BCD digit basis (not bit by bit), from right to left, as
we would normally carry it out by hand using a decimal representation. The
result, (+318)10, is produced in BCD form as shown.

Figure 3-28 HP 9100 series desktop calculator. [Source: http://www.teleport.com/

~dgh/91003q.jpg.]

CHAPTER 3 ARITHMETIC 95

Subtraction in BCD is handled similar to the way subtraction is handled in two’s
complement (adding the negative of the subtrahend) except that ten’s comple-
ment is used instead of two’s complement. Consider performing the subtraction
operation (255 − 63 = 192)10. We can cast this into the addition problem (255 +
(−63) = 192)10. We start by forming the nine’s complement of 63:

We then add 1 in order to form the 10’s complement:

The addition operation can now be performed, as shown in Figure 3-30. Notice

that the carry out of the highest digit position is discarded, as in two’s comple-
ment addition.

0 0 0 0

(0)10

0 0 1 0

(2)10

0 1 0 1

(5)10

0 1 0 1

(5)10

(+255)10

0 0 0 0

(0)10

0 0 0 0

(0)10

0 1 1 0

(6)10

0 0 1 1

(3)10

(+63)10+

0 0 0 0

(0)10

0 0 1 1

(3)10

0 0 0 1

(1)10

1 0 0 0

(8)10

(+318)10

0 1 0 0 Carries

Figure 3-29 An addition example using binary coded decimal.

9 9 9 9
0 0 6 3

9 9 3 6

−

9 9 3 6
0 0 0 1

9 9 3 7

+

0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 (+255)10

1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 (−63)10+

0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 (+192)10

1 0 1 0 Carries1

1

Discard carry

Figure 3-30 BCD addition in ten’s complement.

96 CHAPTER 3 ARITHMETIC

Unlike the two’s complement representation, we cannot simply look at the left-
most bit to determine the sign. In ten’s complement, the number is positive if the
leftmost digit is between 0 and 4, inclusive, and is negative otherwise. (The BCD
bit patterns for 4 and 5 are 0100 and 0101, respectively, which both have a 0 in
the leftmost bit, yet 4 indicates a positive number and 5 indicates a negative
number.) If we use an excess 3 encoding for each digit, then the leftmost bit will
indicate the sign. Figure 3-31 shows the encoding. Notice that six of the bit pat-

terns cannot occur, and so they are marked as don’t cares, ‘d’.

Now consider the design of a BCD full adder. The BCD full adder should sum
two BCD digits and a carry-in, and should produce a sum BCD digit and a
carry-out, all using excess 3. A design using two’s complement full adders is
shown in Figure 3-32. The excess 3 BCD digits are added in the upper four two’s
complement full adders (FAs). Since each operand is represented in excess 3, the
result is in excess 6. In order to restore the result to excess 3, we need to subtract
3 from the result. As an alternative, we can add 13 to the result since 16 − 3 = 16
+ 13 in a four-bit representation, discarding the carry out of the highest bit posi-
tion. The latter approach is used in Figure 3-32, in which 1310 = 11012 is added
to the result. Note that this only works if there is no carry. When there is a carry,
then we need to also subtract 10 (or equivalently, add 6) from the result, besides
subtracting 3 (or adding 13) to restore the excess 3 representation, and produce a

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
1
2
3
4
5
6
7
8
9
d
d
d
d
d
d

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

BCD Bit
Pattern

Normal BCD
value

Positive
numbers

d
d
d
0
1
2
3
4
5
6
7
8
9
d
d
d

Excess 3
value

Negative
numbers

Figure 3-31 Excess 3 encoding of BCD digits.

CHAPTER 3 ARITHMETIC 97

carry out. The approach taken here is to add 310 = 00112 for this situation,
which has the same effect as adding (6 + 13) % 16 = 3, as shown in Figure 3-32.

In order to perform BCD subtraction, we can create a ten’s complement subtrac-
tor using base 10 full subtractors, as we did for the two’s complement subtractor
described in Section 3.2.2. Alternatively, we can form the ten’s complement neg-
ative of the subtrahend, and then apply ordinary BCD addition. Figure 3-33

shows the computation (21 − 34 = −13)10 using the latter subtraction method
for four-digit numbers. The ten’s complement negative of 34 is added to 21,
which results in 9987 in ten’s complement, which is (−13)10 in signed magni-
tude.

3.6.3 BCD FLOATING POINT ADDITION AND SUBTRACTION

Consider a base 10 floating point representation with a two digit signed magni-

Full
adder

b0 a0

Full
adder

b1 a1

Full
adder

b2 a2

Full
adder

b3 a3

c4

0
c0

Full
adder

s0

Full
adder

s1

Full
adder

s2

Full
adder

s3

01

Figure 3-32 A BCD full adder.

+

0

9

9

0

9

9

2

6

8

1

6

7

Ten’s Complement

−
−

0

0

0

0

0

0

2

3

1

1

4

3

Signed Magnitude

Figure 3-33 The computation (21 − 34 = −13)10 in ten’s complement and signed magnitude.

98 CHAPTER 3 ARITHMETIC

tude exponent and an eight digit signed magnitude fraction. On a calculator, a
sample entry might look like:

−.37100000 × 10−12

which is in normalized form.

Now how is the number stored? A calculator user sees signed magnitude for both
the exponent and the fraction, but internally, we might use a ten’s complement
representation for both the exponent and the fraction. For the case above, the
representation using ten’s complement would be: 88 for the exponent, and
62900000 for the fraction. Using an excess 3 representation in binary results in
an exponent of 1011 1011 and a fraction of 1001 0101 1100 0011 0011 0011
0011 0011. Note that since we are using the leftmost bit for the sign, that the
exponent range is [−50 to +49] and that the fraction range is [−.50000000 to
+.49999999].

If we now try to represent +.9 in base 10, then we are again stuck because the
leftmost bit of the fraction is used for a sign bit. That is, we cannot use 1100 in
the most significant digit of the fraction, because although that is the excess 3
representation of 9, it makes the fraction appear negative. Here is a better solu-
tion: Just use ten’s complement for base 10 integer arithmetic, such as for expo-
nents, and use signed magnitude for fractions.

Here is the summary thus far: we use a ten’s complement representation for the
exponent since it is an integer, and we use a base 10 signed magnitude represen-
tation for the fraction. A separate sign bit is maintained for the fraction, so that
each digit can take on any of the 10 values 0–9 (except for the first digit, which
cannot be a zero) and so we can now represent +.9. We should also represent the
exponent in excess 50 to make comparisons easier. The example above now looks
like this internally, still in excess 3 binary form, with a two digit excess 50 expo-
nent:

Sign bit: 1

Exponent: 0110 1011

Fraction: 0110 1010 0100 0011 0011 0011 0011 0011 0011

CHAPTER 3 ARITHMETIC 99

In order to add two numbers in this representation, we just go through the same
steps that we did for the base 2 floating point representation described earlier. We
start by adjusting the exponent and fraction of the smaller operand until the
exponents of both operands are the same. If the difference in exponents is so
great that the fraction of the smaller operand is shifted all the way to the right,
then the smaller operand is treated as 0. After adjusting the smaller fraction, we
convert either or both operands from signed magnitude to ten’s complement
according to whether we are adding or subtracting, and whether the operands are
positive or negative. Note that this will work now because we can treat the frac-
tions as integers.

� SUMMARY

Computer arithmetic can be carried out as we normally carry out decimal arith-
metic by hand, while taking the base into account. A two’s complement or a ten’s
complement representation is normally used for integers, whereas signed magni-
tude is normally used for fractions due to the difficulty of manipulating positive
and negative fractions in a uniform manner.

Performance can be improved by skipping over 1’s in the Booth and bit-pair
recoding techniques. An alternative method of improving performance is to use
carryless addition, such as in residue arithmetic. Although carryless addition may
be the fastest approach in terms of time complexity and circuit complexity, the
more common weighted position codes are normally used in practice in order to
simplify comparisons and represent fractions.

� FURTHER READING
(Goldberg, 1990) is a concise but thorough source of numerous aspects of com-
puter arithmetic. (Hamacher et al., 1990) provides a classic treatment of integer
arithmetic. (Flynn, 1970) gives an early treatment of division by zero finding.
(Garner, 1959) gives a complete description of the residue number system,
whereas (Koren, 1993) gives a more tutorial treatment of the subject. (Huang
and Goodman, 1979) describes how a memory based residue processor can be
constructed. Koren (1993) also provides additional details on cascading
carry-lookahead units. (Cochran, 1968) is a good source for the programming of
the HP9100A calculator.

100 CHAPTER 3 ARITHMETIC

Cochran, D. S., “Internal Programming of the 9100A Calculator,” Hewlett-Pack-
ard Journal, (Sept. 1968); Also see http://www.hpmuseum.org/jour-
nals/9100:prg.htm.

Flynn, M. J., “On division by functional iteration,” IEEE Trans. Comp., C-19,
no. 8, pp. 702-706, (Aug. 1970).

Garner, H. L., “The Residue Number System,” IRE Transactions on Electronic
Computers, vol. 8, pp. 140-147, (Jun. 1959).

Goldberg, D., “Computer Arithmetic,” in Patterson, D. A. and J. L. Hennessy,
Computer Architecture: A Quantitative Approach, 2/e, Morgan Kaufmann,
(1995).

Hamacher, V. C., Z. G. Vranesic, and S. G. Zaky, Computer Organization, 3/e,
McGraw Hill, (1990).

Huang, A. and J. W. Goodman, “Number Theoretic Processors, Optical and
Electronic,” SPIE Optical Processing Systems, vol. 185, pp. 28-35, (1979).

Koren, I., Computer Arithmetic Algorithms, Prentice Hall, Englewood Cliffs,
(1993).

� PROBLEMS
3.1 Show the results of adding the following pairs of five-bit (i.e. one sign bit

and four data bits) two’s complement numbers and indicate whether or not
overflow occurs for each case:

3.2 One way to determine that overflow has occurred when adding two num-
bers is to detect that the result of adding two positive numbers is negative, or
that the result of adding two negative numbers is positive. The overflow rules
are different for subtraction: there is overflow if the result of subtracting a neg-
ative number from a positive number is negative or the result of subtracting a
positive number from a negative number is positive.

1 0 1 1 0
1 0 1 1 1+

1 1 1 1 0
1 1 1 0 1+

1 1 1 1 1
0 1 1 1 1+

CHAPTER 3 ARITHMETIC 101

Subtract the numbers shown below and determine whether or not an overflow
has occurred. Do not form the two’s complement of the subtrahend and add:
perform the subtraction bit by bit, showing the borrows generated at each
position:

- 0 1 0 1
- 0 1 1 0

3.3 Add the following two’s complement and one’s complement binary num-
bers as indicated. For each case, indicate if there is overflow.

Two’s complement One’s complement
+ 1 0 1 1.1 0 1 + 1 0 1 1.1 0 1
+ 0 1 1 1.0 1 1 + 0 1 1 1.0 1 1
_______________ _______________

3.4 Show the process of serial unsigned multiplication for 1010 (multipli-
cand) multiplied by 0101 (multiplier). Use the form shown in Figure 3-12.

3.5 Show the process of serial unsigned multiplication for 11.1 (multiplicand)
multiplied by 01.1 (multiplier) by treating the operands as integers. The result
should be 101.01.

3.6 Show the process of serial unsigned division for 1010 divided by 0101.
Use the form shown in Figure 3-15.

3.7 Show the process of serial unsigned division for 1010 divided by 0100,
but instead of generating a remainder, compute the fraction by continuing the
process. That is, the result should be 10.12.

3.8 The equation used in Section 3.5.1 for c4 in a carry lookahead adder
assumes that c0 is 0 for addition. If we perform subtraction by using the addi-
tion / subtraction unit shown in Figure 3-6, then c0 = 1. Rewrite the equation
for c4 when c0 = 1.

102 CHAPTER 3 ARITHMETIC

3.9 The 16-bit adder shown below uses a ripple carry among four-bit carry
lookahead adders.

(a) What is the longest gate delay through this adder?

(b) What is the shortest gate delay through this adder, from any input to any
output?

(c) What is the gate delay for s12?

3.10 Use the Booth algorithm (not bit pair recoding) to multiply 010011
(multiplicand) by 011011 (multiplier).

3.11 Use bit pair recoding to multiply 010011 (multiplicand) by 011011 (mul-
tiplier).

3.12 Compute the maximum gate delay through a 32-bit carry lookahead
adder.

3.13 What is the maximum number of inputs for any logic gate in a 32-bit
carry lookahead adder, using the scheme described in this chapter?

3.14 In a carry-select adder a carry is propagated from one adder stage to the
next, similar to but not exactly the same as a carry lookahead adder. As with
many other adders, the carry out of a carry-select adder stage is either 0 or 1.
In a carry-select adder, two sums are computed in parallel for each adder stage:
one sum assumes a carry-in of 0, and the other sum assumes a carry-in of 1.

Carry
Lookahead

Adder (CLA)

4

a15 ... a12

4

b15 ... b12 c12

4

s15 ... s12

Carry
Lookahead

Adder (CLA)

4

a11 ... a8

4

b11 ... b8 c8

4

s11 ... s8

Carry
Lookahead

Adder (CLA)

4

a7 ... a4

4

b7 ... b4 c4

4

s7 ... s4

Carry
Lookahead

Adder (CLA)

4

a3 ... a0

4

b3 ... b0

c0 = 0

4

s3 ... s0

c16

CHAPTER 3 ARITHMETIC 103

The actual carry-in selects which of the two sums to use (with a MUX, for
example). The basic layout is shown below for an eight-bit carry-select adder:

Assume that each four-bit adder (FBA) unit uses carry lookahead internally.
Compare the number of gate delays needed to add two eight-bit numbers
using FBA units in a carry-select configuration vs. using FBA units in which
the carry is rippled from one FBA to the next.

(a) Draw a diagram of a functionally equivalent eight-bit carry lookahead con-
figuration using the FBAs shown above.

(b) Show the number of gate delays for each adder configuration, by both the
8-bit carry-select adder shown above and the adder designed in part (a) above.

3.15 The path with the maximum gate delay through the array multiplier
shown in Figure 3-22 starts in the top right PP element, then travels to the
bottom row, then across to the left. The maximum gate delay through a PP
element is three. How many gate delays are on the maximum gate delay path
through an array multiplier that produces a p-bit result?

3.16 Given multiplication units that each produce a 16-bit unsigned product
on two unsigned 8-bit inputs, and 16-bit adders that produce a 16-bit sum
and a carry-out on two 16-bit inputs and a carry-in, connect these units so
that the overall unit multiplies 16-bit unsigned numbers, producing a 32-bit
result.

3.17 Using Newton’s iteration for division, we would like to obtain 32 bits of

b0 a0b1 a1b2 a2b3 a3

c4

0
c0

Four-Bit Adder (FBA)

b4 a4

s4

b5 a5

s5

b6 a6

s6

b7 a7

s7

0

Four-Bit Adder (FBA)

b4 a4

s4

b5 a5

s5

b6 a6

s6

b7 a7

s7

1

Four-Bit Adder (FBA)

c8c8

c8

10-to-5 MUX c4 = 0c4 = 1

s0s1s2s3s4s5s6s7

104 CHAPTER 3 ARITHMETIC

precision. If we use a lookup table that provides eight bits of precision for the
initial guess, how many iterations need to be applied?

3.18 Add (641)10 to (259)10 in unsigned BCD, using as few digits in the result
as necessary.

3.19 Add (123)10 and (−178)10 in signed BCD, using four digit words.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

103

In this chapter we tackle a central topic in computer architecture: the language
understood by the computer’s hardware, referred to as its

machine language

.
The machine language is usually discussed in terms of its

assembly language

,
which is functionally equivalent to the corresponding machine language except
that the assembly language uses more intuitive names such as Move, Add, and
Jump instead of the actual binary words of the language. (Programmers find con-
structs such as “Add r0, r1, r2” to be more easily understood and rendered with-
out error than 0110101110101101.)

We begin by describing the

I

nstruction Set Architecture

(ISA) view of the
machine and its operations. The ISA view corresponds to the Assembly Lan-
guage/Machine Code level described in Figure 1-4: it is between the High Level
Language view, where little or none of the machine hardware is visible or of con-
cern, and the Control level, where machine instructions are interpreted as regis-
ter transfer actions, at the Functional Unit level.

In order to describe the nature of assembly language and assembly language pro-
gramming, we choose as a model architecture the

ARC

 machine, which is a sim-
plification of the commercial SPARC architecture common to Sun computers.
(Additional architectural models are covered in

The Computer Architecture Com-
panion

 volume.)

We illustrate the utility of the various instruction classes with practical examples
of assembly language programming, and we conclude with a Case Study of the
Java bytecodes as an example of a common, portable assembly language that can
be implemented using the native language of another machine.

MACHINE LANGUAGE AND
ASSEMBLY LANGUAGE

 4

104

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

4.1 Hardware Components of the Instruction Set Architecture

The ISA of a computer presents the assembly language programmer with a view
of the machine that includes all the programmer-accessible hardware, and the
instructions that manipulate data within the hardware. In this section we look at
the hardware components as viewed by the assembly language programmer. We
begin with a discussion of the system as a whole: the CPU interacting with its
internal (main) memory and performing input and output with the outside
world.

4.1.1

THE SYSTEM BUS MODEL REVISITED

Figure 4-1 revisits the system bus model that was introduced in Chapter 1.

The purpose of the bus is to reduce the number of interconnections between the
CPU and its subsystems. Rather than have separate communication paths
between memory and each I/O device, the CPU is interconnected with its mem-
ory and I/O systems via a shared

system bus

. In more complex systems there
may be separate busses between the CPU and memory and CPU and I/O.

Not all of the components are connected to the system bus in the same way. The
CPU generates addresses that are placed onto the address bus, and the memory
receives addresses from the address bus. The memory never generates addresses,
and the CPU never receives addresses, and so there are no corresponding connec-
tions in those directions.

In a typical scenario, a user writes a high level program, which a compiler trans-
lates into assembly language. An assembler then translates the assembly language

Sy
st

em
 B

us

Data Bus

Address Bus

Control Bus

(ALU,
Registers,

and Control)

Memory Input and
Output (I/O)

CPU

Figure 4-1 The system bus model of a computer system.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

105

program into machine code, which is stored on a disk. Prior to execution, the
machine code program is loaded from the disk into the main memory by an
operating system.

During program execution, each instruction is brought into the ALU from the
memory, one instruction at a time, along with any data that is needed to execute
the instruction. The output of the program is placed on a device such as a video
display, or a disk. All of these operations are orchestrated by a control unit, which
we will explore in detail in Chapter 6. Communication among the three compo-
nents (CPU, Memory, and I/O) is handled with busses.

An important consideration is that the instructions are executed inside of the
ALU, even though all of the instructions and data are initially stored in the mem-
ory. This means that instructions and data must be loaded from the memory into
the ALU registers, and results must be stored back to the memory from the ALU
registers.

4.1.2

MEMORY

Computer memory consists of a collection of consecutively numbered
(addressed) registers, each one of which normally holds one byte. A

byte

 is a col-
lection of eight bits (sometimes referred to by those in the computer communi-
cations community as an

octet

). Each register has an address, referred to as a

memory location

. A

nibble

, or

nybble

, as it is sometimes spelled, refers to a col-
lection of four adjacent bits. The meanings of the terms “bit,” “byte,” and “nib-
ble” are generally agreed upon regardless of the specifics of an architecture, but
the meaning of

word

 depends upon the particular processor. Typical word sizes
are 16, 32, 64, and 128 bits, with the 32-bit word size being the common form
for ordinary computers these days, and the 64-bit word growing in popularity. In
this text, words will be assumed to be 32-bits wide unless otherwise specified. A
comparison of these data types is shown in Figure 4-2.

In a byte-addressable machine, the smallest object that can be referenced in
memory is the byte, however, there are usually instructions that read and write
multi-byte words. Multi-byte words are stored as a sequence of bytes, addressed
by the byte of the word that has the lowest address. Most machines today have
instructions that can access bytes, half-words, words, and double-words.

When multi-byte words are used, there are two choices about the order in which
the bytes are stored in memory: most significant byte at lowest address, referred

106

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

to as

big-endian

, or least significant byte stored at lowest address, referred to as

little-endian

. The term “endian” comes from the issue of whether eggs should be
broken on the big or little end, which caused a war by bickering politicians in
Jonathan Swift’s

Gulliver’s Travels

. Examples of big and little-endian formats for a
4-byte, 32-bit word is illustrated in Figure 4-3.

Memory locations are arranged linearly in consecutive order as shown in Figure
4-3. Each of the numbered locations corresponds to a specific stored word (a
word is composed of four bytes here). The unique number that identifies each
word is referred to as its

address

. Since addresses are counted in sequence begin-
ning with zero, the highest address is one less than the size of the memory. The
highest address for a 2

32

 byte memory is 2

32

–1. The lowest address is 0.

The example memory that we will use for the remainder of the chapter is shown
in Figure 4-4. This memory has a 32-bit

address space

, which means that a pro-
gram can access a byte of memory anywhere in the range from 0 to 2

32

 – 1. The
address space for our example architecture is divided into distinct regions which
are used for the operating system, input and output (I/O), user programs, and
the system stack, which comprise the

memory map

, as shown in Figure 4-3. The

Bit

Nibble

Byte

16-bit word (halfword)

32-bit word

64-bit word (double)

0

0110

10110000

11001001 01000110

10110100 00110101 10011001 01011000

01011000 01010101 10110000 11110011
11001110 11101110 01111000 00110101

128-bit word (quad) 01011000 01010101 10110000 11110011
11001110 11101110 01111000 00110101
00001011 10100110 11110010 11100110
10100100 01000100 10100101 01010001

Figure 4-2 Common sizes for data types.

Big-Endian

x x+1 x+2 x+3

31 Little-Endian

x+3 x+2 x+1 x

0

Word address is x for both big-endian and little-endian formats.

0 31

Byte

← MSB LSB → ← MSB LSB →

Figure 4-3 Big-endian and little-endian formats.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

107

memory map differs from one implementation to another, which is partly why
programs compiled for the same type of processor may not be compatible across
systems.

The lower 2

11

 = 2048 addresses of the memory map are reserved for use by the
operating system. The user space is where a user’s assembled program is loaded,
and can grow during operation from location 2048 until it meets up with the
system stack. The system stack starts at location 2

31

 – 4 and grows toward lower
addresses. The portion of the address space between 2

31

 and 2

32

 – 1 is reserved
for I/O devices. The memory map is thus not entirely composed of real memory,
and in fact there may be large gaps where neither real memory nor I/O devices
exist. Since I/O devices are treated like memory locations, ordinary memory read
and write commands can be used for reading and writing devices. This is referred
to as

memory mapped I/O

.

It is important to keep the distinction clear between what is an address and what
is data. An address in this example memory is 32 bits wide, and a word is also 32
bits wide, but they are not the same thing. An address is a pointer to a memory
location, which holds data.

Reserved for
operating system

User Space

I/O space

0

2048

Stack pointer
System Stack

Top of stack

Bottom of stack

Disk
Terminal

Printer

232 – 4

231 – 4

32 bits

Address Data

232 – 1byte

MEMORY

Address Control

Data
Out

Data
In

Figure 4-4 A memory map for an example architecture (not drawn to scale).

108

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

In this chapter we assume that the computer’s memory is organized in a single
address space. The term

address space

 refers to the numerical range of memory
addresses to which the CPU can refer. In Chapter 7 (Memory), we will see that
there are other ways that memory can be organized, but for now, we assume that
memory as seen by the CPU has a single range of addresses. What decides the
size of that range? It is the size of a memory address that the CPU can place on
the address bus during read and write operations. A memory address that is

n

 bits
wide can specify one of 2

n

 items. This memory could be referred to as having an

n

-bit address space, or equivalently as having a (2

n

) byte address space. For exam-
ple, a machine having a 32-bit address space will have a maximum capacity of
2

32

 (4 GB) of memory. The memory addresses will range from 0 to 2

32

- 1, which
is 0 to 4,294,967,295 decimal, or in the easier to manipulate hexadecimal for-
mat, from 00000000H to FFFFFFFFFH. (The ‘H’ indicates a hexadecimal
number in many assembly languages.)

4.1.3

THE CPU

Now that we are familiar with the basic components of the system bus and mem-
ory, we are ready to explore the internals of the CPU. At a minimum, the CPU
consists of a

data section

 that contains registers and an ALU, and a

control sec-
tion

, which interprets instructions and effects register transfers, as illustrated in
Figure 4-5. The data section is also referred to as the

datapath

.

The control unit of a computer is responsible for executing the program instruc-
tions, which are stored in the main memory. (Here we will assume that the
machine code is interpreted by the control unit one instruction at a time, though
in Chapter 9 we shall see that many modern processors can process several

Control Unit

Control Section

Registers

ALU

Datapath
(Data Section)

System

Figure 4-5 High level view of a CPU.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

109

instructions simultaneously.) There are two registers that form the interface
between the control unit and the data unit, known as the

program counter

(PC)

†

 and the

instruction register

 (IR). The PC contains the address of the
instruction being executed. The instruction that is pointed to by the PC is
fetched from the memory, and is stored in the IR where it is interpreted. The
steps that the control unit carries out in executing a program are:

1) Fetch the next instruction to be executed from memory.

2) Decode the opcode.

3) Read operand(s) from main memory, if any.

4) Execute the instruction and store results.

5) Go to step 1.

This is known as the

fetch-execute cycle

.

The control unit is responsible for coordinating these different units in the exe-
cution of a computer program. It can be thought of as a form of a “computer
within a computer” in the sense that it makes decisions as to how the rest of the
machine behaves. We will treat the control unit in detail in Chapter 6.

The datapath is made up of a collection of registers known as the

register file

and the arithmetic and logic unit (ALU), as shown in Figure 4-6. The figure
depicts the datapath of an example processor we will use in the remainder of the
chapter.

The register file in the figure can be thought of as a small, fast memory, separate
from the system memory, which is used for temporary storage during computa-
tion. Typical sizes for a register file range from a few to a few thousand registers.
Like the system memory, each register in the register file is assigned an address in
sequence starting from zero. These register “addresses” are much smaller than
main memory addresses: a register file containing 32 registers would have only a
5-bit address, for example. The major differences between the register file and the
system memory is that the register file is contained within the CPU, and is there-
fore much faster. An instruction that operates on data from the register file can
often run ten times faster than the same instruction that operates on data in

† In Intel processors the program counter is called the instruction pointer, IP.

110

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

memory. For this reason, register-intensive programs are faster than the equiva-
lent memory intensive programs, even if it takes more register operations to do
the same tasks that would require fewer operations with the operands located in
memory.

Notice that there are several busses

inside

 the datapath of Figure 4-6. Three bus-
ses connect the datapath to the system bus. This allows data to be transferred to
and from main memory and the register file. Three additional busses connect the
register file to the ALU. These busses allow two operands to be fetched from the
register file simultaneously, which are operated on by the ALU, with the results
returned to the register file.

The ALU implements a variety of binary (two-operand) and unary (one-oper-
and) operations. Examples include add, and, not, or, and multiply. Operations
and operands to be used during the operations are selected by the Control Unit.
The two source operands are fetched from the register file onto busses labeled
“Register Source 1 (rs1)” and “Register Source 2 (rs2).” The output from the
ALU is placed on the bus labeled “Register Destination (rd),” where the results
are conveyed back to the register file. In most systems these connections also
include a path to the System Bus so that memory and devices can be accessed.
This is shown as the three connections labeled “From Data Bus”, “To Data Bus”,
and “To Address Bus.”

Register
File

ALU

From Data
Bus

To Data
Bus

To Address
Bus

Register
Source 1

(rs1)

Register
Source 2

(rs2)

Register Destination (rd)

Control Unit selects
registers and ALU

function

Status to Control
Unit

Figure 4-6 An example datapath.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

111

The Instruction Set

The

instruction set

 is the collection of instructions that a processor can execute,
and in effect, it defines the processor. The instruction sets for each processor type
are completely different one from the other. They differ in the sizes of instruc-
tions, the kind of operations they allow, the type of operands they operate on,
and the types of results they provide.This incompatibility in instruction sets is in
stark contrast to the compatibility of higher level languages such as C, Pascal,
and Ada. Programs written in these higher level languages can run almost
unchanged on many different processors if they are

re-compiled

 for the target
processor.

(One exception to this incompatibility of machine languages is programs com-
piled into Java bytecodes, which are a machine language for a

virtual machine

.
They will run unchanged on any processor that is running the Java Virtual
Machine. The Java Virtual Machine, written in the assembly language of the tar-
get machine, intercepts each Java byte code and executes it as if it were running
on a Java hardware (“real”) machine. See the Case Study at the end of the chapter
for more details.)

Because of this incompatibility among instruction sets, computer systems are
often identified by the type of CPU that is incorporated into the computer sys-
tem. The instruction set determines the programs the system can execute and has
a significant impact on performance. Programs compiled for an IBM PC (or
compatible) system use the instruction set of an 80x86 CPU, where the ‘x’ is
replaced with a digit that corresponds to the version, such as 80586, more com-
monly referred to as a Pentium processor. These programs will not run on an
Apple Macintosh or an IBM RS6000 computer, since the Macintosh and IBM
machines execute the instruction set of the Motorola

PowerPC

 CPU. This does
not mean that all computer systems that use the same CPU can execute the same
programs, however. A PowerPC program written for the IBM RS6000 will not
execute on the Macintosh without extensive modifications, however, because of
differences in operating systems and I/O conventions.

We will cover one instruction set in detail later in the chapter.

Software for generating machine language programs

A

compiler

 is a computer program that transforms programs written in a
high-level language such as C, Pascal, or Fortran into machine language. Com-

112

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

pilers for the same high level language generally have the same “front end,” the
part that recognizes statements in the high-level language. They will have differ-
ent “back ends,” however, one for each target processor. The compiler’s back end
is responsible for generating machine code for a specific target processor. On the
other hand, the same program, compiled by different C compilers for the

same

machine can produce different compiled programs for the same source code, as
we will see.

In the process of compiling a program (referred to as the

translation process

), a
high-level source program is transformed into

assembly language

, and the
assembly language is then translated into machine code for the target machine by
an

assembler

. These translations take place at

compile time

 and

assembly time

,
respectively. The resulting object program can be linked with other object pro-
grams, at

link time

. The linked program, usually stored on a disk, is loaded into
main memory, at

load time

, and executed by the CPU, at

run time

.

Although most code is written in high level languages, programmers may use
assembly language for programs or fragments of programs that are time or
space-critical. In addition, compilers may not be available for some special pur-
pose processors, or their compilers may be inadequate to express the special oper-
ations which are required. In these cases also, the programmer may need to resort
to programming in assembly language.

High level languages allow us to ignore the target computer architecture during
coding. At the machine language level, however, the underlying architecture is
the primary consideration. A program written in a high level language like C,
Pascal, or Fortran may look the same and execute correctly after compilation on
several different computer systems. The object code that the compiler produces
for each machine, however, will be very different for each computer system, even
if the systems use the same instruction set, such as programs compiled for the
PowerPC but running on a Macintosh vs. running on an IBM RS6000.

Having discussed the system bus, main memory, and the CPU, we now examine
details of a model instruction set, the ARC.

4.2 ARC, A RISC Computer

In the remainder of this chapter, we will study a model architecture that is based
on the commercial Scalable Processor Architecture (

SPARC

) processor that was
developed at Sun Microsystems in the mid-1980’s. The SPARC has become a

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

113

popular architecture since its introduction, which is partly due to its “open”
nature: the full definition of the SPARC architecture is made readily available to
the public (SPARC, 1992). In this chapter, we will look at just a subset of the
SPARC, which we call “A RISC Computer” (

ARC

). “RISC” is yet another acro-
nym, for

reduced instruction set computer

, which is discussed in Chapter 9. The
ARC has most of the important features of the SPARC architecture, but without
some of the more complex features that are present in a commercial processor.

4.2.1

ARC MEMORY

The ARC is a 32-bit machine with byte-addressable memory: it can manipulate
32-bit data types, but all data is stored in memory as bytes, and the address of a
32-bit word is the address of its byte that has the lowest address. As described
earlier in the chapter in the context of Figure 4-4, the ARC has a 32-bit address
space, in which our example architecture is divided into distinct regions for use
by the operating system code, user program code, the system stack (used to store
temporary data), and input and output, (I/O). These memory regions are
detailed as follows:

• The lowest 2

11

 = 2048 addresses of the memory map are reserved for use
by the operating system.

• The user space is where a user’s assembled program is loaded, and can grow
during operation from location 2048 until it meets up with the system
stack.

• The system stack starts at location 2

31

 – 4 and grows toward lower address-
es. The reason for this organization of programs growing upward in mem-
ory and the system stack growing downward can be seen in Figure 4-4: it
accommodates both large programs with small stacks and small programs
with large stacks.

• The portion of the address space between 2

31

 and 2

32

 – 1 is reserved for
I/O devices—each device has a collection of memory addresses where its
data is stored, which is referred to as “memory mapped I/O.”

The ARC has several data types (byte, halfword, integer,

etc.

), but for now we
will consider only the 32-bit integer data type. Each integer is stored in memory
as a collection of four bytes. ARC is a

big-endian

 architecture, so the high-
est-order byte is stored at the lowest address. The largest possible byte address in
the ARC is 2

32

 – 1, so the address of the highest word in the memory map is

114

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

three bytes lower than this, or 2

32

 – 4.

4.2.2

ARC INSTRUCTION SET

As we get into details of the ARC instruction set, let us start by making an over-
view of the CPU:

• The ARC has 32 32-bit general-purpose registers, as well as a PC and an IR.

• There is a

Processor Status Register

 (PSR) that contains information about
the state of the processor, including information about the results of arith-
metic operations. The “arithmetic flags” in the PSR are called the

condition
codes

. They specify whether a specified arithmetic operation resulted in a
zero value (

z), a negative value (n), a carry out from the 32-bit ALU (c),
and an overflow (v). The v bit is set when the results of the arithmetic op-
eration are too large to be handled by the ALU.

• All instructions are one word (32-bits) in size.

• The ARC is a load-store machine: the only allowable memory access oper-
ations load a value into one of the registers, or store a value contained in
one of the registers into a memory location. All arithmetic operations op-
erate on values that are contained in registers, and the results are placed in
a register. There are approximately 200 instructions in the SPARC instruc-
tion set, upon which the ARC instruction set is based. A subset of 15 in-
structions is shown in Figure 4-7. Each instruction is represented by a
mnemonic, which is a name that represents the instruction.

Data Movement Instructions

The first two instructions: ld (load) and st (store) transfer a word between the
main memory and one of the ARC registers. These are the only instructions that
can access memory in the ARC.

The sethi instruction sets the 22 most significant bits (MSBs) of a register with
a 22-bit constant contained within the instruction. It is commonly used for con-
structing an arbitrary 32-bit constant in a register, in conjunction with another
instruction that sets the low-order 10 bits of the register.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 115

Arithmetic and Logic Instructions

The andcc, orcc, and orncc instructions perform a bit-by-bit AND, OR, and
NOR operation, respectively, on their operands. One of the two source operands
must be in a register. The other may either be in a register, or it may be a 13-bit
two’s complement constant contained in the instruction, which is sign extended
to 32-bits when it is used. The result is stored in a register.

For the andcc instruction, each bit of the result is set to 1 if the corresponding
bits of both operands are 1, otherwise the result bit is set to 0. For the orcc
instruction, each bit of the register is 1 if either or both of the corresponding
source operand bits are 1, otherwise the corresponding result bit is set to 0. The
orncc operation is the complement of orcc, so each bit of the result is 0 if
either or both of the corresponding operand bits are 1, otherwise the result bit is
set to 1. The “cc” suffixes specify that after performing the operation, the condi-
tion code bits in the PSR are updated to reflect the results of the operation. In
particular, the z bit is set if the result register contains all zeros, the n bit is set if
the most significant bit of the result register is a 1, and the c and v flags are
cleared for these particular instructions. (Why?)

The shift instructions shift the contents of one register into another. The srl
(shift right logical) instruction shifts a register to the right, and copies zeros into

ld Load a register from memory

Mnemonic Meaning

st

sethi

andcc

addcc

call

jmpl

be

orcc

orncc

Store a register into memory

Load the 22 most significant bits of a register

Bitwise logical AND

Add

Branch on overflow

Call subroutine

Jump and link (return from subroutine call)

Branch if equal

Bitwise logical OR

Bitwise logical NOR

bneg

bcs

Branch if negative

Branch on carry

srl Shift right (logical)

bvs

ba Branch always

Memory

Logic

Arithmetic

Control

Figure 4-7 A subset of the instruction set for the ARC ISA.

116 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

the leftmost bit(s). The sra (shift right arithmetic) instruction (not shown),
shifts the original register contents to the right, placing a copy of the MSB of the
original register into the newly created vacant bit(s) in the left side of the register.
This results in sign-extending the number, thus preserving its arithmetic sign.

The addcc instruction performs a 32-bit two’s complement addition on its
operands.

Control Instructions

The call and jmpl instructions form a pair that are used in calling and return-
ing from a subroutine, respectively. jmpl is also used to transfer control to
another part of the program.

The lower five instructions are called conditional branch instructions. The be,
bneg, bcs, bvs, and ba instructions cause a branch in the execution of a pro-
gram. They are called conditional because they test one or more of the condition
code bits in the PSR, and branch if the bits indicate the condition is met. They
are used in implementing high level constructs such as goto, if-then-else
and do-while. Detailed descriptions of these instructions and examples of their
usages are given in the sections that follow.

4.2.3 ARC ASSEMBLY LANGUAGE FORMAT

Each assembly language has its own syntax. We will follow the SPARC assembly
language syntax, as shown in Figure 4-8. The format consists of four fields: an

optional label field, an opcode field, one or more fields specifying the source and
destination operands (if there are operands), and an optional comment field. A
label consists of any combination of alphabetic or numeric characters, under-
scores (_), dollar signs ($), or periods (.), as long as the first character is not a
digit. A label must be followed by a colon. The language is sensitive to case, and
so a distinction is made between upper and lower case letters. The language is
“free format” in the sense that any field can begin in any column, but the relative

lab_1: addcc %r1, %r2, %r3 ! Sample assembly code

Label Mnemonic
Source

operands Comment
Destination

operand

Figure 4-8 Format for a SPARC (as well as ARC) assembly language statement.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 117

left-to-right ordering must be maintained.

The ARC architecture contains 32 registers labeled %r0 – %r31, that each hold
a 32-bit word. There is also a 32-bit Processor State Register (PSR) that describes
the current state of the processor, and a 32-bit program counter (PC), that
keeps track of the instruction being executed, as illustrated in Figure 4-9. The

PSR is labeled %psr and the PC register is labeled %pc. Register %r0 always
contains the value 0, which cannot be changed. Registers %r14 and %r15 have
additional uses as a stack pointer (%sp) and a link register, respectively, as
described later.

Operands in an assembly language statement are separated by commas, and the
destination operand always appears in the rightmost position in the operand
field. Thus, the example shown in Figure 4-8 specifies adding registers %r1 and
%r2, with the result placed in %r3. If %r0 appears in the destination operand
field instead of %r3, the result is discarded. The default base for a numeric oper-
and is 10, so the assembly language statement:

addcc %r1, 12, %r3

shows an operand of (12)10 that will be added to %r1, with the result placed in
%r3. Numbers are interpreted in base 10 unless preceeded by “0x” or ending in
“H”, either of which denotes a hexadecimal number. The comment field follows

Register 00 %r0 [= 0]

Register 01 %r1

Register 02 %r2

Register 03 %r3

Register 04 %r4

Register 05 %r5

Register 06 %r6

Register 07 %r7

Register 08 %r8

PSR %psr PC %pc

Register 09 %r9

Register 10 %r10

Register 11 %r11

Register 12 %r12

Register 13 %r13

Register14 %r14 [%sp]

Register 15 %r15 [link]

32 bits 32 bits

Register 16 %r16

Register 17 %r17

Register 18 %r18

Register 19 %r19

Register 20 %r20

Register 21 %r21

Register 22 %r22

Register 23 %r23

Register 24 %r24

Register 25 %r25

Register 26 %r26

Register 27 %r27

Register 28 %r28

Register 29 %r29

Register 30 %r30

Register 31 %r31

Figure 4-9 User-visible registers in the ARC.

118 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

the operand field, and begins with an exclamation mark ‘!’ and terminates at the
end of the line.

4.2.4 ARC INSTRUCTION FORMATS

The instruction format defines how the various bit fields of an instruction are
laid out by the assembler, and how they are interpreted by the ARC control unit.
The ARC architecture has just a few instruction formats. The five formats are:
SETHI, Branch, Call, Arithmetic, and Memory, as shown in Figure 4-10. Each

instruction has a mnemonic form such as “ld,” and an opcode. A particular
instruction format may have more than one opcode field, which collectively
identify an instruction in one of its various forms.

op3 (op=10)

010000
010001
010010
010110
100110
111000

addcc
andcc
orcc
orncc
srl
jmpl

0001
0101
0110
0111
1000

cond

be
bcs
bneg
bvs
ba

branch

010
100

op2

branch
sethi

Inst.

00
01
10
11

op

SETHI/Branch
CALL
Arithmetic
Memory

Format

000000
000100

ld
st

op3 (op=11)

op

CALL format disp30

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 1

SETHI Format imm22

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

rd

disp220 cond

0 0

0 0Branch Format

op2

op2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

rs11 op3

simm131 op3

1

Memory Formats
1

rd

rd rs1

0

1

0 0 0 0 0 0 0 0 rs2

Arithmetic
Formats

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

rs11 op3

simm131 op3

0

0

rd

rd rs1

0

1

0 0 0 0 0 0 0 0 rs2

i

PSR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

z v cn

Figure 4-10 Instruction formats and PSR format for the ARC.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 119

The leftmost two bits of each instruction form the op (opcode) field, which
identifies the format. The SETHI and Branch formats both contain 00 in the op
field, and so they can be considered together as the SETHI/Branch format. The
actual SETHI or Branch format is determined by the bit pattern in the op2
opcode field (010 = Branch; 100 = SETHI). Bit 29 in the Branch format always
contains a zero. The five-bit rd field identifies the target register for the SETHI
operation.

The cond field identifies the type of branch, based on the condition code bits (n,
z, v, and c) in the PSR, as indicated at the bottom of Figure 4-10. The result of
executing an instruction in which the mnemonic ends with “cc” sets the condi-
tion code bits such that n=1 if the result of the operation is negative; z=1 if the
result is zero; v=1 if the operation causes an overflow; and c=1 if the operation
produces a carry. The instructions that do not end in “cc” do not affect the con-
dition codes. The imm22 and disp22 fields each hold a 22-bit constant that is
used as the operand for the SETHI format (for imm22) or for calculating a dis-
placement for a branch address (for disp22).

The CALL format contains only two fields: the op field, which contains the bit
pattern 01, and the disp30 field, which contains a 30-bit displacement that is
used in calculating the address of the called routine.

The Arithmetic (op = 10) and Memory (op = 11) formats both make use of
rd fields to identify either a source register for st, or a destination register for
the remaining instructions. The rs1 field identifies the first source register, and
the rs2 field identifies the second source register. The op3 opcode field identi-
fies the instruction according to the op3 tables shown in Figure 4-10.

The simm13 field is a 13-bit immediate value that is sign extended to 32 bits for
the second source when the i (immediate) field is 1. The meaning of “sign
extended” is that the leftmost bit of the simm13 field (the sign bit) is copied to
the left into the remaining bits that make up a 32-bit integer, before adding it to
rs1 in this case. This ensures that a two’s complement negative number remains
negative (and a two’s complement positive number remains positive). For
instance, (−13)10 = (1111111110011)2, and after sign extension to a 32-bit inte-
ger, we have (11111111111111111111111111110011)2 which is still equivalent
to (−13)10.

The Arithmetic instructions need two source operands and a destination oper-
and, for a total of three operands. The Memory instructions only need two oper-

120 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

ands: one for the address and one for the data. The remaining source operand is
also used for the address, however. The operands in the rs1 and rs2 fields are
added to obtain the address when i = 0. When i = 1, then the rs1 field and
the simm13 field are added to obtain the address. For the first few examples we
will encounter, %r0 will be used for rs2 and so only the remaining source oper-
and will be specified.

4.2.5 ARC DATA FORMATS

The ARC supports 12 different data formats as illustrated in Figure 4-11. The
data formats are grouped into three types: signed integer, unsigned integer, and
floating point. Within these types, allowable format widths are byte (8 bits), half-
word (16 bits), word/singleword (32 bits), tagged word (32 bits, in which the
two least significant bits form a tag and the most significant 30 bits form the
value), doubleword (64 bits), and quadword (128 bits).

In reality, the ARC does not differentiate between unsigned and signed integers.
Both are stored and manipulated as two’s complement integers. It is their inter-
pretation that varies. In particular one subset of the branch instructions assumes
that the value(s) being compared are signed integers, while the other subset
assumes they are unsigned. Likewise, the c bit indicates unsigned integer over-
flow, and the v bit, signed overflow.

The tagged word uses the two least significant bits to indicate overflow, in which
an attempt is made to store a value that is larger than 30 bits into the allocated
30 bits of the 32-bit word. Tagged arithmetic operations are used in languages
with dynamically typed data, such as Lisp and Smalltalk. In its generic form, a 1
in either bit of the tag field indicates an overflow situation for that word. The
tags can be used to ensure proper alignment conditions (that words begin on
four-byte boundaries, quadwords begin on eight-byte boundaries, etc.), particu-
larly for pointers.

The floating point formats conform to the IEEE 754-1985 standard (see Chap-
ter 2). There are special instructions that invoke the floating point formats that
are not described here, that can be found in (SPARC, 1992).

4.2.6 ARC INSTRUCTION DESCRIPTIONS

Now that we know the instruction formats, we can create detailed descriptions of
the 15 instructions listed in Figure 4-7, which are given below. The translation to

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 121

object code is provided only as a reference, and is described in detail in the next
chapter. In the descriptions below, a reference to the contents of a memory loca-
tion (for ld and st) is indicated by square brackets, as in “ld [x], %r1”
which copies the contents of location x into %r1. A reference to the address of a
memory location is specified directly, without brackets, as in “call sub_r,”
which makes a call to subroutine sub_r. Only ld and st can access memory,
therefore only ld and st use brackets. Registers are always referred to in terms of
their contents, and never in terms of an address, and so there is no need to
enclose references to registers in brackets.

Signed Integer Byte s
7 6 0

Signed Integer Halfword s
15 14 0

Signed Integer Word s
31 30 0

Signed Integer Double s
63 62 32

31 0

Signed Formats

Unsigned Integer Byte
7 0

Unsigned Integer Halfword
15 0

Unsigned Integer Word
31 0

Unsigned Integer Double
63 32

31 0

Unsigned Formats

Floating Point Single

Floating Point Double

Floating Point Quad

31 0

s
127 126 96

95 64

Floating Point Formats

Tagged Word
31 0

Tag

12

s
31 30 0

exponent fraction
23 22

s
63 62 32

exponent fraction

fraction

63 32

31 0

exponent fraction

52 51

113112

fraction

fraction

fraction

Figure 4-11 ARC data formats.

122 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

Instruction: ld
Description: Load a register from main memory. The memory address must be aligned
on a word boundary (that is, the address must be evenly divisible by 4). The address is
computed by adding the contents of the register in the rs1 field to either the contents of
the register in the rs2 field or the value in the simm13 field, as appropriate for the con-
text.
Example usage: ld [x], %r1

or ld [x], %r0, %r1
or ld %r0+x, %r1

Meaning: Copy the contents of memory location x into register %r1.
Object code: 11000010000000000010100000010000 (x = 2064)

Instruction: st
Description: Store a register into main memory. The memory address must be aligned
on a word boundary. The address is computed by adding the contents of the register in
the rs1 field to either the contents of the register in the rs2 field or the value in the
simm13 field, as appropriate for the context. The rd field of this instruction is actually
used for the source register.
Example usage: st %r1, [x]
Meaning: Copy the contents of register %r1 into memory location x.
Object code: 11000010001000000010100000010000 (x = 2064)

Instruction: sethi
Description: Set the high 22 bits and zero the low 10 bits of a register. If the operand is
0 and the register is %r0, then the instruction behaves as a no-op (NOP), which means
that no operation takes place.
Example usage: sethi 0x304F15, %r1
Meaning: Set the high 22 bits of %r1 to (304F15)16, and set the low 10 bits to zero.
Object code: 00000011001100000100111100010101

Instruction: andcc
Description: Bitwise AND the source operands into the destination operand. The con-
dition codes are set according to the result.
Example usage: andcc %r1, %r2, %r3
Meaning: Logically AND %r1 and %r2 and place the result in %r3.
Object code: 10000110100010000100000000000010

Instruction: orcc
Description: Bitwise OR the source operands into the destination operand. The condi-
tion codes are set according to the result.
Example usage: orcc %r1, 1, %r1
Meaning: Set the least significant bit of %r1 to 1.
Object code: 10000010100100000110000000000001

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 123

Instruction: orncc
Description: Bitwise NOR the source operands into the destination operand. The con-
dition codes are set according to the result.
Example usage: orncc %r1, %r0, %r1
Meaning: Complement %r1.
Object code: 10000010101100000100000000000000

Instruction: srl
Description: Shift a register to the right by 0 – 31 bits. The vacant bit positions in the
left side of the shifted register are filled with 0’s.
Example usage: srl %r1, 3, %r2
Meaning: Shift %r1 right by three bits and store in %r2. Zeros are copied into the three
most significant bits of %r2.
Object code: 10000101001100000110000000000011

Instruction: addcc
Description: Add the source operands into the destination operand using two’s comple-
ment arithmetic. The condition codes are set according to the result.
Example usage: addcc %r1, 5, %r1
Meaning: Add 5 to %r1.
Object code: 10000010100000000110000000000101

Instruction: call
Description: Call a subroutine and store the address of the current instruction (where
the call itself is stored) in %r15, which effects a “call and link” operation. In the assem-
bled code, the disp30 field in the CALL format will contain a 30-bit displacement
from the address of the call instruction. The address of the next instruction to be exe-
cuted is computed by adding 4 × disp30 (which shifts disp30 to the high 30 bits of
the 32-bit address) to the address of the current instruction. Note that disp30 can be
negative.
Example usage: call sub_r
Meaning: Call a subroutine that begins at location sub_r. For the object code shown
below, sub_r is 25 words (100 bytes) farther in memory than the call instruction.
Object code: 01000000000000000000000000011001

Instruction: jmpl
Description: Jump and link (return from subroutine). Jump to a new address and store
the address of the current instruction (where the jmpl instruction is located) in the des-
tination register.
Example usage: jmpl %r15 + 4, %r0
Meaning: Return from subroutine. The value of the PC for the call instruction was pre-
viously saved in %r15, and so the return address should be computed for the instruction
that follows the call, at %r15 + 4. The current address is discarded in %r0.
Object code: 10000001110000111110000000000100

124 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

Instruction: be
Description: If the z condition code is 1, then branch to the address computed by add-
ing 4 × disp22 in the Branch instruction format to the address of the current instruc-
tion. If the z condition code is 0, then control is transferred to the instruction that
follows be.
Example usage: be label
Meaning: Branch to label if the z condition code is 1. For the object code shown
below, label is five words (20 bytes) farther in memory than the be instruction.
Object code: 00000010100000000000000000000101

Instruction: bneg
Description: If the n condition code is 1, then branch to the address computed by add-
ing 4 × disp22 in the Branch instruction format to the address of the current instruc-
tion. If the n condition code is 0, then control is transferred to the instruction that
follows bneg.
Example usage: bneg label
Meaning: Branch to label if the n condition code is 1. For the object code shown
below, label is five words farther in memory than the bneg instruction.
Object code: 00001100100000000000000000000101

Instruction: bcs
Description: If the c condition code is 1, then branch to the address computed by add-
ing 4 × disp22 in the Branch instruction format to the address of the current instruc-
tion. If the c condition code is 0, then control is transferred to the instruction that
follows bcs.
Example usage: bcs label
Meaning: Branch to label if the c condition code is 1. For the object code shown
below, label is five words farther in memory than the bcs instruction.
Object code: 00001010100000000000000000000101

Instruction: bvs
Description: If the v condition code is 1, then branch to the address computed by add-
ing 4 × disp22 in the Branch instruction format to the address of the current instruc-
tion. If the v condition code is 0, then control is transferred to the instruction that
follows bvs.
Example usage: bvs label
Meaning: Branch to label if the v condition code is 1. For the object code shown
below, label is five words farther in memory than the bvs instruction.
Object code: 00001110100000000000000000000101

Instruction: ba
Description: Branch to the address computed by adding 4 × disp22 in the Branch
instruction format to the address of the current instruction.
Example usage: ba label

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 125

Meaning: Branch to label regardless of the settings of the condition codes. For the
object code shown below, label is five words earlier in memory than the ba instruc-
tion.
Object code: 00010000101111111111111111111011

4.3 Pseudo-Ops
In addition to the ARC instructions that are supported by the architecture, there
are also pseudo-operations (pseudo-ops) that are not opcodes at all, but rather
instructions to the assembler to perform some action at assembly time. A list of
pseudo-ops and examples of their usages are shown in Figure 4-12. Note that

unlike processor opcodes, which are specific to a given machine, the kind and
nature of the pseudo-ops are specific to a given assembler, because they are exe-
cuted by the assembler itself.

The .equ pseudo-op instructs the assembler to equate a value or a character
string with a symbol, so that the symbol can be used throughout a program as if
the value or string is written in its place. The .begin and .end pseudo-ops tell
the assembler when to start and stop assembling. Any statements that appear
before .begin or after .end are ignored. A single program may have more than
one .begin/.end pair, but there must be a .end for every .begin, and there
must be at least one .begin. The use of .begin and .end are helpful in mak-
ing portions of the program invisible to the assembler during debugging.

Pseudo-Op Usage Meaning

.equ .equ #10 Treat symbol X as (10)16

.begin .begin Start assembling

.end .end Stop assembling

.org .org 2048 Change location counter to 2048

.dwb .dwb 25 Reserve a block of 25 words

X

.global .global Y Y is used in another module

.extern .extern Z Z is defined in another module

.macro .macro M a, b, ...

parameters a, b, ...

.endmacro .endmacro End of macro definition

.if .if <cond> Assemble if <cond> is true

.endif .endif End of .if construct

Define macro M with formal

Figure 4-12 Pseudo-ops for the ARC assembly language.

126 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

The .org (origin) pseudo-op causes the next instruction to be assembled with
the assumption it will be placed in the specified memory location at runtime
(location 2048 in Figure 4-12.) The .dwb (define word block) pseudo-op
reserves a block of four-byte words, typically for an array. The location counter
(which keeps track of which instruction is being assembled by the assembler) is
moved ahead of the block according to the number of words specified by the
argument to .dwb multiplied by 4.

The .global and .extern pseudo-ops deal with names of variables and
addresses that are defined in one assembly code module and are used in another.
The .global pseudo-op makes a label available for use in other modules. The
.extern pseudo-op identifies a label that is used in the local module and is
defined in another module (which should be marked with a .global in that
module). We will see how .global and .extern are used when linking and
loading are covered in the next chapter. The .macro, .endmacro, .if, and
.endif pseudo-ops are also covered in the next chapter.

4.4 Examples of Assembly Language Programs
The process of writing an assembly language program is similar to the process of
writing a high-level program, except that many of the details that are abstracted
away in high-level programs are made explicit in assembly language programs. In
this section, we take a look at two examples of ARC assembly language programs.

Program: Add Two Integers.

Consider writing an ARC assembly language program that adds the integers 15
and 9. One possible coding is shown in Figure 4-13. The program begins and

! This programs adds two numbers

.org 2048
ld [x], %r1 ! Load x into %r1
ld [y], %r2 ! Load y into %r2
addcc %r1, %r2, %r3 ! %r3 ← %r1 + %r2

jmpl %r15 + 4, %r0 ! Return
x: 15
y: 9

.end

.begin

prog1:

z: 0

st %r3, [z] ! Store %r3 into z

Figure 4-13 An ARC assembly language program adds two integers.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 127

ends with a .begin/.end pair. The .org pseudo-op instructs the assembler to
begin assembling so that the assembled code is loaded into memory starting at
location 2048. The operands 15 and 9 are stored in variables x and y, respec-
tively. We can only add numbers that are stored in registers in the ARC (because
only ld and st can access main memory), and so the program begins by loading
registers %r1 and %r2 with x and y. The addcc instruction adds %r1 and %r2
and places the result in %r3. The st instruction then stores %r3 in memory
location z. The jmpl instruction with operands %r15 + 4, %r0 causes a
return to the next instruction in the calling routine, which is the operating sys-
tem if this is the highest level of a user’s program as we can assume it is here. The
variables x, y, and z follow the program.

In practice, the SPARC code equivalent to the ARC code shown in Figure 4-13 is
not entirely correct. The ld, st, and jmpl instructions all take at least two
instruction cycles to complete, and since SPARC begins a new instruction at
each clock tick, these instructions need to be followed by an instruction that does
not rely on their results. This property of launching a new instruction before the
previous one has completed is called pipelining, and is covered in more detail in
Chapter 9.

Program: Sum an Array of Integers

Now consider a more complex program that sums an array of integers. One pos-
sible coding is shown in Figure 4-14. As in the previous example, the program
begins and ends with a .begin/.end pair. The .org pseudo-op instructs the
assembler to begin assembling so that the assembled code is loaded into memory
starting at location 2048. A pseudo-operand is created for the symbol a_start
which is assigned a value of 3000.

The program begins by loading the length of array a, which is given in bytes,
into %r1. The program then loads the starting address of array a into %r2, and
clears %r3 which will hold the partial sum. Register %r3 is cleared by ANDing it
with %r0, which always holds the value 0. Register %r0 can be ANDed with any
register for that matter, and the result will still be zero.

The label loop begins a loop that adds successive elements of array a into the
partial sum (%r3) on each iteration. The loop starts by checking if the number of
remaining array elements to sum (%r1) is zero. It does this by ANDing %r1 with
itself, which has the side effect of setting the condition codes. We are interested
in the z flag, which will be set to 1 if %r1 = 0. The remaining flags (n, v, and c)

128 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

are set accordingly. The value of z is tested by making use of the be instruction.
If there are no remaining array elements to sum, then the program branches to
done which returns to the calling routine (which might be the operating system,
if this is the top level of a user program).

If the loop is not exited after the test for %r1 = 0, then %r1 is decremented by
the width of a word in bytes (4) by adding −4. The starting address of array a
(which is stored in %r2) and the index into a (%r1) are added into %r4, which
then points to a new element of a. The element pointed to by %r4 is then loaded
into %r5, which is added into the partial sum (%r3). The top of the loop is then
revisited as a result of the “ba loop” statement. The variable length is stored
after the instructions. The five elements of array a are placed in an area of mem-
ory according to the argument to the .org pseudo-op (location 3000).

Notice that there are three instructions for computing the address of the next

! %r5 – Holds an element of a

 .begin ! Start assembling

 .org 2048 ! Start program at 2048

 be done ! Finished when length=0

 addcc %r1, -4, %r1 ! Decrement array length

 ld %r4, %r5 ! %r5 ← Memory[%r4]

addcc %r3, %r5, %r3 ! Sum new element into r3

ba loop ! Repeat loop.

done: jmpl %r15 + 4, %r0 ! Return to calling routine

length: 20 ! 5 numbers (20 bytes) in a

 .org a_start ! Start of array a

a: 25 ! length/4 values follow

 –10

 33

 –5
 7

 .end ! Stop assembling

! %r4 – Pointer into array a

! %r3 – The partial sum

! %r2 – Starting address of array a

! Register usage: %r1 – Length of array a

! This program sums LENGTH numbers

loop: andcc %r1, %r1, %r0 ! Test # remaining elements
 andcc %r3, %r0, %r3 ! %r3 ← 0

 ld [address],%r2 ! %r2 ← address of a

 ld [length], %r1 ! %r1 ← length of array a

 addcc %r1, %r2, %r4 ! Address of next element

a_start .equ 3000 ! Address of array a

address: a_start

Figure 4-14 An ARC program sums five integers.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 129

array element, given the address of the top element in %r2, and the length of the
array in bytes in %r1:

addcc %r1, -4, %r1 ! Point to next element to be added

addcc %r1, %r2, %r4 ! Add it to the base of the array

ld %r4, %r5 ! Load the next element into %r5.

This technique of computing the address of a data value as the sum of a base plus
an index is so frequently used that the ARC and most other assembly languages
have special “addressing modes” to accomplish it. In the case of ARC, the ld
instruction address is computed as the sum of two registers or a register plus a
13-bit constant. Recall that register %r0 always contains the value zero, so by
specifying %r0 which is being done implicitly in the ld line above, we are wast-
ing an opportunity to have the ld instruction itself perform the address calcula-
tion. A single register can hold the operand address, and we can accomplish in
two instructions what takes three instructions in the example:

addcc %r1, -4, %r1 ! Point to next element to be added

ld %r1 + %r2, %r5 ! Load the next element into %r5.

Notice that we also save a register, %r4, which was used as a temporary place
holder for the address.

4.4.1 VARIATIONS IN MACHINE ARCHITECTURES AND ADDRESSING

The ARC is typical of a load/store computer. Programs written for load/store
machines generally execute faster, in part due to reducing CPU-memory traffic
by loading operands into the CPU only once, and storing results only when the
computation is complete. The increase in program memory size is usually con-
sidered to be a worthwhile price to pay.

Such was not the case when memories were orders of magnitude more expensive
and CPUs were orders of magnitude smaller, as was the situation earlier in the
computer age. Under those earlier conditions, for CPUs that had perhaps only a
single register to hold arithmetic values, intermediate results had to be stored in
memory. Machines had 3-address, 2-address, and 1-address arithmetic instruc-
tions. By this we mean that an instruction could do arithmetic with 3, 2, or 1 of
its operands or results in memory, as opposed to the ARC, where all arithmetic
and logic operands must be in registers.

130 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

Let us consider how the C expression A = B*C + D might be evaluated by each of
the three instruction types. In the examples below, when referring to a variable
“A,” this actually means “the operand whose address is A.” In order to calculate
some performance statistics for the program fragments below we will make the
following assumptions:

• Addresses, opcodes, and data words are 16-bits – a not uncommon size in
earlier machines.

• Opcodes are 8-bits in size.

• Operands are moved to and from memory one word at a time.

We will compute both program size, in bytes, and program memory traffic with
these assumptions.

Memory traffic has two components: the code itself, which must be fetched from
memory to the CPU in order to be executed, and the data values—operands
must be moved into the CPU in order to be operated upon, and results moved
back to memory when the computation is complete. Observing these computa-
tions allows us to visualize some of the trade-offs between program size and
memory traffic that the various instruction classes offer.

Three-Address Instructions

In a 3-address instruction, the expression A = B*C + D might be coded as:

mult B, C, A
add D, A, A

which means multiply B by C and store the result at A. (The mult and add
operations are generic; they are not ARC instructions.) Then, add D to A (at this
point in the program, A holds the temporary result of multiplying B times C)
and store the result at address A. The program size is 8×2 or 16 bytes. Memory
traffic is 16 + 2×2×3 or 28 bytes.

Two Address Instructions

In a two-address instruction, one of the operands is overwritten by the result.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 131

Here, the code for the expression A = B*C + D is:

load B, A
mult C, A
add D, A

The program size is now 3×3×2 or 18 bytes. Memory traffic is 18 + 2×2 + 2×2×3
or 34 bytes.

One Address, or Accumulator Instructions

A one-address instruction employs a single arithmetic register in the CPU,
known as the accumulator. The accumulator typically holds one arithmetic
operand, and also serves as the target for the result of an arithmetic operation.
The one-address format is not in common use these days, but was more common
in the early days of computing when registers were more expensive and fre-
quently served multiple purposes. It serves as temporary storage for one of the
operands and also for the result. The code for the expression A = B*C + D is
now:

load B
mult C
add D
store A

The load instruction loads B into the accumulator, mult multiplies C by the
accumulator and stores the result in the accumulator, and add does the corre-
sponding addition. The store instruction stores the accumulator in A. The pro-
gram size is now 2×2×4 or 16 bytes, and memory traffic is 16 + 4×2 or 24 bytes.

Special-Purpose Registers

In addition to the general-purpose registers and the accumulator described
above, most modern architectures include other registers that are dedicated to
specific purposes. Examples include

• Memory index registers: The Intel 80x86 Source Index (SI) and Destina-
tion Index (DI) registers. These are used to point to the beginning or end
of an array in memory. Special “string” instructions transfer a byte or a

132 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

word from the starting memory location pointed to by SI to the ending
memory location pointed to by DI, and then increment or decrement these
registers to point to the next byte or word.

• Floating point registers: Many current-generation processors have special
registers and instructions that handle floating point numbers.

• Registers to support time, and timing operations: The PowerPC 601 pro-
cessor has Real-Time Clock registers that provide a high-resolution mea-
sure of real time for indicating the date and the time of day. They provide
a range of approximately 135 years, with a resolution of 128 ns.

• Registers in support of the operating system: most modern processors have
registers to support the memory system.

• Registers that can be accessed only by “privileged instructions,” or when in
“Supervisor mode.” In order to prevent accidental or malicious damage to
the system, many processors have special instructions and registers that are
unavailable to the ordinary user and application program. These instruc-
tions and registers are used only by the operating system.

4.4.2 PERFORMANCE OF INSTRUCTION SET ARCHITECTURES

While the program size and memory usage statistics calculated above are
observed out of context from the larger programs in which they would be con-
tained, they do show that having even one temporary storage register in the CPU
can have a significant effect on program performance. In fact, the Intel Pentium
processor, considered among the faster of the general-purpose CPUs, has only a
single accumulator, though it has a number of special-purpose registers that sup-
port it. There are many other factors that affect real-world performance of an
instruction set, such as the time an instruction takes to perform its function, and
the speed at which the processor can run.

4.5 Accessing Data in Memory—Addressing Modes
Up to this point, we have seen four ways of computing the address of a value in
memory: (1) a constant value, known at assembly time, (2) the contents of a reg-
ister, (3) the sum of two registers, and (4) the sum of a register and a constant.

Addressing Mode Syntax Meaning

Table4.1 Addressing Modes

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 133

Table 4.1 gives names to these addressing modes, and shows a few others as well.
Notice that the syntax of the table differs from that of the ARC. This is a com-
mon, unfortunate feature of assembly languages: each one differs from the rest in
its syntax conventions. The notation M[x] in the Meaning column assumes
memory is an array, M, whose byte index is given by the address computation in
brackets. There may seem to be a bewildering assortment of addressing modes,
but each has its usage:

• Immediate addressing allows a reference to a constant that is known at as-
sembly time.

• Direct addressing is used to access data items whose address is known at as-
sembly time.

• Indirect addressing is used to access a pointer variable whose address is
known at compile time. This addressing mode is seldom supported in mod-
ern processors because it requires two memory references to access the op-
erand, making it a complicated instruction. Programmers who wish to
access data in this form must use two instructions, one to access the pointer
and another to access the value to which it refers. This has the beneficial
side effect of exposing the complexity of the addressing mode, perhaps dis-
couraging its use.

• Register indirect addressing is used when the address of the operand is not
known until run time. Stack operands fit this description, and are accessed
by register indirect addressing, often in the form of push and pop instruc-
tions that also decrement and increment the register respectively.

• Register indexed, register based, and register based indexed addressing are

Immediate #K K

Direct K M[K]

Indirect (K) M[M[K]]

Register (Rn) M[Rn]

Register Indexed (Rm + Rn) M[Rm + Rn]

Register Based (Rm + X) M[Rm + X]

Register Based Indexed (Rm + Rn + X) M[Rm + Rn + X]

Table4.1 Addressing Modes

134 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

used to access components of arrays such as the one in Figure 4-14, and
components buried beneath the top of the stack, in a data structure known
as the stack frame, which is discussed in the next section.

4.6 Subroutine Linkage and Stacks
A subroutine, sometimes called a function or procedure, is a sequence of
instructions that is invoked in a manner that makes it appear to be a single
instruction in a high level view. When a program calls a subroutine, control is
passed from the program to the subroutine, which executes a sequence of
instructions and then returns to the location just past where it was called. There
are a number of methods for passing arguments to and from the called routine,
referred to as calling conventions. The process of passing arguments between
routines is referred to as subroutine linkage.

One calling convention simply places the arguments in registers. The code in
Figure 4-15 shows a program that loads two arguments into %r1 and %r2, calls

subroutine add_1, and then retrieves the result from %r3. Subroutine add_1
takes its operands from %r1 and %r2, and places the result in %r3 before return-
ing via the jmpl instruction. This method is fast and simple, but it will not work
if the number of arguments that are passed between the routines exceeds the
number of free registers, or if subroutine calls are deeply nested.

A second calling convention creates a data link area. The address of the data link
area is passed in a predetermined register to the called routine. Figure 4-16 shows
an example of this method of subroutine linkage. The .dwb pseudo-op in the
calling routine sets up a data link area that is three words long, at addresses x,

! Calling routine

ld [x], %r1
ld [y], %r2
call add_1

st %r3, [z]

.

.

.

! Called routine

addcc %r1, %r2, %r3
jmpl %r15 + 4, %r0

add_1:

.

.

.

! %r3 ← %r1 + %r2

53x:
10y:
 0z:

Figure 4-15 Subroutine linkage using registers.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 135

x+4, and x+8. The calling routine loads its two arguments into x and x+4, calls
subroutine add_2, and then retrieves the result passed back from add_2 from
memory location x+8. The address of data link area x is passed to add_2 in reg-
ister %r5.

Note that sethi must have a constant for its source operand, and so the assem-
bler recognizes the sethi construct shown for the calling routine and replaces x
with its address. The srl that follows the sethi moves the address x into the
least significant 22 bits of %r5, since sethi places its operand into the leftmost
22 bits of the target register. An alternative approach to loading the address of x
into %r5 would be to use a storage location for the address of x, and then simply
apply the ld instruction to load the address into %r5. While the latter approach
is simpler, the sethi/srl approach is faster because it does not involve a time
consuming access to the memory.

Subroutine add_2 reads its two operands from the data link area at locations
%r5 and %r5 + 4, and places its result in the data link area at location %r5 +
8 before returning. By using a data link area, arbitrarily large blocks of data can
be passed between routines without copying more than a single register during
subroutine linkage. Recursion can create a burdensome bookkeeping overhead,
however, since a routine that calls itself will need several data link areas. Data link
areas have the advantage that their size can be unlimited, but also have the disad-
vantage that the size of the data link area must be known at assembly time.

A third calling convention uses a stack. The general idea is that the calling rou-
tine pushes all of its arguments (or pointers to arguments, if the data objects are
large) onto a last-in-first-out stack. The called routine then pops the passed argu-

! Calling routine

st %r1, [x]
st %r2, [x+4]
sethi x, %r5

call add_2

x:

ld

.dwb

.

.

.

.

.

.

[x+8], %r3

3

! Called routine

ld %r5, %r8
ld %r5 + 4, %r9
addcc
st

%r8, %r9, %r10
%r10, %r5 + 8

add_2:

jmpl %r15 + 4, %r0
srl %r5, 10, %r5

! Data link area

! x[2] ← x[0] + x[1]

Figure 4-16 Subroutine linkage using a data link area.

136 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

ments from the stack, and pushes any return values onto the stack. The calling
routine then retrieves the return value(s) from the stack and continues execution.
A register in the CPU, known as the stack pointer, contains the address of the
top of the stack. Many machines have push and pop instructions that automat-
ically decrement and increment the stack pointer as data items are pushed and
popped.

An advantage of using a stack is that its size grows and shrinks as needed. This
supports arbitrarily deep nesting of procedure calls without having to declare the
size of the stack at assembly time. An example of passing arguments using a stack
is shown in Figure 4-17. Register %r14 serves as the stack pointer (%sp) which is

initialized by the operating system prior to execution of the calling routine. The
calling routine places its arguments (%r1 and %r2) onto the stack by decrement-
ing the stack pointer (which moves %sp to the next free word above the stack)
and by storing each argument on the new top of the stack. Subroutine add_3 is
called, which pops its arguments from the stack, performs an addition operation,
and then stores its return value on the top of the stack before returning. The call-
ing routine then retrieves its argument from the top of the stack and continues
execution.

For each of the calling conventions, the call instruction is used, which saves the
current PC in %r15. When a subroutine finishes execution, it needs to return to
the instruction that follows the call, which is one word (four bytes) past the saved
PC. Thus, the statement “jmpl %r15 + 4, %r0” completes the return. If the
called routine calls another routine, however, then the value of the PC that was
originally saved in %r15 will be overwritten by the nested call, which means that

! Calling routine

.equ %r14
addcc %sp, -4, %sp
st %r1, %sp
addcc %sp, -4, %sp

%sp

st
call

.

.

.

.

.

.

%r2, %sp
add_3

! Called routine

.equ %r14
ld %sp, %r8
addcc %sp, 4, %sp
ld %sp, %r9
addcc
st

%r8, %r9, %r10
%r10, %sp

%sp

jmpl %r15 + 4, %r0

add_3:

ld %sp, %r3
addcc %sp, 4, %sp

! Arguments are on stack.
! %sp[0] ← %sp[0] + %sp[4]

Figure 4-17 Subroutine linkage using a stack.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 137

a correct return to the original calling routine through %r15 will no longer be
possible. In order to allow nested calls and returns, the current value of %r15
(which is called the link register) should be saved on the stack, along with any
other registers that need to be restored after the return.

If a register based calling convention is used, then the link register should be
saved in one of the unused registers before a nested call is made. If a data link
area is used, then there should be space reserved within it for the link register. If a
stack scheme is used, then the link register should be saved on the stack. For each
of the calling conventions, the link register and the local variables in the called
routines should be saved before a nested call is made, otherwise, a nested call to
the same routine will cause the local variables to be overwritten.

There are many variations to the basic calling conventions, but the stack-ori-
ented approach to subroutine linkage is probably the most popular. When a
stack based calling convention is used that handles nested subroutine calls, a
stack frame is built that contains arguments that are passed to a called routine,
the return address for the calling routine, and any local variables. A sample high
level program is shown in Figure 4-18 that illustrates nested function calls. The
operation that the program performs is not important, nor is the fact that the C
programming language is used, but what is important is how the subroutine calls
are implemented.

The behavior of the stack for this program is shown in Figure 4-19. The main
program calls func_1 with arguments 1 and 2, and then calls func_2 with
argument 10 before finishing execution. Function func_1 has two local vari-
ables i and j that are used in computing the return value j. Function func_2
has two local variables m and n that are used in creating the arguments to pass
through to func_1 before returning m.

The stack pointer (%r14 by convention, which will be referred to as %sp) is ini-
tialized before the program starts executing, usually by the operating system. The
compiler is responsible for implementing the calling convention, and so the
compiler produces code for pushing parameters and the return address onto the
stack, reserving room on the stack for local variables, and then reversing the pro-
cess as routines return from their calls. The stack behavior shown in Figure 4-19
is thus produced as the result of executing compiler generated code, but the code
may just as well have been written directly in assembly language.

As the main program begins execution, the stack pointer points to the top ele-

138 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

ment of the system stack (Figure 4-19a). When the main routine calls func_1 at
line 03 of the program shown in Figure 4-18 with arguments 1 and 2, the argu-
ments are pushed onto the stack, as shown in Figure 4-19b. Control is then
transferred to func_1 through a call instruction (not shown), and func_1
then saves the return address, which is in %r15 as a result of the call instruc-
tion, onto the stack (Figure 4-19c). Stack space is reserved for local variables i
and j of func_1 (Figure 4-19d). At this point, we have a complete stack frame
for the func_1 call as shown in Figure 4-19d, which is composed of the argu-
ments passed to func_1, the return address to the main routine, and the local
variables for func_1.

Just prior to func_1 returning to the calling routine, it releases the stack space
for its local variables, retrieves the return address from the stack, releases the stack
space for the arguments passed to it, and then pushes its return value onto the
stack as shown in Figure 4-19e. Control is then returned to the calling routine
through a jmpl instruction, and the calling routine is then responsible for
retrieving the returned value from the stack and decrementing the stack pointer

/* C program showing nested subroutine calls */

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

Line
No.

main()

{

 int w, z; /* Local variables */

 w = func_1(1,2); /* Call subroutine func_1 */

 z = func_2(10); /* Call subroutine func_2 */

} /* End of main routine */

int func_1(x,y) /* Compute x * x + y */

int x, y; /* Parameters passed to func_1 */

{

 int i, j; /* Local variables */

 i = x * x;

 j = i + y;

 return(j); /* Return j to calling routine */

}

int func_2(a) /* Compute a * a + a + 5 */

int a; /* Parameter passed to func_2 */

{

 int m, n; /* Local variables */

 n = a + 5;

 m = func_1(a,n);

 return(m); /* Return m to calling routine */

}

Figure 4-18 A C program illustrating nested function calls.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 139

to its position from before the call, as shown in Figure 4-19f. Routine func_2 is
then executed, and the process of building a stack frame starts all over again as
shown in Figure 4-19g. Since func_2 makes a call to func_1 before it returns,
there will be stack frames for both func_2 and func_1 on the stack at the same
time as shown in Figure 4-19h. The process then unwinds as before, finally
resulting in the stack pointer at its original position as shown in Figure 4-19(i-k).

4.7 Input and Output in Assembly Language
Finally, we come to ways in which an assembly language program can communi-
cate with the outside world: input and output (I/O) activities. One way that
communication between I/O devices and the rest of the machine can be handled
is with special instructions, and with a special I/O bus reserved for this purpose.
An alternative method for interacting with I/O devices is through the use of

Initial configuration.
w and z are already on the

stack. (Line 00 of program.)

(a)
Calling routine pushes
arguments onto stack,
prior to func_1 call.
(Line 03 of program.)

(b)
After the call, called

routine saves PC of calling
routine (%r15) onto stack.

(Line 06 of program.)

(c)

0

232–
4

Free area

%sp
Stack

0

232–
4

Free area

%sp

Stack

0

232–
4

Free area

%sp

1
2

1
2

%r15

Beginning
of stack
frame

Stack space is reserved for
func_1 local variables i

and j. (Line 09 of
program.)

(d)
Return value from

func_1 is placed on
stack, just prior to return.

(Line 12 of program.)

(e)
Calling routine pops
func_1 return value

from stack. (Line 03 of
program.)

(f)

0

232–
4

Free area

Stack

0

232–
4

Free area

Stack

0

232–
4

3

Stack

%sp

Stack
frame for
func_1

%sp

Free area

%sp
Stack

1
2

%r15
i
j

Figure 4-19 (a-f) Stack behavior during execution of the program shown in Figure 4-18.

140 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

memory mapped I/O, in which devices occupy sections of the address space
where no ordinary memory exists. Devices are accessed as if they are memory
locations, and so there is no need for handling devices with new instructions.

As an example of memory mapped I/O, consider again the memory map for the
ARC, which is illustrated in Figure 4-20. We see a few new regions of memory,
for two add-in video memory modules and for a touchscreen. A touchscreen
comes in two forms, photonic and electrical. An illustration of the photonic ver-
sion is shown in Figure 4-21. A matrix of beams covers the screen in the horizon-
tal and vertical dimensions. If the beams are interrupted (by a finger for example)
then the position is determined by the interrupted beams. (In an alternative ver-
sion of the touchscreen, the display is covered with a touch sensitive surface. The
user must make contact with the screen in order to register a selection.)

A stack frame is created
for func_2 as a result of
function call at line 04 of

program.

(g)
A stack frame is created

for func_1 as a result of
function call at line 19 of

program.

(h)
func_1 places return
value on stack. (Line

12 of program.)

(i)

0

232–
4

Free area

0

232–
4

%sp

Stack

0

232–
4

Free area

%sp

func_2 places return
value on stack. (Line 20 of

program.)

(j)
Program finishes. Stack is restored
to its initial configuration. (Lines

04 and 05 of program.)

(k)

0

232–
4

Free area

0

232–
4

Stack

115%sp

Stack
frame for
func_2

Free area

%sp
Stack

Stack

%sp

10
%r15
m
n

10
%r15
m
n
10
15

%r15
i
j

func_2
stack frame

func_1
stack frame

115

%r15
m
n

10

Stack

Free area

Figure 4-19 (g-k) (Continued.)

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 141

The only real memory occupies the address space between 222 and 223 – 1.
(Remember: 223 – 4 is the address of the leftmost byte of the highest word in the
big-endian format.) The rest of the address space is occupied by other compo-
nents. The address space between 0 and 216 – 1 (inclusive) contains built-in pro-
grams for the power-on bootstrap operation and basic graphics routines. The
address space between 216 and 219 – 1 is used for two add-in video memory
modules, which we will study in Problem Figure 4.3. Note that valid informa-

Reserved for built-in
bootstrap and graphics

routines

Add-in video memory #1

I/O space

0

216

Stack pointer
System Stack

Top of stack

Bottom of stack

Screen Flash
Touchscreen x
Touchscreen y

224 – 4

223 – 4

32 bits

Address Data

224 – 1byte

Add-in video memory #2
217

219

Working Memory

Unused

222

FFFFEC16
FFFFF016
FFFFF416

Figure 4-20 Memory map for the ARC, showing memory mapping.

LEDs
(sources)

Detector

User breaks
beams

Figure 4-21 A user selecting an object on a touchscreen.

142 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

tion is available only when the add-in memory modules are physically inserted
into the machine.

Finally, the address space between 223 and 224 – 1 is used for I/O devices. For
this system, the X and Y coordinates that mark the position where a user has
made a selection are automatically updated in registers that are placed in the
memory map. The registers are accessed by simply reading from the memory
locations where these registers are located. The “Screen Flash” location causes the
screen to flash whenever it is written.

Suppose that we would like to write a simple program that flashes the screen
whenever the user changes position. The flowchart in Figure 4-22 illustrates how

this might be done. The X and Y registers are first read, and are then compared
with the previous X and Y values. If either position has changed, then the screen
is flashed and the previous X and Y values are updated and the process repeats. If

Compare old X and Y
values to new values

Did X or Y
change?

No

Yes

Read X register.
Read Y register.

Flash screen

Update X and Y
registers

Figure 4-22 Flowchart illustrating the control structure of a program that tracks a touchscreen.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 143

neither position has changed, then the process simply repeats. This is an example
of the programmed I/O method of accessing a device. (See problem 4.3 at the
end of the chapter for a more detailed description.)

4.8 Case Study: The Java Virtual Machine ISA
Java is a high-level programming language developed by Sun Microsystems that
has taken a prominent position in the programming community. A key aspect of
Java is that Java binary codes are platform-independent, which means that the
same compiled code can run without modification on any computer that sup-
ports the Java Virtual Machine (JVM). The JVM is how Java achieves its plat-
form-independence: a standard specification of the JVM is implemented in the
native instruction sets of many underlying machines, and compiled Java codes
can then run in any JVM environment.

Programs that are written in fully compiled languages like C, C++, and Fortran,
are compiled into the native code of the target architecture, and are generally not
portable across platforms unless the source code is recompiled for the target
machine. Interpreted languages, like Perl, Tcl, AppleScript, and shell script, are
largely platform independent, but can execute 100 to 200 times slower than a
fully compiled language. Java programs are compiled into an intermediate form
known as bytecodes, which execute on the order of 10 times more slowly than
fully compiled languages, but the cross-platform compatibility and other lan-
guage features make Java a favorable programming language for many applica-
tions.

A high level view of the JVM architecture is shown in Figure 4-23. The JVM is a
stack-based machine, which means that the operands are pushed and popped
from a stack, instead of being transferred among general purpose registers. There
are, however, a number of special purpose registers, and also a number of local
variables that serve the function of general purpose registers in a “real” (non-vir-
tual) architecture. The Java Execution Engine takes compiled Java bytecodes at
its input, and interprets the bytecodes in a software implementation of the JVM,
or executes the bytecodes directly in a hardware implementation of the JVM.

Figure 4-24 shows a Java implementation of the SPARC program we studied in
Figure 4-13. The figure shows both the Java source program and the bytecodes
into which it was compiled. The bytecode file is known as a Java class file (which
is what a compiled Java program is called.)

144 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

Only a small number of bytes in a class file actually contain instructions; the rest
is overhead that the file must contain in order to run on the JVM. In Figure 4-25
we have “disassembled” the bytecodes back to their higher-level format. The
bytecode locations are given in hexadecimal, starting at location 0x00. The first
4 bytes contain the magic number 0xcafebabe which identifies the program as
a compiled Java class file. The major version and minor version numbers refer to
the Java runtime system for which the program is compiled. The number of
entries in the constant pool follows, which is actually 17 in this example: the
first entry (constant pool location 0) is always reserved for the JVM, and is not
included in the class file, although indexing into the constant pool starts at loca-
tion 0 as if it is explicitly represented. The constant pool contains the names of
methods (functions), attributes, and other information used by the runtime sys-
tem.

The remainder of the file is mostly composed of the constant pool, and execut-
able Java instructions. We will not cover all details of the Java class file here. The
reader is referred to (Meyer & Downing, 1997) for a full description of the Java

State variables

Constant pool

Local variables

Operand stack

.

.

.

.

.

.

St
ac

k
fr

am
e

Java Stack

Java Execution Engine

32 bits

32 bits

8 bits

.

.

.

0

n

.

.

.

0

65,535

Stack top index

Thread state

Current method pointer

Current method’s class pointer

Current method’s constant pool pointer

Stack frame pointer

Program counter
R

eg
is

te
rs

.

.

.

0

m

Byte Codes

Control

Figure 4-23 Architecture of the Java virtual machine.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 145

class file format.

The actual code that corresponds to the Java source program, which simply adds
the constants 15 and 9, and returns the result (24) to the calling routine on the
stack, appears in locations 0x00e3 - 0x00ef. Figure 4-26 shows how that por-
tion of the bytecode is interpreted. The program pushes the constants 15 and 9
onto the stack, using local variables 0 and 1 as intermediaries, and invokes the
iadd instruction which pops the top two stack elements, adds them, and places
the result on the top of the stack. The program then returns.

A cursory glance at the code shows some of the reasons why the JVM runs 10
times slower than native code. Notice that the program stores the arguments in
local variables 1 and 2, and then transfers them to the Java stack before adding
them. This transfer would be viewed as redundant by native code compilers for
other langauges, and would be eliminated. Given this example alone, there is
probably considerable room for speed improvements from the 10× slower execu-
tion time of today’s JVMs. Other improvements may also come in the form of
just in time (JIT) compilers. Rather than interpreting the JVM bytecodes one

0000 cafe babe 0003 002d 0012 0700 0e07 0010
0010 0a00 0200 040c 0007 0005 0100 0328 2956 ()V
0020 0100 1628 5b4c 6a61 7661 2f6c 616e 672f ...([Ljava/lang/
0030 5374 7269 6e67 3b29 5601 0006 3c69 6e69 String;)V...<ini
0040 743e 0100 0443 6f64 6501 000d 436f 6e73 t>...Code...Cons
0050 7461 6e74 5661 6c75 6501 000a 4578 6365 tantValue...Exce
0060 7074 696f 6e73 0100 0f4c 696e 654e 756d ptions...LineNum
0070 6265 7254 6162 6c65 0100 0e4c 6f63 616c berTable...Local
0080 5661 7269 6162 6c65 7301 000a 536f 7572 Variables...Sour
0090 6365 4669 6c65 0100 0361 6464 0100 0861 ceFile...add...a
00a0 6464 2e6a 6176 6101 0010 6a61 7661 2f6c dd.java...java/l
00b0 616e 672f 4f62 6a65 6374 0100 046d 6169 ang/Object...mai
00c0 6e00 2100 0100 0200 0000 0000 0200 0900 n...............
00d0 1100 0600 0100 0800 0000 2d00 0200 0400
00e0 0000 0d10 0f3c 1009 3d03 3e1b 1c60 3eb1
00f0 0000 0001 000b 0000 000e 0003 0000 0004
0100 0008 0006 000c 0002 0001 0007 0005 0001
0110 0008 0000 001d 0001 0001 0000 0005 2ab7
0120 0003 b100 0000 0100 0b00 0000 0600 0100
0130 0000 0100 0100 0d00 0000 0200 0f00

// This is file add.java

public class add {
 public static void main(String args[]) {
 int x=15, y=9, z=0;
 z = x + y;
 }
 }

Figure 4-24 Java program and compiled class file.

146 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

by one into the target machine code each time they are encountered, JIT compil-
ers take advantage of the fact that most programs spend most of their time in
loops and other iterative routines. As the JIT encounters each line of code for the
first time, it compiles it into native code and stores it away in memory for possi-

Magic number

Minor version
Major
version

Tag = 7 (Class)
18 items in constant pool

Name index = 14
Tag = 7 (Class)

Name
index = 16

Location

Tag = 10 (Methodref)

Class
index = 2

Name and type
index = 4

Tag = 12 (NameAndType)
Name index = 7

Type index = 5
Tag = 1 (Utf)

Length = 3 bytes
“()V”

Tag = 1 (Utf)
Length = 22 bytes “([Ljava/lang/”

“String;)V”

Tag = 1 (Utf) Length = 6 bytes
“<ini”

“t>”

Tag = 1 (Utf)
Length =
4 bytes “Code”

Tag = 1 (Utf)
Length =
13 bytes “Cons”

“tantValue”

Tag = 1 (Utf)
Length =
10 bytes “Exce”

“ptions”

Tag = 1 (Utf)
Length =
15 bytes “LineNum”

“berTable”

Tag = 1 (Utf)
Length =
14 bytes “Local”

“Variables”

Tag = 1 (Utf)
Length =
10 bytes “Sour”

“ceFile”

Tag = 1 (Utf)
Length =
3 bytes “add”

Tag = 1 (Utf)
Length =
8 bytes

“a”

0000 cafe babe 0003 002d 0012 0700 0e07 0010

0010 0a00 0200 040c 0007 0005 0100 0328 2956

0020 0100 1628 5b4c 6a61 7661 2f6c 616e 672f

0030 5374 7269 6e67 3b29 5601 0006 3c69 6e69

0040 743e 0100 0443 6f64 6501 000d 436f 6e73

0050 7461 6e74 5661 6c75 6501 000a 4578 6365

0060 7074 696f 6e73 0100 0f4c 696e 654e 756d

0070 6265 7254 6162 6c65 0100 0e4c 6f63 616c

0080 5661 7269 6162 6c65 7301 000a 536f 7572

0090 6365 4669 6c65 0100 0361 6464 0100 0861

Figure 4-25 A Java class file.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 147

ble later use. The next time that code is executed, it is the native, compiled form
that is executed rather than the bytecodes.

“dd.java”

Tag = 1 (Utf)
Length =
16 bytes “java/l”

“ang/Object”

Tag = 1 (Utf)
Length =
4 bytes “mai”

“n”

Access flags: ACC_PUBLIC | ACC_SUPER

This
class: add

Superclass: java/lang/Object
Interface
count

Fields count
Methods count

Access flags: ACC_PUBLIC | ACC_STATIC

Type index “([Ljava/lang/String;)V”
Attributes
count

Attribute name index: “Code”

Name index “<init>”

Bytes count = 45 Max stack = 2
Max locals = 4

Code
count = 13

Attributes count
Handlers
count

Attribute name index: “LineNumberTable”

Bytes
count = 14

Lines
count = 3

Access flags: ACC_PUBLIC
Name index “<init>”

Type index “()V”
Attributes
count

Attribute name index: “Code”

Bytes count = 29
Max stack = 2 Max

locals = 1

Code count
= 5

CODE
Attributes
count

Handlers count
Attribute name index: “LineNumberTable”

Bytes
count = 6

Lines
count = 1

Attributes count
Attribute name index “SourceFile”

Bytes count = 2 Source file index:
“add.java”

Start PC /
Line no.

Start PC /
Line no.

Start PC /
Line no.

Start PC /
Line no.

bipush (0x10) 15 (0x0f)
istore_1 (0x3c)
bipush (0x10) 9 (0x09)

iconst_0 (0x03)

istore_2 (0x3d)

istore_3 (0x3e)
iload_1 (0x1b)
iload_2 (0x1c)
iadd (0x60)
istore_3 (0x3e)

return (0xb1)

CODE

00a0 6464 2e6a 6176 6101 0010 6a61 7661 2f6c

00b0 616e 672f 4f62 6a65 6374 0100 046d 6169

00c0 6e00 2100 0100 0200 0000 0000 0200 0900

00d0 1100 0600 0100 0800 0000 2d00 0200 0400

00e0 0000 0d10 0f3c 1009 3d03 3e1b 1c60 3eb1

00f0 0000 0001 000b 0000 000e 0003 0000 0004

0100 0008 0006 000c 0002 0001 0007 0005 0001

0110 0008 0000 001d 0001 0001 0000 0005 2ab7

0120 0003 b100 0000 0100 0b00 0000 0600 0100

0130 0000 0100 0100 0d00 0000 0200 0f00

Figure 4-25 (A Java class file (Continued).

148 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

� SUMMARY

In this chapter, we introduced the ARC ISA, and studied some general properties
of ISAs. In the design of an instruction set, a balance must be struck between sys-
tem performance and the characteristics of the technology in which the processor is
implemented. Interaction between the CPU and the memory is a key consider-
ation.

When a memory access is made, the way in which the address is calculated is
called the memory addressing mode. We examined the sequence of computations
that can be combined to make up an addressing mode. We also looked at some spe-
cific cases which are commonly identified by name.

We also looked at several parts of a computer system that play a role in the execu-
tion of a program. We learned that programs are made up of sequences of instruc-
tions, which are taken from the instruction set of the CPU. In the next chapter,
we will study how these sequences of instructions are translated into object code.

� FURTHER READING
The material in this chapter is for the most part a collection of the historical
experience gained in fifty years of stored program computer designs. Although

Figure 4-26 Disassembled version of the code that implement the Java program in Figure 4-24.

Location Code Mnemonic Meaning

0x00e3 0x10 bipush Push next byte onto stack

0x00e4 0x0f 15 Argument to bipush

0x00e5 0x3c istore_1 Pop stack to local variable 1

0x00e6 0x10 bipush Push next byte onto stack

0x00e7 0x09 9 Argument to bipush

0x00e8 0x3d istore_2 Pop stack to local variable 2

0x00e9 0x03 iconst_0 Push 0 onto stack

0x00ea 0x3e istore_3 Pop stack to local variable 3

0x00eb 0x1b iload_1 Push local variable 1 onto stack

0x00ec 0x1c iload_2 Push local variable 2 onto stack

0x00ed 0x60 iadd Add top two stack elements

0x00ef 0xb1 return Return

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 149

each generation of computer systems is typically identified by a specific hardware
technology, there have also been historically important instruction set architec-
tures. In the first generation systems of the 1950’s, such as Von Neuman’s
EDVAC, Eckert and Mauchly’s UNIVAC and the IBM 701, programming was
performed by hand in machine language. Although simple, these instruction set
architectures defined the fundamental concepts surrounding opcodes and oper-
ands.

The concept of an instruction set architecture as an identifiable entity can be
traced to the designers of the IBM S/360 in the 1960’s. The VAX architecture for
Digital Equipment Corporation can also trace its roots to this period when the
minicomputers, the PDP-4 and PDP-8 were being developed. Both the S/360
and VAX are two-address architectures. Significant one-address architectures
include the Intel 8080 which is the predecessor to the modern 80x86, and its
contemporary at that time: the Zilog Z-80. As a zero-address architecture, the
Burroughs B5000 is also of historical significance.

There are a host of references that cover the various machine languages in exist-
ence, too many to enumerate here, and so we mention only a few of the more
celebrated cases. The machine languages of Babbage’s machines are covered in
(Bromley, 1987). The machine language of the early Institute for Advanced
Study (IAS) computer is covered in (Stallings, 1996). The IBM 360 machine lan-
guage is covered in (Strubl, 1975). The machine language of the 68000 can be
found in (Gill, 1987) and the machine language of the SPARC can be found in
(SPARC, 1992). A full description of the JVM and the Java class file format can
be found in (Meyer & Downing, 1997.)

Bromley, A. G., “The Evolution of Babbage’s Calculating Engines,” Annals of the
History of Computing, 9, pp. 113-138, (1987).

Gill, A., E. Corwin, and A. Logar, Assembly Language Programming for the 68000,
Prentice-Hall, Englewood Cliffs, New Jersey, (1987).

Meyer, J. and T. Downing, Java Virtual Machine, O’Reilly & Associates, Sepasto-
pol, California, (1997).

SPARC International, Inc., The SPARC Architecture Manual: Version 8, Prentice
Hall, Englewood Cliffs, New Jersey, (1992).

Stallings, W., Computer Organization and Architecture, 4/e, Prentice Hall, Upper

150 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

Saddle River, (1996).

Struble, G. W., Assembler Language Programming: The IBM System/360 and 370,
2/e, Addison-Wesley, Reading, (1975).

� PROBLEMS
4.1 A memory has 224 addressable locations. What is the smallest width in

bits that the address can be while still being able to address all 224 locations?

4.2 What are the lowest and highest addresses in a 220 byte memory, in which
a four-byte word is the smallest addressable unit?

4.3 The memory map for the ARC is shown in Figure 4-20.

(a) How much memory (in bytes) is available for each of the add-in video
memory modules? (Give your answer as powers of two or sums of powers of
two, e.g. 210.)

(b) When a finger is drawn across the touchscreen, the horizontal (x) and ver-
tical (y) positions of the joystick are updated in registers that are accessed at
locations (FFFFF0)16 and (FFFFF4)16, respectively. When the number ‘1’ is
written to the register at memory location (FFFFEC)16 the screen flashes, and
then location (FFFFEC)16 is automatically cleared to zero by the hardware
(the software does not have to clear it). Write an ARC program that flashes the
screen every time the user’s position changes. Use the skeleton program shown
below.

.begin
ld [x], %r7! %r7 and %r8 now point to the
ld [y], %r8! touchscreen x and y locations
ld [flash], %r9! %r9 points to flash location

loop:ld %r7, %r1 ! Load current touchscreen position
ld %r8, %r2! in %r1=x and %r2=y
ld [old_x], %r3! Load old touchscreen position
ld [old_y], %r4! in %r3=x and %r4=y
orncc %r3, %r0, %r3! Form 1’s complement of old_x
addcc %r3, 1, %r3! Form 2’s complement of old_x
addcc %r1, %r3, %r3! %r3 <- x - old_x
be x_not_moved! Branch if x did not change
ba moved ! x changed, so no need to check y

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 151

x_not_moved: ! Your code starts here, about four lines.

 <— YOUR CODE GOES HERE

! This portion of the code is entered only if joystick
! is moved.
! Flash screen; store new x, y values; repeat.

moved:orcc %r0, 1, %r5! Place 1 in %r5
st %r5, %r9! Store 1 in flash register
st %r1, [old_x]! Update old joystick position
st %r2, [old_y]! with current position
ba loop! Repeat

flash: #FFFFEC! Location of flash register
x: #FFFFF0 ! Location of touchscreen x register
y: #FFFFF4 ! Location of touchscreen y register
old_x: 0 ! Previous x position
old_y: 0 ! Previous y position

.end

4.4 Write an ARC subroutine that performs a swap operation on the 32-bit
operands x = 25 and y = 50, which are stored in memory. Use as few reg-
isters as you can.

4.5 A section of ARC assembly code is shown below. What does it do? Express
your answer in terms of the actions it goes through. Does it add up numbers,
or clear something out? Does it simulate a for loop, a while loop, or some-
thing else? Assume that a and b are memory locations that are defined else-
where in the code.

Y: ld [k], %r1
addcc %r1, -4, %r1
st %r1, [k]
bneg X
ld [a], %r1, %r2
ld [b], %r1, %r3
addcc %r2, %r3, %r4
st %r4, %r1, [c]
ba Y

X: jmpl %r15 + 4, %r0
k: 40

4.6 A pocket pager contains a small processor with 27 8-bit words of memory.

152 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

The ISA has four registers: R0, R1, R2, and R3. The instruction set is shown
in Figure 4-27, as well as the bit patterns that correspond to each register, the

instruction format, and the modes, which determine if the operand is a regis-
ter (mode bit = 0) or the operand is a memory location (mode bit = 1). Either
or both of the operands can be registers, but both operands cannot be mem-
ory locations. If the source or destination is a memory location, then the cor-
responding source or destination field in the instruction is not used since the
address field is used instead.

(a) Write a program using object code (not mnemonics) that swaps the con-
tents of registers R0 and R1. You are free to use the other registers as necessary,
but do not use memory. Use no more than four lines of code (fewer lines are
possible). Place 0’s in any positions where the value does not matter.

(b) Write a program using object code that swaps the contents of memory
locations 12 and 13. As in part (a), you are free to use the other registers as
necessary, but do not use other memory locations. Place 0’s in any positions
where the value does not matter.

INSTRUCTION FORMAT

Opcode
Src

Mode Src
Dst

Mode Dst Operand Address

MODE BIT PATTERNS

Mode Bit Pattern

Register

Direct

0

1

REGISTER BIT PATTERNS

Register Bit Pattern

R0

R1

00

01

R2 10

R3 11

INSTRUCTION SET

Mnemonic Opcode

LOAD 000

Meaning

Dst ← Src or Memory

STORE 001 Dst or Memory ← Src

ADD 010 Dst ← Src + Dst

AND 011 Dst ← AND(Src, Dst)

BZERO 100 Branch if Src = 0

JUMP 101 Unconditional jump

COMP 110 Dst ← Complement of Src

RSHIFT 111 Dst ← Src shifted right 1 bit

Note: Dst = Destination register
Src = Source register

Figure 4-27 A pocket pager ISA.

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 153

4.7 An ARC program calls the subroutine foo, passing it three arguments, a,
b, and c. The subroutine has two local variables, m and n. Show the position
of the stack pointer and the contents of the relevant stack elements for a stack
based calling convention at the points in the program shown below:

(1) just before executing the call at label x;

(2) when the stack frame for foo is completed;

(3) just before executing the ld at label z (i.e., when the calling routine
resumes).

Use the stack notation shown in Figure 4-19.

! Push the arguments a, b, and c
x: call foo
z: ld %r1, %r2

.

.

.
foo:! Subroutine starts here

.

.

.
y: jmpl %r15 + 4, %r0

4.8 Why does sethi only load the high 22 bits of a register? It would be
more useful if sethi loaded all 32 bits of a register. What is the problem with
having sethi load all 32 bits?

4.9 Which of the three subroutine linkage conventions covered in this chapter
(registers, data link area, stack) is used in Figure 4-14?

4.10 A program compiled for a SPARC ISA writes the 32-bit unsigned integer
0xABCDEF01 to a file, and reads it back correctly. The same program com-
piled for a Pentium ISA also works correctly. However, when the file is trans-
ferred between machines, the program incorrectly reads the integer from the
file as 0x01EFCDAB. What is going wrong?

4.11 Refer to Figure 4-25. Show the Java assembly language instructions for the

154 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

code shown in locations 0x011e - 0x0122. Use the syntax format shown in
locations 0x00e3 - 0x0ef of that same figure.

You will need to make use of the following Java instructions:

invokespecial n (opcode 0xb7) – Invoke a method with index n into the
constant pool. Note that n is a 16-bit (two-byte) index that follows the
invokespecial opcode.

aload_0 (opcode 0x2a) – Push local variable 0 onto the stack.

4.12 Is the JVM a little-endian or big-endian machine? Hint: Examine the first
line of the bytecode program in Figure 4-24.

4.13 Write an ARC program that implements the bytecode program shown in
Figure 4-26. Assume that, analogous in the code in the figure, the arguments
are passed on a stack, and that the return value is placed on the top of the
stack.

4.14 A JVM is implemented using the ARC ISA.

a) How much memory traffic will be generated when the program of Figure
4-26 executes?

b) For exercise 4-13, compute the memory traffic your program will generate.
Then, for part (a) above, compare that traffic with the amount generated by
your program. If most of the execution time of a program is due to its mem-
ory accesses, how much faster will your program be compared to the program
in Figure 4-26?

4.15 Can a Java bytecode program ever run as fast as a program written in the
native language of the processor? Defend your answer in one or two para-
graphs.

4.16 (a) Write three-address, two-address, and one-address programs to com-
pute the function A = (B-C)*(D-E). Assume 8-bit opcodes, 16-bit operands
and addresses, and that data is moved to and from memory in 16-bit chunks.
(Also assume that the opcode must be transferred from memory by itself.)
Your code should not overwrite any of the operands. Use any temporary regis-

CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE 155

ters needed.

b. Compute the size of your program in bytes.

c. Compute the memory traffic your program will generate at execution time,
including instruction fetches.

4.17 Repeat Exercise 4.12 above, using ARC assembly language.

156 CHAPTER 4 MACHINE LANGUAGE AND ASSEMBLY LANGUAGE

CHAPTER 5 LANGUAGES AND THE MACHINE

159

In the last chapter we looked at the relationship between the ISA, the assembly
language, and machine language. We also saw in some detail how instructions
effected register transfers and the movement of data between memory and the
CPU, but we touched only briefly on the actual process of assembly and program
linking and loading. In this chapter we widen our view of the relationships
between computer languages and the machine.

We begin by discussing

compilation

, the process of translating a program writ-
ten in a high level language into a functionally equivalent program in assembly
language. Following that, we discuss the process of

assembly

, the translation of
an assembly language program into a functionally equivalent machine language
program. We then discuss

linking

, the process of linking together separately
assembled modules into a single program, and

loading

, the process of moving
programs into memory and preparing them for execution. Following that, we
discuss the use of assembly language

macros

, which can be thought of as akin to
assembly-time procedures, with the exception that they are placed inline, or
expanded, in the assembly language program at every location where they are
invoked.

5.1 The Compilation Process

As we will see later in the chapter, the process of assembling an assembly lan-
guage program into machine code is rather straightforward, because there is a
one to one mapping between assembly language statements and the equivalent
machine binary codes. High-level languages, on the other hand, present a much
more complex problem.

LANGUAGES AND THE
MACHINE

 5

160

CHAPTER 5 LANGUAGES AND THE MACHINE

5.1.1

THE STEPS OF COMPILATION

Consider a simple assignment statement

A = B + 4

;

The compiler is faced with a number of fairly complex tasks in converting this
statement into one or more assembly language statements:

• Reducing the program text to the basic symbols of the language, for exam-
ple into identifiers such as

A

 and

B

, denotations such as the constant value

4

, and program delimiters such as

=

 and

+

. This portion of compilation is
referred to as

lexical analysis

.

• Parsing the symbols to recognize the underlying program structure. In the
sample statement above, for example, the

parser

 must recognize the state-
ment as being an assignment statement of the form

Identifier “=” Expression,
where Expression is further parsed into the form

Identifier “+” Constant.
Parsing is sometimes called

syntactic analysis

.

• Name analysis: associating the names A and B with particular program vari-
ables, and further associating them with particular memory locations where
the variables will be located at run time.

• Type analysis: determining the type of all data items. In the case above, the
variables

A

 and

B

, and constant

4

 would be recognized as being of type

int

in some languages. Name and type analysis are sometimes referred to to-
gether as

semantic analysis

: determining the underlying meaning of pro-
gram components.

•

Action mapping

 and

code generation

: associating program statements
with their appropriate assembly language sequence. In the statement above,
the assembly language sequence might be as follows:

!Simple assignment statement
ld [B], %r0, %r1 !get variable B into a register
add %r1, 4, %r2 !compute the value of the expr.
st %r2, %r0, [A] !make the assignment

• There are additional steps that the compiler must take such as allocating
variables to registers, tracking register usage, and, should the programmer
desire it, optimizing the program.

CHAPTER 5 LANGUAGES AND THE MACHINE

161

5.1.2

THE COMPILER MAPPING SPECIFICATION

When the compiler itself is being created, information about the particular ISA
must be embedded into it. (Note that the ISA on which the compiler executes
does not need to be the same as the ISA code that the compiler generates, a pro-
cess known as

cross compilation

.) This embedding is sometimes called the

mapping specification

 for the compiler. For example, the compiler writer must
decide how to map variables and constants of various types into the machine’s
resources. This may be a function of both the machine and the high level lan-
guage. In the C language, for example, integers (ints) can be 16, 32, or some
other number of bits in size, while Java specifies that all ints be 32-bits in size.
The example in the previous section, if considered for the C language, maps inte-
gers to ARC 32-bit words.

The compiler writer must also take into account the features and limitations of
the machine when mapping high level language constructs to assembly language
statements or statement sequences. For example, the ARC instruction set
requires that all arithmetic operands must be either immediate constants or regis-
ter variables. Therefore the compiler must generate code to get all variables into
registers before any arithmetic instructions can be executed. This is the reason for
the instruction:

ld [B], %r1

in the example above.

In this text we concentrate on the mapping of common high level language con-
structs to their equivalent assembly language constructs, leaving the details of
lexical and syntactic and semantic analysis to compiler texts. (Several compiler
texts are described in the Further Reading section at the end of this chapter for
the interested reader.)

5.1.3

HOW THE COMPILER MAPS THE THREE INSTRUCTION CLASSES
INTO ASSEMBLY CODE

Let us consider in detail the mapping of the three instruction classes: data move-
ment, arithmetic, and control flow, from high level language into assembly lan-
guage. In the discussion and examples below we will use C as the example
language. We choose C because of its popularity, and because its syntax and
semantics, while certainly high level, are still fairly close to assembly language
concepts. The reader who is unfamiliar with C should not be distracted by this

162

CHAPTER 5 LANGUAGES AND THE MACHINE

choice; the syntax and semantics of C are easy to understand and carry over to
other high level languages.

Variable storage in memory

In the example above, and in most of the programming examples in this text, it
has been assumed that variables can be accessed directly by their name, which is
mapped to a memory location that is known at the time the program is assem-
bled, sometimes called “assembly time.” In the example above,

 A = B + 4

, it is
assumed that the variables

A

 and

B

 have addresses that are known when the state-
ment is compiled. In fact, only

global variables

, known as

static variables

 in C,
have addresses that are known at compile time. Variables declared inside of func-
tions or inside of blocks that are not explicitly declared as static or global only
come into existence when the function or block is entered, and they disappear
when the function or block is exited for the last time. These variables are called

local

, or in C,

automatic variables

. In most programs, local variables are actu-
ally much more common than global variables.

Given this ephemeral nature of local variables, a natural way of implementing
them is on a last-in-first-out stack as described in Chapter 4. Variables that are
stored on the stack come into existence when the stack frame is created and the
function is called, and they disappear when the function is exited for the last
time. While the previous chapter employed the stack pointer,

%sp

, to access the
stack frame, it is also common to copy the contents of

%sp

 into another register
called the frame pointer

%fp

 (also known as the base pointer) upon entry into
the function, and then to use

%fp

 to access variables on the stack frame for the
duration of the function’s life. This is because temporary variables may be contin-
ually pushed and popped onto and off of the stack during the lifetime of the
function, resulting in a changing offset between

%sp

 and the items on the stack
frame. Using

%fp

 means that the compiler can define a constant offset between

%fp

 and a value stored on the stack that will remain fixed for the life of the
frame.

Based addressing

 is used to access stack variables. For example, an ARC
variable located on the stack at a location 12 bytes below

%fp

 can loaded into
register

%r1

 by the instruction

ld %fp, -12, %r1

or, to use the more common notation,

ld [%fp - 12], %r1.

CHAPTER 5 LANGUAGES AND THE MACHINE

163

The use of based addressing thus allows the address arithmetic, “add the contents
of

%fp

 to

-12

” to be performed in a single instruction. Based addressing is so
common that all popular instruction sets contain that addressing mode. Some
instruction sets contain even more complicated addressing modes to assist in
accessing complex data structures that are stored in the stack frame.

To emphasize the point, variables that are stored on the stack have memory
addresses that are not known until run time. Their compile time addresses are
known as offsets from

%fp

. It is only at function entry time that the actual mem-
ory address of the value is known. Thus even though stack variable addresses
such as

[%fp - 12]

 are much more common than global variable addresses
such as

A,

 we will assume global variables are used in the discussion below
because of the greater ease in understanding the relationship between the high
level language variable name and the address as specified in assembly language.
With that provision, let us now proceed to discuss three classes of program state-
ments: data movement, arithmetic, and control flow.

5.1.4

DATA MOVEMENT

In addition to simple scalar variables, most programming languages provide vari-
ous kinds of more complex data structures, including fixed record structures such
as the C

struct

 data type, which is similar to the Pascal

record

, and the array
data type common to most programming languages.

Structures

An example of a C

struct

 is the representation of a point in 3-dimensional
space having integer coordinates

x

,

y

, and

z

. In C this structure could be declared
as:

struct point {
int x;
int y;
int z;

}

An instance of this

struct

 would be defined by the C statement

164

CHAPTER 5 LANGUAGES AND THE MACHINE

struct point pt;

Having defined point

pt

, the programmer can now refer to the individual com-
ponents of

pt

 by notation such as

pt.x

, which refers to the

x

 component of
struct

pt

. The compiler would lay out this structure in memory as three consec-
utive memory locations.

The memory address of the entire structure is taken to be the lowest, or base
address of the structure, so the

x component would be located at address pt, the
y component at address pt + 4, and the z component at address pt + 8.
Thus the y component of pt would be loaded into register %r1 by the instruc-
tion

ld [pt + 4], %r1 !%r1 ← y

Arrays

Most programming languages also allow the declaration of arrays of objects, that
is, collections of identical components that can be referred to either individually
or collectively. In C an array of ten integers can be defined with:

int A[10];

This definition would result in a collection of ten integers, indexed from 0 to 9.

The components of a struct must be explicitly named at programming time,
for example, pt.z. References such as pt.i where i is a variable whose name is
not determined until run time are not allowed. With arrays, on the other hand,
the array index can be computed at run time. For example, the programmer may
specify array element A[i], where i is a variable whose value is computed at run
time and which may assume any integer value from 0 through 9. Whereas in C
the index of the first element in the array always has an index of 0, other pro-
gramming languages allow more flexibility. In Pascal, for example, array declara-
tions such as:

A: array [-10..10] of integer

are permitted. This declaration would result in an array of 21 integers with indi-
ces running from -10 to +10.

CHAPTER 5 LANGUAGES AND THE MACHINE 165

Accessing array elements presents a more complicated issue because of this need
to compute the index at run time, and the possibility that indices may not begin
with 0. The general expression for computing the machine address of an array
element at run time is given by:

ElementAddress = BASE + (INDEX - START)*SIZE

where BASE is the starting address of the array, INDEX is the index of the
desired element, START is the starting index of the array, and SIZE is the size of
an individual element in bytes. Thus element 5 in the Pascal array declared above
would have an address of A + (5 - (-10))*4 = A + 60. In ARC assembly language,
assuming BASE in %r2, INDEX in %r3, START in %r4, and assuming SIZE =
4, the code to load an array value into memory would be given by

sub %r3, %r4, %r6 !%r6 ← INDEX - START
sll %r6, 2, %r6 !%r6 ← %r6 * 4
ld [A + %r6], %r1 !%r1 ← array value

(sll is “shift left logical,” which shifts %r6 2 bits to the left is this example,
bringing in two 0’s on the right.) Note that it costs three instructions to access an
array element, and more if SIZE is not a power of 2. Also note that in the C pro-
gramming language, which specifies that START = 0, one machine instruction is
saved for each array access. This may result in a considerable savings in scientific
and engineering calculations, where heavy array references are common.

5.1.5 ARITHMETIC INSTRUCTIONS

Arithmetic instructions are mapped pretty much as expected from their usage.
There is a possible complication in load-store machines such as ARC and com-
mercial RISC machines, however. Regardless of how many registers with which a
machine is endowed, there is always the possibility that the compiler will
encounter an arithmetic instruction that requires more registers than are avail-
able. In this case the compiler must temporarily store variables on the stack, a
so-called “register spill.” Compilers use sophisticated techniques to decide which
registers are available, using a graph-theoretic technique known as register color-
ing, and to decide when the value in a register is no longer needed to store a par-
ticular value, which is known as “live-dead analysis.”

166 CHAPTER 5 LANGUAGES AND THE MACHINE

5.1.6 PROGRAM CONTROL FLOW

Most ISAs use unconditional and conditional branches, and the CPU’s arith-
metic flags to implement program control flow structures. In this section we con-
sider the mapping of the most common control flow statements.

The goto statement

The most trivial control flow statement is the goto statement, goto Label,
which is simply implemented by the ba (branch always) unconditional branch:

ba Label

The if-else statement

The C if-else statement has the syntax

if (expr) stmt1 else stmt2;

which has the meaning, “If expr yields a value of true, execute stmt1, other-
wise execute stmt2.” Thus the compiler must evaluate the truth of expr, and
execute one or the other of the two statements depending upon the truth or fal-
sity of the expression. Assume for brevity in the example below that expr is
(%r1 == %r2), and introducing the bne, branch if not equal instruction, then
the code to implement the if-else statement is:

subcc %r1, %r2, %r0 ! set flags, discard rslt
bne Over
!stmt1 code
ba End ! exit if-else

Over: !stmt2 code
End: ! ...

Note that the sign of the conditional branch, bne, branch if not equal, is the
inverse of the expression, (%r1 == %r2), equals. This is because the code falls
through to the stmt1 code if the condition is met, and must branch around this
code if the condition is not met.

CHAPTER 5 LANGUAGES AND THE MACHINE 167

The while statement

The C while statement has the syntax:

while (expr) stmt;

The statement means, “Evaluate expr. If it is true, execute stmt, and repeat this
process until expr evaluates to false.” The assembly language mapping of this
statement has the interesting feature that the most efficient mapping has the
expression evaluation code following the statement code. Consider the C while
statement:

while (%r1 == %r2) %r3 = %r3 + 1;

where again we use register variables to simplify the code. This statement is effi-
ciently implemented as:

ba Test
True: add %r3, 1, %r3
Test: subcc %r1, %r2, %r0

be True

The reader can verify that placing the expression evaluation code below the state-
ment code is more efficient than having the expression evaluation code above the
statement code.

The do-while statement

C also has a do-while statement with the syntax:

do stmt while (expr);

This statement works like the while statement above except that stmt is always
executed once prior to testing expr. It is implemented exactly like the while
statement above except that the first ba instruction is eliminated.

168 CHAPTER 5 LANGUAGES AND THE MACHINE

The for statement

The C for statement has the syntax:

for (expr1; expr2; expr3) stmt;

The C language definition says that this statement is equivalent to:

expr1;
while (expr2) {

stmt
expr3;

}

Thus it is implemented exactly like the while statements above, with the addition
of code for expr1 and expr3.

5.2 The Assembly Process
The process of translating an assembly language program into a machine lan-
guage program is referred to as the assembly process. The assembly process is
straightforward and rather simple, since there is a straightforward one-to-one
mapping of assembly language statements to their machine language counter-
parts. This is in opposition to compilation, for example, in which a given
high-level language statement may be translated into a number of computation-
ally equivalent machine language statements.

While assembly is a straightforward process, it is tedious and error-prone if done
by hand. In fact, the assembler was one of the first software tools developed after
the invention of the digital electronic computer.

Commercial assemblers provide at least the following capabilities:

• Allow the programmer to specify the run-time location of data values and
programs. (Most often, however, the programmer would not specify an ab-
solute starting location for a program, because the program will be moved
around, or relocated, by the linker and perhaps the loader, as discussed be-
low.)

• Provide a means for the programmer to initialize data values in memory
prior to program execution.

CHAPTER 5 LANGUAGES AND THE MACHINE 169

• Provide assembly-language mnemonics for all machine instructions and ad-
dressing modes, and translate valid assembly language statements into their
equivalent machine language binary values.

• Permit the use of symbolic labels to represent addresses and constants.

• Provide a means for the programmer to specify the starting address of the
program, if there is one. (There would not be a starting address if the mod-
ule being assembled is a procedure or function, for example.)

• Provide a degree of assemble-time arithmetic.

• Include a mechanism that allows variables to be defined in one assembly
language program and used in another, separately assembled program.

• Provide for the expansion of macro routines, that is, routines that can be
defined once, and then instantiated as many times as needed.

We shall illustrate how the assembly process proceeds by “hand assembling” a
simple program from ARC assembly language to ARC machine language. The
program we will assemble is similar to Figure 4-13, reproduced below for conve-
nience as Figure 5-1. In assembling this program we use the ARC encoding for-

mats shown in Figure 4-10, reproduced here as Figure 5-2. The figure shows the
encoding of ARC machine language. That is, it specifies the target binary
machine language of the ARC computer that the assembler must generate from
the assembly language text.

! This program adds two numbers

.org 2048
ld [x], %r1 ! Load x into %r1
ld [y], %r2 ! Load y into %r2
addcc %r1, %r2, %r3 ! %r3 ← %r1 + %r2

jmpl %r15 + 4, %r0 ! Return
x: 15
y: 9

.end

.begin

main:

z: 0

st %r3, [z] ! Store %r3 into z

Figure 5-1 A simple ARC program that adds two numbers

170 CHAPTER 5 LANGUAGES AND THE MACHINE

Assembly and two pass assemblers

Most assemblers pass over the assembly language text twice, and are referred to as
“two-pass assemblers.” The first pass is dedicated to determining the addresses of
all data items and machine instructions, and selecting which machine instruction
should be produced for each assembly language instruction (but not yet generat-
ing machine code).

The addresses of data items and instructions are determined by employing an
assemble-time analog to the Program Counter, referred to as the location
counter. The location counter keeps track of the address of the current instruc-
tion or data item as assembly proceeds. It is generally initialized to 0 at the start
of the first pass, and is incremented by the size of each instruction. The .org
pseudo operation causes the location counter to be set to the value specified by
the .org statement. For example if the assembler encounters the statement

op3 (op=10)

010000
010001
010010
010110
100110
111000

addcc
andcc
orcc
orncc
srl
jmpl

0001
0101
0110
0111
1000

cond

be
bcs
bneg
bvs
ba

branch

010
100

op2

branch
sethi

Inst.

00
01
10
11

op

SETHI/Branch
CALL
Arithmetic
Memory

Format

000000
000100

ld
st

op3 (op=11)

op

CALL format disp30

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 1

SETHI Format imm22

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

rd

disp220 cond

0 0

0 0Branch Format

op2

op2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

rs11 op3

simm131 op3

1

Memory Formats
1

rd

rd rs1

0

1

0 0 0 0 0 0 0 0 rs2

Arithmetic
Formats

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

rs11 op3

simm131 op3

0

0

rd

rd rs1

0

1

0 0 0 0 0 0 0 0 rs2

i

PSR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

z v cn

Figure 5-2 Instruction formats and PSR format for the ARC.

CHAPTER 5 LANGUAGES AND THE MACHINE 171

.org 1000

it would set the location counter to 1000, and the next instruction or data item
would be assembled at that address. During this pass the assembler also performs
any assembly-time arithmetic operations, and inserts the definitions of all labels
and constant values into a table, referred to as the symbol table.

The primary reason for requiring a second pass is to allow symbols to be used in
the program before they are defined, which is known as forward referencing.
After the first pass, the assembler will have identified and entered all symbols into
its symbol table, and, during a second pass generates the machine code, inserting
the values of symbols which are then known.

Let us now hand assemble the program shown in Figure 5-1 into machine code.
When the assembler encounters the first instruction,

ld [x], %r1

it uses a pattern-matching process to recognize that it is a load instruction. Fur-
ther pattern matching deduces that it is of the form “load from a memory address
specified as a constant value (x in this case) plus the contents of a register (%r0 in
this case) into a register (%r1 in this case).” This corresponds to the second Mem-
ory format shown in Figure 5-2. Examining the second Memory format we find
that the op field for this instruction (ld) is 11. The destination of this ld
instruction goes in the rd field, which is 00001 for %r1 in this case. The op3
field is 000000 for ld, as shown in the op3 box below the Memory formats.
The rs1 field identifies the register, %r0 in this case, that is added to the
simm13 field to form the source operand address. The i bit comes next. Notice
that the i bit is used to distinguish between the first Memory format (i=0) and
the second (i=0). Therefore the i bit is set to 1. The simm13 field specifies the
address of the label x, which appears five words after the first instruction. Since
the first instruction occurs at location 2048, and since each word is composed of
four bytes, the address of x is 5 × 4 = 20 bytes after the beginning of the pro-
gram. The address of x is then 2048 + 20 = 2068 which is represented by the bit
pattern 0100000010100. This pattern fits into the signed 13-bit simm13 field.

The first line is thus assembled into the bit pattern shown below:

11 00001 000000 00000 1 0100000010100

op rd op3 rs1 i simm13

172 CHAPTER 5 LANGUAGES AND THE MACHINE

The next instruction is similar in form, and the corresponding bit pattern is:

The assembly process continues until all eight lines are assembled, as shown
below:

ld [x], %r1 1100 0010 0000 0000 0010 1000 0001 0100
ld [y], %r2 1100 0100 0000 0000 0010 1000 0001 1000
addcc %r1,%r2,%r3 1000 0110 1000 0000 0100 0000 0000 0010
st %r3, [z] 1100 0110 0010 0000 0010 1000 0001 1100
jmpl %r15+4, %r0 1000 0001 1100 0011 1110 0000 0000 0100
15 0000 0000 0000 0000 0000 0000 0000 1111
9 0000 0000 0000 0000 0000 0000 0000 1001
0 0000 0000 0000 0000 0000 0000 0000 0000

As a general approach, the assembly process is carried out by reading assembly
language statements sequentially, from first to last, and generating machine code
for each statement. And as mentioned earlier, a difficulty with this approach is
caused by forward referencing. Consider the program fragment shown in Figure
5-3. When the assembler sees the call statement, it does not yet know the loca-

tion of sub_r since the sub_r label has not yet been seen. Thus the reference is
entered into the symbol table and marked as unresolved. The reference is
resolved when the definition of sub_r is found later in the program. The process
of building a symbol table is described below.

Assembly and the symbol table

In the first pass of the two-pass assembly process, a symbol table is created. A
symbol is either a label or a symbolic name that refers to a value used during the

11 00010 000000 00000 1 0100000011000

op rd op3 rs1 i simm13

 call sub_r

sub_r: st %r1, [w]
.
.
.

.

.

.

.

.

.

! Subroutine is invoked here

! Subroutine is defined here

Figure 5-3 An example of forward referencing.

CHAPTER 5 LANGUAGES AND THE MACHINE 173

assembly process. The symbol table is generated in the first pass of assembly.

As an example of how a two-pass assembler operates, consider assembling the
code in Figure 4-14. Starting from the .begin statement, the assembler
encounters the statement

.org 2048

This causes the assembler to set the location counter to 2048, and assembly pro-
ceeds from that address. The first statement encountered is

a_start .equ 3000

An entry is created in the symbol table for a_start, which is given the value
3000. (Note that .equ statements do not generate any code, and thus are not
assigned addresses during assembly.)

Assembly proceeds as the assembler encounters the first machine instruction,

ld [length], %r1

This instruction is assembled at the address specified by the location counter,
2048. The location counter is then incremented by the size of the instruction, 4
bytes, to 2052. Notice that when the symbol length is encountered the assem-
bler has not seen any definition for it. An entry is created in the symbol table for
length, but it is initially assigned the value “undefined” as shown by the “—” in
Figure 5-4a.

Symbol Value

length 2092

loop 2060

done 2088

a 3000

(b)

Symbol Value

a_start 3000

(a)

length ––

a_start 3000

address 2096

Figure 5-4 Symbol table for the ARC program shown in Figure 4-14, (a) after symbols a_start and

length are seen; and (b) after completion.

174 CHAPTER 5 LANGUAGES AND THE MACHINE

The assembler then encounters the second instruction

ld [address], %r2

It assembles this instruction at address 2052 and enters the symbol address
into the symbol table, again setting its value to “undefined,” since its definition
has not been seen. It then increments the location counter by 4 to 2056. The
andcc instruction is assembled at address 2056, and the location counter is
incremented by the size of the instruction, again 4 bytes, to 2060. The next sym-
bol that is seen is loop, which is entered into the symbol table with a value of
2060, the value of the location counter. The next symbol that is encountered that
is not in the symbol table is done, which is also entered into the symbol table
without a value since it likewise has not been defined.

The first pass of assembly continues, and the unresolved symbols length,
address, and done are assigned the values 2092, 2096, and 2088, respectively
as they are encountered. The label a is encountered, and is entered into the table
with a value of 3000. The label done appears at location 2088 because there are
10 instructions (40 bytes) between the beginning of the program and done.
Addresses for the remaining labels are computed in a similar manner. If any
labels are still undefined at the end of the first pass, then an error exists in the
program and the assembler will flag the undefined symbols and terminate.

After the symbol table is created, the second pass of assembly begins. The pro-
gram is read a second time, starting from the .begin statement, but now object
code is generated. The first statement that is encountered that causes code to be
generated is ld at location 2048. The symbol table shows that the address por-
tion of the ld instruction is (2092)10 for the address of length, and so one
word of code is generated using the Memory format as shown in Figure 5-5. The
second pass continues in this manner until all of the code is translated. The
assembled program is shown in Figure 5-5. Notice that the displacements for
branch addresses are given in words, rather than in bytes, because the branch
instructions multiply the displacements by four.

Final tasks of the assembler

After assembly is complete the assembler must add additional information to the
assembled module for the linker and loader:

• The module name and size. If the execution model involves memory seg-

CHAPTER 5 LANGUAGES AND THE MACHINE 175

ments for code, data, stack, etc. then the sizes and identities of the various
segments must be specified.

• The address of the start symbol, if one is defined in the module. Most as-
semblers and high level languages provide for a special reserved label that
the programmer can use to indicate where the program should start execu-
tion. For example, C specifies that execution will start at the function
named main(). In Figure 5-1 the label “main” is a signal to the assembler
that execution should start at that location.

• Information about global and external symbols. The linker will need to
know the addresses of any global symbols defined in the module and ex-
ported by it, and it will likewise need to know which symbols remain un-
defined in the module because they are defined as global in another
module.

• Information about any library routines that are referenced by the module.
Some libraries contain commonly used functionality such as math or other
specialized functions. We will have more to say about library usage in the
sections below.

 .begin

 .org 2048

 a_start .equ 3000

 ld [length],%r1 11000010 00000000 00101000 00101100
 ld [address],%r2 11000100 00000000 00101000 00110000
 andcc %r3,%r0,%r3 10000110 10001000 11000000 00000000

loop: andcc %r1,%r1,%r0 10000000 10001000 01000000 00000001
 be done 00000010 10000000 00000000 00000110
 addcc %r1,-4,%r1 10000010 10000000 01111111 11111100
 addcc %r1,%r2,%r4 10001000 10000000 01000000 00000010
 ld %r4,%r5 11001010 00000001 00000000 00000000

 addcc %r3,%r5,%r3 10000110 10000000 11000000 00000101
 ba loop 00010000 10111111 11111111 11111011

done: jmpl %r15+4,%r0 10000001 11000011 11100000 00000100
length: 20 00000000 00000000 00000000 00010100

 .org a_start

a: 25 00000000 00000000 00000000 00011001
 -10 11111111 11111111 11111111 11110110
 33 00000000 00000000 00000000 00100001
 -5 11111111 11111111 11111111 11111011

Object codeInstructionLocation
counter

2048

2052

2056

2060

2064

2068

2072

2076

2080

2084

2088

3004

3000

3008

3012

3016

2092

 .end

 7 00000000 00000000 00000000 00000111

address: a_start 00000000 00000000 00001011 101110002096

Figure 5-5 Output from the second pass of the assembler for the ARC program shown in Figure

4-14.

176 CHAPTER 5 LANGUAGES AND THE MACHINE

• The values of any constants that are to be loaded into memory. Some load-
ers expect data initialization to be specified separately from the binary code.

• Relocation information. When the linker is invoked most of the modules
that are to be linked will need to be relocated as the modules are concate-
nated. The whole issue of module relocation is complicated because some
address references can be relocated and others cannot. We discuss reloca-
tion later, but here we note that the assembler specifies which addresses can
be relocated and which others cannot.

Location of programs in memory

Up until now we have assumed that programs are located in memory at an
address that is specified by a .org pseudo operation. This may indeed be the
case in systems programming, where the programmer has a reason for wanting a
program to be located at a specific memory location, but typically the program-
mer does not care where the program is located in memory. Furthermore, when
separately assembled or compiled programs are linked together, it is difficult or
impossible for the programmer to know exactly where each module will be
located after linking, as they are concatenated one after the other. For this reason
most addresses are specified as being relocatable in memory, except perhaps for
addresses such as I/O addresses, which may be fixed at an absolute memory loca-
tion.

In the next section we discuss relocation in more detail; here we merely note that
it is the assembler’s responsibility to mark symbols as being relocatable. Whether
a given symbol is relocatable or not depends upon both the assembly language
and the operating system’s conventions. In any case, this relocation information
is included in the assembled module for use by the linker and/or loader in a relo-
cation dictionary. Symbols that are relocatable are often marked with an “R”
after their value in the assembler’s listing file.

5.3 Linking and Loading
Most applications of any size will have a number of separately compiled or
assembled modules. These modules may be generated by different programming
languages or they may be present in a library provided as part of the program-
ming language environment or operating system. Each module must provide the
information described above, so that they can be linked together for loading and
execution.

CHAPTER 5 LANGUAGES AND THE MACHINE 177

A linkage editor, or linker, is a software program that combines separately
assembled programs (called object modules) into a single program, which is
called a load module. The linker resolves all global-external references and relo-
cates addresses in the separate modules. The load module can then be loaded into
memory by a loader, which may also need to modify addresses if the program is
loaded at a location that differs from the loading origin used by the linker.

A relatively new technique called dynamic link libraries (DLLs), popularized
by Microsoft in the Windows operating system, and present in similar forms in
other operating systems, postpones the linking of some components until they
are actually needed at run time. We will have more to say about dynamic linking
later in this section.

5.3.1 LINKING

In combining the separately compiled or assembled modules into a load module,
the linker must:

• Resolve address references that are external to modules as it links them.

• Relocate each module by combining them end-to-end as appropriate. Dur-
ing this relocation process many of the addresses in the module must be
changed to reflect their new location.

• Specify the starting symbol of the load module.

• If the memory model includes more than one memory segment, the linker
must specify the identities and contents of the various segments.

Resolving external references

In resolving address references the linker needs to distinguish local symbol names
(used within a single source module) from global symbol names (used in more
than one module). This is accomplished by making use of the .global and
.extern pseudo-ops during assembly. The .global pseudo-op instructs the
assembler to mark a symbol as being available to other object modules during the
linking phase. The .extern pseudo-op identifies a label that is used in one
module but is defined in another. A .global is thus used in the module where
a symbol is defined (such as where a subroutine is located) and a .extern is
used in every other module that refers to it. Note that only address labels can be

178 CHAPTER 5 LANGUAGES AND THE MACHINE

global or external: it would be meaningless to mark a .equ symbol as global or
external, since .equ is a pseudo-op that is used during the assembly process only,
and the assembly process is completed by the time that the linking process
begins.

All labels referred to in one program by another, such as subroutine names, will
have a line of the form shown below in the source module:

.global symbol1, symbol2, ...

All other labels are local, which means the same label can be used in more than
one source module without risking confusion since local labels are not used after
the assembly process finishes. A module that refers to symbols defined in another
module should declare those symbols using the form:

.extern symbol1, symbol2, ...

As an example of how .global and .extern are used, consider the two assem-
bly code source modules shown in Figure 5-6. Each module is separately assem-

bled into an object module, each with its own symbol table as shown in Figure
5-7. The symbol tables have an additional field that indicates if a symbol is global
or external. Program main begins at location 2048, and each instruction is four
bytes long, so x and y are at locations 2064 and 2068, respectively. The symbol
sub is marked as external as a result of the .extern pseudo-op. As part of the
assembly process the assembler includes header information in the module about
symbols that are global and external so they can be resolved at link time.

! Main program

.begin

.org 2048

.extern sub
ld [x], %r2
ld
call

[y], %r3
sub

! Subroutine library

.begin

.org 2048

.global sub
orncc %r3, %r0, %r3

jmpl %r15 + 4, %r0jmpl %r15 + 4, %r0
105
 92

main:

.end

x:
y:

sub:

.end

.equ 1ONE

addcc %r3, ONE, %r3

Figure 5-6 A program calls a subroutine that subtracts two integers.

CHAPTER 5 LANGUAGES AND THE MACHINE 179

Relocation

Notice in Figure 5-6 that the two programs, main and sub, both have the same
starting address, 2048. Obviously they cannot both occupy that same memory
address. If the two modules are assembled separately there is no way for an
assembler to know about the conflicting starting addresses during the assembly
phase. In order to resolve this problem, the assembler marks symbols that may
have their address changed during linking as relocatable, as shown in the Relo-
catable fields of the symbol tables shown in Figure 5-7. The idea is that a pro-
gram that is assembled at a starting address of 2048 can be loaded at address
3000 instead, for instance, as long as all references to relocatable addresses within
the program are increased by 3000 – 2048 = 952. Relocation is performed by the
linker so that relocatable addresses are changed by the same amount that the
loading origin is changed, but absolute, or non-relocatable addresses (such as the
highest possible stack address, which is 231 – 4 for 32-bit words) stays the same
regardless of the loading origin.

The assembler is responsible for determining which labels are relocatable when it
builds the symbol table. It has no meaning to call an external label relocatable,
since the label is defined in another module, so sub has no relocatable entry in
the symbol table in Figure 5-7 for program main, but it is marked as relocatable
in the subroutine library. The assembler must also identify code in the object
module that needs to be modified as a result of relocation. Absolute numbers,
such as constants (marked by .equ ,or that appear in memory locations, such as
the contents of x and y, which are 105 and 92, respectively) are not relocatable.
Memory locations that are positioned relative to a .org statement, such as x and
y (not the contents of x and y!) are generally relocatable. References to fixed
locations, such as a permanently resident graphics routine that may be hardwired
into the machine, are not relocatable. All of the information needed to relocate a

Symbol Value

sub –

main 2048

x 2064

y 2068

Global/
External

Reloc-
atable

No

No

–

Yes

Yes

Yes

No

External

Main Program

Symbol Value

ONE 1

Global/
External

Reloc-
atable

NoNo

Subroutine Library

sub 2048 YesGlobal

Figure 5-7 Symbol tables for the assembly code source modules shown in Figure 5-6.

180 CHAPTER 5 LANGUAGES AND THE MACHINE

module is stored in the relocation dictionary contained in the assembled file, and
is therefore available to the linker.

5.3.2 LOADING

The loader is a software program that places the load module into main mem-
ory. Conceptually the tasks of the loader are not difficult. It must load the vari-
ous memory segments with the appropriate values and initialize certain registers
such as the stack pointer %sp, and the program counter, %pc, to their initial val-
ues.

If there is only one load module executing at any time, then this model works
well. In modern operating systems, however, several programs are resident in
memory at any time, and there is no way that the assembler or linker can know
at which address they will reside. The loader must relocate these modules at load
time by adding an offset to all of the relocatable code in a module. This kind of
loader is known as a relocating loader. The relocating loader does not simply
repeat the job of the linker: the linker has to combine several object modules into
a single load module, whereas the loader simply modifies relocatable addresses
within a single load module so that several programs can reside in memory
simultaneously. A linking loader performs both the linking process and the
loading process: it resolves external references, relocates object modules, and
loads them into memory.

The linked executable file contains header information describing where it
should be loaded, starting addresses, and possibly relocation information, and
entry points for any routines that should be made available externally.

An alternative approach that relies on memory management accomplishes reloca-
tion by loading a segment base register with the appropriate base to locate the
code (or data) at the appropriate place in physical memory. The memory man-
agement unit (MMU), adds the contents of this base register to all memory ref-
erences. As a result, each program can begin execution at address 0 and rely on
the MMU to relocate all memory references transparently.

Dynamic link libraries

Returning to dynamic link libraries, the concept has a number of attractive fea-
tures. Commonly used routines such as memory management or graphics pack-
ages need be present at only one place, the DLL library. This results in smaller

CHAPTER 5 LANGUAGES AND THE MACHINE 181

program sizes because each program does not need to have its own copy of the
DLL code, as would otherwise be needed. All programs share the exact same
code, even while simultaneously executing.

Furthermore, the DLL can be upgraded with bug fixes or feature enhancements
in just one place, and programs that use it need not be recompiled or relinked in
a separate step. These same features can also become disadvantages, however,
because program behavior may change in unintended ways (such as running out
of memory as a result of a larger DLL). The DLL library must be present at all
times, and must contain the version expected by each program. Many Windows
users have seen the cryptic message, “A file is missing from the dynamic link
library.” Complicating the issue in the Windows implementation, there are a
number of locations in the file system where DLLs are placed. The more sophis-
ticated user may have little difficulty resolving these problems, but the naive user
may be baffled.

A PROGRAMMING EXAMPLE

Consider the problem of adding two 64-bit numbers using the ARC assembly
language. We can store the 64-bit numbers in successive words in memory and
then separately add the low and high order words. If a carry is generated from
adding the low order words, then the carry is added into the high order word of
the result. (See problem 5.3 for the generation of the symbol table, and problem
5.4 for the translation of the assembly code in this example to machine code.)

Figure 5-8 shows one possible coding. The 64-bit operands A and B are stored in
memory in a high endian format, in which the most significant 32 bits are stored
in lower memory addresses than the least significant 32 bits. The program begins
by loading the high and low order words of A into %r1 and %r2, respectively,
and then loading the high and low order words of B into %r3 and %r4, respec-
tively. Subroutine add_64 is called, which adds A and B and places the high
order word of the result in %r5 and the low order word of the result in %r6. The
64-bit result is then stored in C, and the program returns.

Subroutine add_64 starts by adding the low order words. If a carry is not gener-
ated, then the high order words are added and the subroutine finishes. If a carry
is generated from adding the low order words, then it must be added into the

182 CHAPTER 5 LANGUAGES AND THE MACHINE

high order word of the result. If a carry is not generated when the high order
words are added, then the carry from the low order word of the result is simply
added into the high order word of the result and the subroutine finishes. If, how-
ever, a carry is generated when the high order words are added, then when the
carry from the low order word is added into the high order word, the final state
of the condition codes will show that there is no carry out of the high order
word, which is incorrect. The condition code for the carry is restored by placing

! %r5 – Most significant 32 bits of C

 .begin

! Start assembling

 .org 2048 ! Start program at 2048

 ld [B+4], %r4 ! Get low word of B

 st %r5, [C] ! Store high word of C

 st %r6, [C+4] ! Store low word of C

! %r4 – Least significant 32 bits of B

! %r3 – Most significant 32 bits of B

! %r2 – Least significant 32 bits of A

! Register usage: %r1 – Most significant 32 bits of A

! Perform a 64-bit addition: C

 call add_64 ! Perform 64-bit addition

 ld [B], %r3 ! Get high word of B

! %r6 – Least significant 32 bits of C

 ld [A+4], %r2 ! Get low word of A

main: ld [A], %r1 ! Get high word of A

! %r7 – Used for restoring carry bit

 addcc %r1, %r3, %r5 ! Add high order words

lo_carry: addcc %r1, %r3, %r5 ! Add high order words

 bcs hi_carry ! Branch if carry set

 jmpl %r15 + 4, %r0 ! Return to calling routine

 bcs lo_carry ! Branch if carry set

add_64: addcc %r2, %r4, %r6 ! Add low order words

.

.

.

 sethi #3FFFFF, %r7 ! Set up %r7 for carry

 jmpl %r15 + 4, %r0 ! Return to calling routine

A: 0 ! High 32 bits of 25

 addcc %r7, %r7, %r0 ! Generate a carry

 jmpl %r15, 4, %r0 ! Return to calling routine

 addcc %r5, 1, %r5 ! Add in carry

 .end ! Stop assembling

 25 ! Low 32 bits of 25

B: #FFFFFFFF ! High 32 bits of -1

 #FFFFFFFF ! Low 32 bits of -1

C: 0 ! High 32 bits of result

 0 ! Low 32 bits of result

hi_carry: addcc %r5, 1, %r5 ! Add in carry

 .org 3072 ! Start add_64 at 3072

 .global main

← A + B

Figure 5-8 An ARC program adds two 64-bit integers.

CHAPTER 5 LANGUAGES AND THE MACHINE 183

a large number in %r7 and then adding it to itself. The condition codes for n, z,
and v may not have correct values at this point, however. A complete solution is
not detailed here, but in short, the remaining condition codes can be set to their
proper values by repeating the addcc just prior to the %r7 operation, taking
into account the fact that the c condition code must still be preserved. �

5.4 Macros
If a stack based calling convention is used, then a number of registers may fre-
quently need to be pushed and popped from the stack during calls and returns.
In order to push ARC register %r15 onto the stack, we need to first decrement
the stack pointer (which is in %r14) and then copy %r15 to the memory loca-
tion pointed to by %r14 as shown in the code below:

addcc %r14, -4, %r14 ! Decrement stack pointer
st %r15, %r14 ! Push %r15 onto stack

A more compact notation for accomplishing this might be:

push %r15 ! Push %r15 onto stack

The compact form assigns a new label (push) to the sequence of statements that
actually carry out the command. The push label is referred to as a macro, and
the process of translating a macro into its assembly language equivalent is
referred to as macro expansion.

A macro can be created through the use of a macro definition, as shown for
push in Figure 5-9. The macro begins with a .macro pseudo-op, and termi-

nates with a .endmacro pseudo-op. On the .macro line, the first symbol is the
name of the macro (push here), and the remaining symbols are command line
arguments that are used within the macro. There is only one argument for macro
push, which is arg1. This corresponds to %r15 in the statement “push
%r15,” or to %r1 in the statement “push %r1,” etc. The argument (%r15 or
%r1) for each case is said to be “bound” to arg1 during the assembly process.

! Macro definition for 'push'
.macro push arg1

st arg1, %r14 ! Push arg1 onto stack
addcc %r14, -4, %r14 ! Decrement stack pointer

! End macro definition.endmacro

! Start macro definition

Figure 5-9 A macro definition for push.

184 CHAPTER 5 LANGUAGES AND THE MACHINE

Additional formal parameters can be used, separated by commas as in:

.macro name arg1, arg2, arg3, ...

and the macro is then invoked with the same number of actual parameters:

name %r1, %r2, %r3, ...

The body of the macro follows the .macro pseudo-op. Any commands can fol-
low, including other macros, or even calls to the same macro, which allows for a
recursive expansion at assembly time. The parameters that appear in the .macro
line can replace any text within the macro body, and so they can be used for
labels, instructions, or operands.

It should be noted that during macro expansion formal parameters are replaced
by actual parameters using a simple textual substitution. Thus one can invoke the
push macro with either memory or register arguments:

push %r1

or

push foo

The programmer needs to be aware of this feature of macro expansion when the
macro is defined, lest the expanded macro contain illegal statements.

Additional pseudo-ops are needed for recursive macro expansion. The .if and
.endif pseudo-ops open and close a conditional assembly section, respectively.
If the argument to .if is true (at macro expansion time) then the code that fol-
lows, up to the corresponding .endif, is assembled. If the argument to .if is
false, then the code between .if and .endif is ignored by the assembler. The
conditional operator for the .if pseudo-op can be any member of the set {<, =,
>, ≥, ≠, or ≤}.

Figure 5-10 shows a recursive macro definition and its expansion during the
assembly process. The expanded code sums the contents of registers %r1 through
%rX and places the result in %r1. The argument X is tested in the .if line. If X
is greater than 2, then the macro is called again, but with the argument X – 1. If
the macro recurs_add is invoked with an argument of 4, then three lines of

CHAPTER 5 LANGUAGES AND THE MACHINE 185

code are generated as shown in the bottom of the figure. The first time that
recurs_add is invoked, X has a value of 4. The macro is invoked again with X
= 3 and X = 2, at which point the first addcc statement is generated. The sec-
ond and third addcc statements are then generated as the recursion unwinds.

As mentioned earlier, for an assembler that supports macros, there must be a
macro expansion phase that takes place prior to the two-pass assembly process.
Macro expansion is normally performed by a macro preprocessor before the
program is assembled. The macro expansion process may be invisible to a pro-
grammer, however, since it may be invoked by the assembler itself. Macro expan-
sion typically requires two passes, in which the first pass records macro
definitions, and the second pass generates assembly language statements. The
second pass of macro expansion can be very involved, however, if recursive macro
definitions are supported. A more detailed description of macro expansion can be
found in (Donovan, 1972).

5.5 Case Study: Extensions to the Instruction Set – The Intel MMX™
and Motorola AltiVec™ SIMD instructions.
As integrated circuit technology provides ever increasing capacity within the pro-
cessor, processor vendors search for new ways to use that capacity. One way that
both Intel and Motorola capitalized on the additional capacity was to extend
their ISAs with new registers and instructions that are specialized for processing
streams or blocks of data. Intel provides the MMX extension to their Pentium
processors and Motorola provides the AltiVec extension to their PowerPC pro-
cessors. In this section we will discuss why the extensions are useful, and how the
two companies implemented them.

! A recursive macro definition
recurs_add X

recurs_add X – 1 ! Recursive call
.if X > 2 ! Assemble code if X > 2

! End .if construct.endif

! Start macro definition

addcc %r1, %rX, %r1 ! Add argument into %r1
.endmacro ! End macro definition

recurs_add 4 ! Invoke the macro

Expands to:

addcc %r1, %r2, %r1
addcc %r1, %r3, %r1
addcc %r1, %r4, %r1

.macro

Figure 5-10 A recursive macro definition, and the corresponding macro expansion.

186 CHAPTER 5 LANGUAGES AND THE MACHINE

5.5.1 BACKGROUND

The processing of graphics, audio, and communication streams requires that the
same repetitive operations be performed on large blocks of data. For example a
graphic image may be several megabytes in size, with repetitive operations
required on the entire image for filtering, image enhancement, or other process-
ing. So-called streaming audio (audio that is transmitted over a network in real
time) may require continuous operation on the stream as it arrives. Likewise 3-D
image generation, virtual reality environments, and even computer games require
extraordinary amounts of processing power. In the past the solution adopted by
many computer system manufacturers was to include special purpose processors
explicitly for handling these kinds of operations.

Although Intel and Motorola took slightly different approaches, the results are
quite similar. Both instruction sets are extended with SIMD (Single Instruction
stream / Multiple Data stream) instructions and data types. The SIMD approach
applies the same instruction to a vector of data items simultaneously. The term
“vector” refers to a collection of data items, usually bytes or words.

Vector processors and processor extensions are by no means a new concept. The
earliest CRAY and IBM 370 series computers had vector operations or exten-
sions. In fact these machines had much more powerful vector processing capabil-
ities than these first microprocessor-based offerings from Intel and Motorola.
Nevertheless, the Intel and Motorola extensions provide a considerable speedup
in the localized, recurring operations for which they were designed. These exten-
sions are covered in more detail below, but Figure 5-11 gives an introduction to

the process. The figure shows the Intel PADDB (Packed Add Bytes) instruction,
which performs 8-bit addition on the vector of eight bytes in register MM0 with
the vector of eight bytes in register MM1, storing the results in register MM0.

5.5.2 THE BASE ARCHITECTURES

Before we cover the SIMD extensions to the two processors, we will take a look
at the base architectures of the two machines. Surprisingly, the two processors
could hardly be more different in their ISAs.

mm0

mm1

mm0

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

11111111 00000000 01101001 10111111 00101010 01101010 10101111 10111101

11111110 11111111 00001111 10101010 11111111 00010101 11010101 00101010

11111101 11111111 01111000 01101001 00101001 01111111 10000100 11100111

Figure 5-11 The vector addition of eight bytes by the Intel PADDB mm0, mm1 instruction.

CHAPTER 5 LANGUAGES AND THE MACHINE 187

The Intel Pentium

Aside from special-purpose registers that are used in operating system-related
matters, the Pentium ISA contains eight 32-bit integer registers, with each regis-
ter having its own “personality.” For example, the Pentium ISA contains a single
accumulator (EAX) which holds arithmetic operands and results. The processor
also includes eight 80-bit floating-point registers, which, as we will see, also serve
as vector registers for the MMX instructions. The Pentium instruction set would
be characterized as CISC (Complicated Instruction Set Computer). We will dis-
cuss CISC vs. RISC (Reduced Instruction Set Computer) in more detail in
Chapter 10, but for now, suffice it to say that the Pentium instructions vary in
size from a single byte to 9 bytes in length, and many Pentium instructions
accomplish very complicated actions. The Pentium has many addressing modes,
and most of its arithmetic instructions allow one operand or the result to be in
either memory or a register. Much of the Intel ISA was shaped by the decision to
make it binary-compatible with the earliest member of the family, the
8086/8088, introduced in 1978. (The 8086 ISA was itself shaped by Intel’s deci-
sion to make it assembly-language compatible with the venerable 8-bit 8080,
introduced in 1973.)

The Motorola PowerPC

The PowerPC, in contrast, was developed by a consortium of IBM, Motorola
and Apple, “from the ground up,” forsaking backward compatibility for the abil-
ity to incorporate the latest in RISC technology. The result was an ISA with
fewer, simpler instructions, all instructions exactly one 32-bit word wide, 32
32-bit general purpose integer registers and 32 64-bit floating point registers.
The ISA employs the “load/store” approach to memory access: memory operands
have to be loaded into registers by load and store instructions before they can be
used. All other instructions must access their operands and results in registers.

As we shall see below, the primary influence that the core ISAs described above
have on the vector operations is in the way they access memory.

5.5.3 VECTOR REGISTERS

Both architectures provide an additional set of dedicated registers in which vector
operands and results are stored. Figure 5-12 shows the vector register sets for the
two processors. Intel, perhaps for reasons of space, “aliases” their floating point
registers as MMX registers. This means that the Pentium’s 8 64-bit floating-point

188 CHAPTER 5 LANGUAGES AND THE MACHINE

registers also do double-duty as MMX registers. This approach has the disadvan-
tage that the registers can be used for only one kind of operation at a time. The
register set must be “flushed” with a special instruction, EMMS (Empty MMX
State) after executing MMX instructions and before executing floating-point
instructions.

Motorola, perhaps because their PowerPC processor occupies less silicon, imple-
mented 32 128-bit vector registers as a new set, separate and distinct from their
floating-point registers.

Vector operands

Both Intel and Motorola’s vector operations can operate on 8, 16, 32, 64, and, in
Motorola’s case, 128-bit integers. Unlike Intel, which supports only integer vec-
tors, Motorola also supports 32-bit floating point numbers and operations.

Both Intel and Motorola’s vector registers can be filled, or packed, with 8, 16, 32,
64, and in the Motorola case, 128-bit data values. For byte operands, this results
in 8 or 16-way parallelism, as 8 or 16 bytes are operated on simultaneously. This
is how the SIMD nature of the vector operation is expressed: the same operation
is performed on all the objects in a given vector register.

Loading to and storing from the vector registers

Intel continues their CISC approach in the way they load operands into their

Intel MMX Registers

63 0

MM7

•

•

MM0

Motorola AltiVec Registers

127 0

VR31

VR30

•

•

•

•

VR1

VR0

Figure 5-12 Intel and Motorola vector registers.

CHAPTER 5 LANGUAGES AND THE MACHINE 189

vector registers. There are two instructions for loading and storing values to and
from the vector registers, MOVD and MOVQ, which move 32-bit doublewords
and 64-bit quadwords, respectively. (The Intel word is 16-bits in size.) The syn-
tax is:

MOVD mm, mm/m32 ;move doubleword to a vector reg.

MOVD mm/m32, mm ;move doubleword from a vector reg.

MOVQ mm, mm/m64 ;move quadword to a vector reg.

MOVQ mm/m64, mm ;move quadword from a vector reg.

• mm stands for one of the 8 MM vector registers;

• mm/mm32 stands for either one of the integer registers, an MM register,
or a memory location;

• mm/m64 stands for either an MM register or a memory location.

In addition, in the Intel vector arithmetic operations one of the operands can be
in memory, as we will see below.

Motorola likewise remained true to their professed RISC philosophy in their
load and store operations. The only way to access an operand in memory is
through the vector load and store operations. There is no way to move an oper-
and between any of the other internal registers and the vector registers. All oper-
ands must be loaded from memory and stored to memory. Typical load opcodes
are:

lvebx vD, rA|0, rB ;load byte to vector reg vD, indexed.

lvehx vD, rA|0, rB ;move halfword to vector reg vD indexed.

lvewx vD, rA|0, rB ;move word to vector reg vD indexed.

lvx vD, rA|0, rB ;move doubleword to vector reg vD.

where vD stands for one of the 32 vector registers. The memory address of the
operand is computed from (rA|0 + rB), where rA and rB represent any two of the
integer registers r0-r32, and the “|0” symbol means that the value zero may be
substituted for rA. The byte, half word, word, or doubleword is fetched from
that address. (PowerPC words are 32 bits in size.)

The term “indexed” in the list above refers to the location where the byte, half-
word or word will be stored in the vector register. The least significant bits of the
memory address specify the index into the vector register. For example, LSB’s

190 CHAPTER 5 LANGUAGES AND THE MACHINE

011 would specify that the byte should be loaded into the third byte of the regis-
ter. Other bytes in the vector register are undefined.

The store operations work exactly like the load instructions above except that the
value from one of the vector registers is stored in memory.

5.5.4 VECTOR ARITHMETIC OPERATIONS

The vector arithmetic operations form the heart of the SIMD process. We will
see that there is a new form of arithmetic, saturation arithmetic, and several new
and exotic operations.

Saturation arithmetic

Both vector processors provide the option of doing saturation arithmetic
instead of the more familiar modulo wraparound kind discussed in Chapters 2
and 3. Saturation arithmetic works just like two’s complement arithmetic as long
as the results do not overflow or underflow. When results do overflow or under-
flow, in saturation arithmetic the result is held at the maximum or minimum
allowable value, respectively, rather than being allowed to wrap around. For
example two’s complement bytes are saturated at the high end at +127 and at the
low end at −128. Unsigned bytes are saturated at 255 and 0. If an arithmetic
result overflows or underflows these bounds the result is clipped, or “saturated” at
the boundary.

The need for saturation arithmetic is encountered in the processing of color
information. If color is represented by a byte in which 0 represents black and 255
represents white, then saturation allows the color to remain pure black or pure
white after an operation rather than inverting upon overflow or underflow.

Instruction formats

As the two architectures have different approaches to addressing modes, so their
SIMD instruction formats also differ. Intel continues using two-address instruc-
tions, where the first source operand can be in an MM register, an integer regis-
ter, or memory, and the second operand and destination is an MM register:

OP mm, mm32or64 ;mm ← mm OP mm/mm32/64

CHAPTER 5 LANGUAGES AND THE MACHINE 191

Motorola requires all operands to be in vector registers, and employs three-oper-
and instructions:

OP Vd, Va, Vb [,Vc] ; Vd ← Va OP Vb [OP Vc]

This approach has the advantage that no vector register need be overwritten. In
addition, some instructions can employ a third operand, Vc.

Arithmetic operations

Perhaps not too surprisingly, the MMX and AltiVec instructions are quite simi-
lar. Both provide operations on 8, 16, 32, 64, and in the AltiVec case, 128-bit
operands. In Table 5.1 below we see examples of the variety of operations pro-
vided by the two technologies. The primary driving forces for providing these
particular operations is a combination of wanting to provide potential users of
the technology with operations that they will find needed and useful in their par-
ticular application, the amount of silicon available for the extension, and the base
ISA.

5.5.5 VECTOR COMPARE OPERATIONS

The ordinary paradigm for conditional operations: compare and branch on con-
dition, will not work for vector operations, because each operand undergoing the
comparison can yield different results. For example, comparing two word vectors
for equality could yield TRUE, FALSE, FALSE, TRUE. There is no good way to
employ branches to select different code blocks depending upon the truth or fal-
sity of the comparisons. As a result, vector comparisons in both MMX and
AltiVec technologies result in the explicit generation of TRUE or FALSE. In
both cases, TRUE is represented by all 1’s, and FALSE by all 0’s in the destina-
tion operand. For example byte comparisons yield FFH or 00H, 16-bit compari-
sons yield FFFFH or 0000H, and so on for other operands. These values, all 1’s
or all 0’s, can then be used as masks to update values.

Example: comparing two byte vectors for equality

Consider comparing two MMX byte vectors for equality. Figure 5-13 shows the
results of the comparison: strings of 1’s where the comparison succeeded, and 0’s
where it failed. This comparison can be used in subsequent operations. Consider
the high-level language conditional statement:

192 CHAPTER 5 LANGUAGES AND THE MACHINE

if (mm0 == mm1) mm2 = mm2 else mm2 = 0;

The comparison in Figure 5-13 above yields the mask that can be used to control
the byte-wise assignment. Register mm2 is ANDed with the mask in mm0 and
the result stored in mm2, as shown in Figure 5-14. By using various combina-
tions of comparison operations and masks, a full range of conditional operations

Operation Operands (bits) Arithmetic

Integer Add, Subtract, signed and unsigned(B) 8, 16, 32, 64, 128 Modulo, Saturated

Integer Add, Subtract, store carry-out in vector reg-
ister(M)

32 Modulo

Integer Multiply, store high- or low order half (I) 16←16×16 —

Integer multiply add: Vd = Va *Vb + Vc (B) 16←8×8
32←16×16

Modulo, Saturated

Shift Left, Right, Arithmetic Right(B) 8, 16, 32, 64(I) —

Rotate Left, Right (M) 8, 16, 32 —

AND, AND NOT, OR, NOR, XOR(B) 64(I), 128(M) —

Integer Multiply every other operand, store entire
result, signed and unsigned(M)

16←8×8
32←16×16

Modulo, Saturated

Maximum, minimum. Vd←Max,Min(Va, Vb) (M) 8, 16, 32 Signed, Unsigned

Vector sum across word. Add objects in vector, add
this sum to object in second vector, place result in
third vector register.(M)

Various Modulo, Saturated

Vector floating point operations, add, subtract, mul-
tiply-add, etc. (M)

32 IEEE Floating
Point

Table 5.1 MMX and AltiVec arithmetic instructions.

mm0

mm1

mm0

==

↓

==

↓

==

↓

==

↓

==

↓

==

↓

==

↓

==

(T) (F) (T) (T) (F) (T) (F) (F)

↓

11111111 00000000 00000000 10101010 00101010 01101010 10101111 10111101

11111111 11111111 00000000 10101010 00101011 01101010 11010101 00101010

11111111 00000000 11111111 11111111 00000000 11111111 00000000 00000000

Figure 5-13 Comparing two MMX byte vectors for equality.

CHAPTER 5 LANGUAGES AND THE MACHINE 193

can be implemented.

Vector permutation operations

The AltiVec ISA also includes a useful instruction that allows the contents of one
vector to be permuted, or rearranged, in an arbitrary fashion, and the permuted
result stored in another vector register.

5.5.6 CASE STUDY SUMMARY

The SIMD extensions to the Pentium and PowerPC processors provide powerful
operations that can be used for block data processing. At the present time there
are no common compiler extensions for these instructions. As a result, program-
mers that want to use these extensions must be willing to program in assembly
language.

An additional problem is that not all Pentium or PowerPC processors contain the
extensions, only specialized versions. While the programmer can test for the pres-
ence of the extensions, in their absence the programmer must write a “manual”
version of the algorithm. This means providing two sets of code, one that utilizes
the extensions, and one that utilizes the base ISA.

� SUMMARY

A high level programming language like C or Pascal allows the low-level architec-
ture of a computer to be treated as an abstraction. An assembly language program,
on the other hand, takes a form that is very dependent on the underlying architec-
ture. The instruction set architecture (ISA) is made visible to the programmer,
who is responsible for handling register usage and subroutine linkage. Some of the
complexity of assembly language programming is managed through the use of
macros, which differ from subroutines or functions, in that macros generate

mm2

mm2

mm0

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

10110011 10001101 01100110 10101010 00101011 01101010 11010101 00101010

10110011 00000000 01100110 10101010 00000000 01101010 00000000 00000000

11111111 00000000 11111111 11111111 00000000 11111111 00000000 00000000
AND

Figure 5-14 Conditional assignment of an MMX byte vector.

194 CHAPTER 5 LANGUAGES AND THE MACHINE

in-line code at assembly time, whereas subroutines are executed at run time.

A linker combines separately assembled modules into a single load module, which
typically involves relocating code. A loader places the load module in memory and
starts the execution of the program. The loader may also need to perform reloca-
tion if two or more load modules overlap in memory.

In practice the details of assembly, linking and loading is highly system-dependent
and language-dependent. Some simple assemblers merely produce executable
binary files, but more commonly an assembler will produce additional informa-
tion so that modules can be linked together by a linker. Some systems provide link-
ing loaders that combine the linking task with the loading task. Others separate
linking from loading. Some loaders can only load a program at the address speci-
fied in the binary file, while more commonly, relocating loaders can relocate pro-
grams to a load-time-specified address. The file formats that support these processes
are also operating-system dependent.

Before compilers were developed, programs were written directly in assembly lan-
guage. Nowadays, assembly language is not normally used directly since compilers
for high-level languages are so prevalent and also produce efficient code, but
assembly language is still important for understanding aspects of computer archi-
tecture, such as how to link programs that are compiled for different calling con-
ventions, and for exploiting extensions to architectures such as MMX and AltiVec.

� FURTHER READING
Compilers and compilation are treated by (Aho et al, 1985) and (Waite and
Carter, 1993). There are a great many references on assembly language program-
ming. (Donovan, 1972) is a classic reference on assemblers, linkers, and loaders.
(Gill et al., 1987) covers the 68000. (Goodman and Miller, 1993) serves as a
good instructional text, with examples taken from the MIPS architecture. The
appendix in (Patterson and Hennessy, 1998) also covers the MIPS architecture.
(SPARC, 1992) deals specifically with the definition of the SPARC, and SPARC
assembly language.

Aho, A. V., Sethi, R., and Ullman, J. D., Compilers, Addison Wesley Longman,
Reading, Massachusetts (1985).

CHAPTER 5 LANGUAGES AND THE MACHINE 195

Donovan, J. J., Systems Programming, McGraw-Hill, (1972).

Gill, A., E. Corwin, and A. Logar, Assembly Language Programming for the 68000,
Prentice-Hall, Englewood Cliffs, New Jersey, (1987).

Goodman, J. and K. Miller, A Programmer’s View of Computer Architecture, Saun-
ders College Publishing, (1993).

Patterson, D. A. and J. L. Hennessy, Computer Organization and Design: The
Hardware / Software Interface, 2/e, Morgan Kaufmann Publishers, San Mateo,
California, (1998).

SPARC International, Inc., The SPARC Architecture Manual: Version 8, Prentice
Hall, Englewood Cliffs, New Jersey, (1992).

Waite, W. M., and Carter, L. R., An Introduction to Compiler Construction,
Harper Collins College Publishers, New York, New York, (1993).

� PROBLEMS
5.1 Create a symbol table for the ARC segment shown below using a form

similar to Figure 5-7. Use “U” for any symbols that are undefined.

x .equ 4000
 .org 2048
 ba main
 .org 2072

main: sethi x, %r2
srl %r2, 10, %r2

lab_4: st %r2, [k]
addcc %r1, -1, %r1

foo: st %r1, [k]
andcc %r1, %r1, %r0
beq lab_5
jmpl %r15 + 4, %r0

cons: .dwb 3

5.2 Translate the following ARC code into object code. Assume that x is at
location (4096)10.

k .equ 1024

196 CHAPTER 5 LANGUAGES AND THE MACHINE

.

.

.
addcc %r4 + k, %r4
ld %r14, %r5
addcc %r14, -1, %r14
st %r5, [x]

.

.

.

5.3 Create a symbol table for the program shown in Figure 5-8, using a form
similar to Figure 5-7.

5.4 Translate subroutine add_64 shown in Figure 5-8, including variables A,
B, and C, into object code.

5.5 A disassembler is a software program that reads an object module and
recreates the source assembly language module. Given the object code shown
below, disassemble the code into ARC assembly language statements. Since
there is not enough information in the object code to determine symbol
names, choose symbols as you need them from the alphabet, consecutively,
from ‘a’ to ‘z.’

10000010 10000000 01100000 00000001
10000000 10010001 01000000 00000110
00000010 10000000 00000000 00000011
10001101 00110001 10100000 00001010
00010000 10111111 11111111 11111100
10000001 11000011 11100000 00000100

5.6 Given two macros push and pop as defined below, unnecessary instruc-
tions can be inserted into a program if a push immediately follows a pop.
Expand the macro definitions shown below and identify the unnecessary
instructions.

.begin

.macro push arg1
addcc %r14, -4, %r14
st arg1, %r14
.endmacro
.macro pop arg1

CHAPTER 5 LANGUAGES AND THE MACHINE 197

ld %r14, arg1
addcc %r14, 4, %r14
.endmacro

! Start of program
.org 2048
pop %r1
push %r2

.

.

.
.end

5.7 Write a macro called return that performs the function of the jmpl
statement as it is used in Figure 5-5.

5.8 In Figure 4-16, the operand x for sethi is filled in by the assembler, but
the statement will not work as intended if x ≥ 222 because there are only 22
bits in the imm22 field of the sethi format. In order to place an arbitrary
32-bit address into %r5 at run time, we can use sethi for the upper 22 bits,
and then use addcc for the lower 10 bits. For this we add two new
pseudo-ops: .high22 and .low10, which construct the bit patterns for the
high 22 bits and the low 10 bits of the address, respectively. The construct:

sethi .high22(#FFFFFFFF), %r1

expands to:

sethi #3FFFFF, %r1

and the construct:

addcc %r1, .low10(#FFFFFFFF), %r1

expands to:

addcc %r1, #3FF, %r1.

Rewrite the calling routine in Figure 4-16 using .high22 and .low10 so
that it works correctly regardless of where x is placed in memory.

5.9 Assume that you have the subroutine add_64 shown in Figure 5-8 avail-

198 CHAPTER 5 LANGUAGES AND THE MACHINE

able to you. Write an ARC routine called add_128 that adds two 64-bit
numbers, making use of add_64. The two 128-bit operands are stored in
memory locations that begin at x and y, and the result is stored in the mem-
ory location that begins at z.

5.10 Write a macro called subcc that has a usage similar to addcc, that sub-
tracts its second source operand from the first.

5.11 Does ordinary, nonrecursive macro expansion happen at assembly time or
at execution time? Does recursive macro expansion happen at assembly time
or at execution time?

5.12 An assembly language programmer proposes to increase the capability of
the push macro defined in Figure 5-9 by providing a second argument, arg2.
The second argument would replace the addcc %r14, -4, %r14 with
addcc arg2, -4, arg2. Explain what the programmer is trying to
accomplish, and what dangers lurk in this approach.

CHAPTER 6 DATAPATH AND CONTROL

199

In the earlier chapters, we examined the computer at the Application Level, the
High Level Language level, and the Assembly Language level (as shown in Figure
1-4.) In Chapter 4 we introduced the concept of an ISA: an instruction set that
effects operations on registers and memory. In this chapter, we explore the part of
the machine that is responsible for implementing these operations: the control
unit of the CPU. In this context, we view the machine at the

microarchitecture

level (the Microprogrammed/Hardwired Control level in Figure 1-4.) The
microarchitecture consists of the control unit and the programmer-visible regis-
ters, functional units such as the ALU, and any additional registers that may be
required by the control unit.

A given ISA may be implemented with different microarchitectures. For exam-
ple, the Intel Pentium ISA has been implemented in different ways, all of which
support the same ISA. Not only Intel, but a number of competitors such as
AMD and Cyrix have implemented Pentium ISAs. A certain microarchitecture
might stress high instruction execution speed, while another stresses low power
consumption, and another, low processor cost. Being able to modify the microar-
chitecture while keeping the ISA unchanged means that processor vendors can
take advantage of new IC and memory technology while affording the user
upward compatibility for their software investment. Programs run unchanged on
different processors as long as the processors implement the same ISA, regardless
of the underlying microarchitectures.

In this chapter we examine two polarizingly different microarchitecture
approaches: microprogrammed control units and hardwired control units, and
we examine them by showing how a subset of the ARC processor can be imple-
mented using these two design techniques.

DATAPATH AND
CONTROL

 6

200

CHAPTER 6 DATAPATH AND CONTROL

6.1 Basics of the Microarchitecture

The functionality of the microarchitecture centers around the fetch-execute
cycle, which is in some sense the “heart” of the machine. As discussed in Chapter
4, the steps involved in the fetch-execute cycle are:

1) Fetch the next instruction to be executed from memory.

2) Decode the opcode.

3) Read operand(s) from main memory or registers, if any.

4) Execute the instruction and store results.

5) Go to Step 1.

It is the microarchitecture that is responsible for making these five steps happen.
The microarchitecture fetches the next instruction to be executed, determines
which instruction it is, fetches the operands, executes the instruction, stores the
results, and then repeats.

The microarchitecture consists of a

data section

 which contains registers and an
ALU, and a

control section

, as illustrated in Figure 6-1. The data section is also

referred to as the

datapath

. Microprogrammed control uses a a special purpose

microprogram

, not visible to the user, to implement operations on the registers
and on other parts of the machine. Often, the microprogram contains many pro-
gram steps that collectively implement a single (macro)instruction.

Hardwired

Control Unit

Control Section

Registers

ALU

Datapath
(Data Section)

SYSTEM BUS

Figure 6-1 High level view of a microarchitecture.

CHAPTER 6 DATAPATH AND CONTROL

201

control units adopt the view that the steps to be taken to implement an opera-
tion comprise states in a finite state machine, and the design proceeds using con-
ventional digital design methods (such as the methods covered in Appendix A.)
In either case, the datapath remains largely unchanged, although there may be
minor differences to support the differing forms of control. In designing the
ARC control unit, the microprogrammed approach will be explored first, and
then the hardwired approach, and for both cases the datapath will remain
unchanged.

6.2 A Microarchitecture for the ARC

In this section we consider a microprogrammed approach for designing the ARC
control unit. We begin by describing the datapath and its associated control sig-
nals.

The instruction set and instruction format for the ARC subset is repeated from
Chapter 4 in Figure 6-2. There are 15 instructions that are grouped into four for-
mats according to the leftmost two bits of the coded instruction. The Processor
Status Register

%psr

 is also shown.

6.2.1

THE DATAPATH

A datapath for the ARC is illustrated in Figure 6-3. The datapath contains 32
user-visible data registers (

%r0 – %r31

), the program counter (

%pc

), the
instruction register (

%ir

), the ALU, four temporary registers not visible at the
ISA level (

%temp0 – %temp3

), and the connections among these components.
The number adjacent to a diagonal slash on some of the lines is a simplification
that indicates the number of separate wires that are represented by the corre-
sponding single line.

Registers

%r0 – %r31

 are directly accessible by a user. Register

%r0

 always con-
tains the value 0, and cannot be changed. The

%pc

 register is the program
counter, which keeps track of the next instruction to be read from the main
memory. The user has direct access to

%pc

 only through the

call

 and

jmpl

instructions. The temporary registers are used in interpreting the ARC instruc-
tion set, and are not visible to the user. The

%ir

 register holds the current
instruction that is being executed. It is not visible to the user.

202

CHAPTER 6 DATAPATH AND CONTROL

The ALU

The ALU performs one of 16 operations on the A and B busses according to the
table shown in Figure 6-4. For every ALU operation, the 32-bit result is placed
on the C bus, unless it is blocked by the C bus MUX when a word of memory is
placed onto the C bus instead.

ld Load a register from memory

Mnemonic Meaning

st

sethi

andcc

addcc

call

jmpl

be

orcc

orncc

Store a register into memory

Load the 22 most significant bits of a register

Bitwise logical AND

Add

Branch on overflow

Call subroutine

Jump and link (return from subroutine call)

Branch if equal

Bitwise logical OR

Bitwise logical NOR

bneg

bcs

Branch if negative

Branch on carry

srl Shift right (logical)

bvs

ba Branch always

op3 (op=10)

010000
010001
010010
010110
100110
111000

addcc
andcc
orcc
orncc
srl
jmpl

0001
0101
0110
0111
1000

cond

be
bcs
bneg
bvs
ba

branch

010
100

op2

branch
sethi

Inst.

00
01
10
11

op

SETHI/Branch
CALL
Arithmetic
Memory

Format

000000
000100

ld
st

op3 (op=11)

op

CALL format disp30

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 1

SETHI Format imm22

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

rd

disp220 cond

0 0

0 0Branch Format

op2

op2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

rs11 op3

simm131 op3

1

Memory Formats
1

rd

rd rs1

0

1

0 0 0 0 0 0 0 0 rs2

Arithmetic
Formats

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

rs11 op3

simm131 op3

0

0

rd

rd rs1

0

1

0 0 0 0 0 0 0 0 rs2

i

PSR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

z v cn

Figure 6-2 Instruction subset and instruction formats for the ARC.

CHAPTER 6 DATAPATH AND CONTROL

203

The

ANDCC

 and

AND

 operations perform a bit-by-bit logical AND of corre-
sponding bits on the A and B busses. Note that only operations that end with

%r0
A bus B busC bus

F1
F2

ALU

32

32

4

%r1

64-to-32
MUX

C Bus
MUX

n, z, v, c

F0

C
Decoder %r5

%pc

%temp0

%r2

%r3

%r4

%r6

%r7

%r8

%r9

%r10

%r30

%r31

B
Decoder

F3

6

c1

c37

37 38 b0

b37

6

A
Decoder

38 a0

a37

6

D
at

a
Fr

om
 M

ai
n

M
em

or
y

MUX Control
Line (From

Control Unit)

%temp1

%temp2

%temp3

%ir

D
ata T

o M
ain

M
em

ory

A
dd

re
ss

 T
o

M
ai

n
M

em
or

y

CLOCK
UNIT

0

1

2

3

4

5

6

7

8

9

10

30

31

32

33

34

35

36

37

32

From
Control

Unit

From Control
Unit

Set Condition Codes (SCC)

32

32

.

.

.

To Control
Unit

24

Figure 6-3 The datapath of the ARC.

204

CHAPTER 6 DATAPATH AND CONTROL

“

CC

” affect the condition codes, and so

ANDCC

 affects the condition codes
whereas

AND

 does not. (There are times when we wish to execute arithmetic and
logic instructions without disturbing the condition codes.) The

ORCC

 and

OR

operations perform a bit-by-bit logical OR of corresponding bits on the A and B
busses. The

NORCC

 and

NOR

 operations perform a bit-by-bit logical NOR of
corresponding bits on the A and B busses. The

ADDCC

 and

ADD

 operations
carry out addition using two’s complement arithmetic on the A and B busses.

The SRL (shift right logical) operation shifts the contents of the A bus to the
right by the amount specified on the B bus (from 0 to 31 bits). Zeros are copied
into the leftmost bits of the shifted result, and the rightmost bits of the result are
discarded.

LSHIFT2

 and

LSHIFT10

 shift the contents of the A bus to the left
by two and 10 bits, respectively. Zeros are copied into the rightmost bits.

SIMM13

 retrieves the least significant 13 bits of the A bus, and places zeros in
the 19 most significant bits.

SEXT13

 performs a sign extension of the 13 least
significant bits on the A bus to form a 32-bit word. That is, if the leftmost bit of
the 13 bit group is 1, then 1’s are copied into the 19 most significant bits of the
result, otherwise, 0’s are copied into the 19 most significant bits of the result. The

INC

 operation increments the value on the A bus by 1, and the

INCPC

 opera-
tion increments the value on the A bus by four, which is used in incrementing

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

F1 F0

ANDCC (A, B)

ORCC (A, B)

NORCC (A, B)

ADDCC (A, B)

SRL (A, B)

AND (A, B)

OR (A, B)

NOR (A, B)

ADD (A, B)

LSHIFT2 (A)

LSHIFT10 (A)

SIMM13 (A)

SEXT13 (A)

INC (A)

INCPC (A)

RSHIFT5 (A)

Operation

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

F2 Changes Condition Codes

yes
yes
yes
yes
no
no
no
no
no
no
no
no
no
no
no
no

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

F3

Figure 6-4 ARC ALU operations.

CHAPTER 6 DATAPATH AND CONTROL

205

the PC register by one word (four bytes).

INCPC

 can be used on any register
placed on the A bus.

The

RSHIFT5

 operation shifts the operand on the A bus to the right by 5 bits,
copying the leftmost bit (the sign bit) into the 5 new bits on the left. This has the
effect of performing a 5-bit sign extension. When applied three times in succes-
sion to a 32-bit instruction, this operation also has the effect of placing the left-
most bit of the

COND

 field in the Branch format (refer to Figure 6-2) into the
position of bit 13. This operation is useful in decoding the Branch instructions,
as we will see later in the chapter. The sign extension for this case is inconsequen-
tial.

Every arithmetic and logic operation can be implemented with just these ALU
operations. As an example, a subtraction operation can be implemented by form-
ing the two’s complement negative of the subtrahend (making use of the

NOR

operation and adding 1 to it with

INC

) and then performing addition on the
operands. A shift to the left by one bit can be performed by adding a number to
itself. A “do-nothing” operation, which is frequently needed for simply passing
data through the ALU without changing it, can be implemented by logically
ANDing an operand with itself and discarding the result in

%r0

. A logical XOR
can be implemented with the AND, OR, and NOR operations, making use of
DeMorgan’s theorem (see problem 6.5).

The ALU generates the

c

,

n

,

z

, and

v

 condition codes which are true for a carry,
negative, zero, or overflow result, respectively. The condition codes are changed
only for the operations indicated in Figure 6-4. A signal (SCC) is also generated
that tells the

%psr

 register when to update the condition codes.

The ALU can be implemented in a number of ways. For the sake of simplicity,
let us consider using a

lookup table

 (LUT) approach. The ALU has two 32-bit
data inputs

A

 and

B

, a 32-bit data output

C

, a four-bit control input

F

, a four-bit
condition code output (

N, V, C, Z

), and a signal (SCC) that sets the flags in the

%psr

 register. We can decompose the ALU into a cascade of 32 LUTs that
implement the arithmetic and logic functions, followed by a

barrel shifter

 that
implements the shifts. A block diagram is shown in Figure 6-5.

The barrel shifter shifts the input word by an arbitrary amount (from 0 to 31
bits) according to the settings of the control inputs. The barrel shifter performs
shifts in levels, in which a different bit of the Shift Amount (SA) input is
observed at each level. A partial gate-level layout for the barrel shifter is shown in

206

CHAPTER 6 DATAPATH AND CONTROL

Figure 6-6. Starting at the bottom of the circuit, we can see that the outputs of
the bottom stage will be the same as the inputs to that stage if the SA

0

 bit is 0. If
the SA

0

 bit is 1, then each output position will take on the value of its immediate
left or right neighbor, according to the direction of the shift, which is indicated
by the Shift Right input. At the next higher level, the method is applied again,
except that the SA

1 bit is observed and the amount of the shift is doubled. The
process continues until bit SA4 is observed at the highest level. Zeros are copied
into positions that have no corresponding inputs. With this structure, an arbi-
trary shift from 0 to 31 bits to the left or the right can be implemented.

Each of the 32 ALU LUTs is implemented (almost) identically, using the same
lookup table entries, except for changes in certain positions such as for the INC
and INCPC operations (see problem Figure 6.20). The first few entries for each
LUT are shown in Figure 6-7. The barrel shifter control LUT is constructed in a
similar manner, but with different LUT entries.

ALU
LUT0

b0 a0

ALU
LUT1

b1 a1

ALU
LUT30

b30 a30

ALU
LUT31

b31 a31

C c0c1c30c31

carry

BARREL
SHIFTER

z0z1z30z31

. . .

F0:3

Barrel Shifter
Control LUT

b0-4

Direction of Shift

Shift Amount (SA)
5

NV Z

. . .

SCC: Set Condition Codes

F3 F2

0

2

4

4

4

Figure 6-5 Block diagram of the 32-bit ALU.

CHAPTER 6 DATAPATH AND CONTROL 207

The condition code bits n, z, v, and c are implemented directly. The n and c
bits are taken directly from the c31 output of the barrel shifter and the carry-out
position of ALU LUT31, respectively. The z bit is computed as the NOR over
the barrel shifter outputs. The z bit is 1 only if all of the barrel shifter outputs are
0. The v (overflow) bit is set if the carry into the most significant position is dif-
ferent than the carry out of the most significant position, which is implemented
with an XOR gate.

Only the operations that end in “CC” should set the condition codes, and so a
signal is generated that informs the condition codes to change, as indicated by
the label “SCC: Set Condition Codes.” This signal is true when both F3 and F2
are false.

The Registers

All of the registers are composed of falling edge-triggered D flip-flops (see Appen-

c31 c30 c1 c0

SA0

. . .

Shift Right

SA1

. . .

Shift Right

.

.
.

Bit 31 Bit 30 Bit 1 Bit 0

Bit 29 Bit 28

Bit 3 Bit 2

Bit 29

Bit 2

Figure 6-6 Gate-level layout of barrel shifter.

208 CHAPTER 6 DATAPATH AND CONTROL

dix A). This means that the outputs of the flip-flops do not change until the
clock makes a transition from high to low (the falling edge of the clock). The reg-
isters all take a similar form, and so we will only look at the design of register
%r1. All of the datapath registers are 32 bits wide, and so 32 flip-flops are used
for the design of %r1, which is illustrated in Figure 6-8.

The CLK input to register %r1 is ANDed with the select line (c1) from the C
Decoder. This ensures that %r1 only changes when the control section instructs
it to change. The data inputs to %r1 are taken directly from the corresponding

F3

0
0
0
0
0
0
0
0
0
0
0
0
0
0

F2

0
0
0
0
0
0
0
0
0
0
0
0
0
0

F1

0
0
0
0
0
0
0
0
0
0
0
0
0
0

F0

0
0
0
0
0
0
0
0
1
1
1
1
1
1

Carry
In
0
0
0
0
1
1
1
1
0
0
0
0
1
1
.
.
.

ai

0
0
1
1
0
0
1
1
0
0
1
1
0
0

bi

0
1
0
1
0
1
0
1
0
1
0
1
0
1

zi

0
0
0
1
0
0
0
1
0
1
1
1
0
1

Carry
Out
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.
.
.

A
N
D
C
C

O
R
C
C

Figure 6-7 Truth table for most of the ALU LUTs.

CLK
QD

C31

Write select (from c1
bit of C Decoder)

A31 B31

QD

C30

A30 B30

QD

C0

A0 B0

. . .

. . .
A bus enable (from
a1 bit of A Decoder)

B bus enable (from
b1 bit of B Decoder)

. . .

Data inputs from C Bus

Data outputs to B BusData outputs to A Bus

Figure 6-8 Design of register %r1.

CHAPTER 6 DATAPATH AND CONTROL 209

lines of the C bus. The outputs are written to the corresponding lines of the A
and B busses through tri-state buffers, which are “electrically disconnected”
unless their enable inputs are set to 1. The outputs of the buffers are enabled
onto the A and B busses by the a1 and b1 outputs of the A and B decoders,
respectively. If neither a1 nor b1 are high (meaning they are equal to 1), then the
outputs of %r1 are electrically disconnected from both the A and B busses since
the tri-state buffers are disabled.

The remaining registers take a similar form, with a few exceptions. Register %r0
always contains a 0, which cannot be changed. Register %r0 thus has no inputs
from the C bus nor any inputs from the C decoder, and does not need flip-flops
(see Problem 6.11). The %ir register has additional outputs that correspond to
the rd, rs1, rs2, op, op2, op3, and bit 13 fields of an instruction, as illus-
trated in Figure 6-9. These outputs are used by the control section in interpreting

an instruction as we will see in Section 6.2.4. The program counter can only con-
tain values that are evenly divisible by 4, and so the rightmost two bits in %pc
can be hardwired to 0.

The A, B, and C decoders shown in Figure 6-3 simplify register selection. The
six-bit inputs to the decoders select a single register for each of the A, B, and C
busses. There are 26 = 64 possible outputs from the decoders, but there are only
38 data registers. The index shown to the left of each register (in base 10) in Fig-
ure 6-3 indicates the value that must be applied to a decoder input to select the
corresponding register. The 0 output of the C decoder is not used because %r0
cannot be written. Indices that are greater than 37 do not correspond to any reg-
isters, and are free to be used when no registers are to be connected to a bus.

Data inputs from C Bus

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction
fields

C0C31

Instruction Register %ir

op

op2

op3

rd rs1 rs2

bit 13

Figure 6-9 Outputs to control unit from register %ir.

210 CHAPTER 6 DATAPATH AND CONTROL

6.2.2 THE CONTROL SECTION

The entire microprogrammed ARC microarchitecture is shown in Figure 6-10.

The figure shows the datapath, the control unit, and the connections between
them. At the heart of the control unit is a 2048 word × 41 bit read-only memory

32

A
 b

us

B
 b

us

C
 b

us

2048 word × 41 bit Control
Store

CS Address MUX

Jump

Control
branch

logic (CBL)

F1
F2ALU

Microcode
Instruction

Register
(MIR)

CLOCK
UNIT

41

11

11

MAIN MEMORY
WRRD

Data Section (Datapath)

32

Address

Data In

00 = Next
01 = Jump
10 = Inst. Dec.

4

8

2

Decode

1 0 0

4

232 byte
address
space

32

3

Data Out

64-to-32
MUX

C Bus
MUX

%psr

n, z, v, c

F0

Next

11

Control Store Address
Incrementer (CSAI)

Acknowledge (ACK)

To C
Decoder

%i
r

C MUX

0, rd

Control Section

A MUX

0, rs1

To B Decoder

B MUX

0, rs2

F3

4

1

IR[30,31,19-24]

6 5

6

MIR
C field

S
el

ec
t

MIR
A field

MIR
B field

6

6

5 6
S

elect

Select

Scratchpad

To A Decoder

rd rs2 rs1 ops

I
R
[
1
3
]

5 6

Set Condition Codes

%ir

R
D

W
RCA B JUMP ADDRALU COND

A
M
U
X

B
M
U
X

C
M
U
X

Figure 6-10 The microarchitecture of the ARC.

CHAPTER 6 DATAPATH AND CONTROL 211

(ROM) that contains values for all of the lines that must be controlled to imple-
ment each user-level instruction. The ROM is referred to as a control store in
this context. Each 41-bit word is called a microinstruction. The control unit is
responsible for fetching microinstructions and executing them, much in the
same way as user-level ARC macroinstructions are fetched and executed. This
microinstruction execution is controlled by the microprogram instruction regis-
ter (MIR), the processor status register (%psr), and a mechanism for determin-
ing the next microinstruction to be executed: the Control Branch Logic (CBL)
unit and the Control Store (CS) Address MUX. A separate PC for the micropro-
gram is not needed to store the address of the next microinstruction, because it is
recomputed on every clock cycle and therefore does not need to be stored for
future cycles.

When the microarchitecture begins operation (at power-on time, for example), a
reset circuit (not shown) places the microword at location 0 in the control store
into the MIR and executes it. From that point onward, a microword is selected
for execution from either the Next, the Decode, or the Jump inputs to the CS
Address MUX, according to the settings in the COND field of the MIR and the
output of the CBL logic. After each microword is placed in the MIR, the datap-
ath performs operations according to the settings in the individual fields of the
MIR. This process is detailed below.

A microword contains 41 bits that comprise 11 fields as shown in Figure 6-11.

Starting from the left, the A field determines which of the registers in the datap-
ath are to be placed on the A bus. The bit patterns for the registers correspond to
the binary representations of the base 10 register indices shown in Figure 6-3
(000000 – 100101). The AMUX field selects whether the A Decoder takes its
input from the A field of the MIR (AMUX = 0) or from the rs1 field of %ir
(AMUX = 1).

In a similar manner, the B field determines which of the registers in the datapath
are to be placed on the B bus. The BMUX field selects whether the B Decoder

R
D

W
RCA B JUMP ADDRALU COND

A
M
U
X

B
M
U
X

C
M
U
X

Figure 6-11 The microword format.

212 CHAPTER 6 DATAPATH AND CONTROL

takes its input from the B field of the MIR (BMUX = 0) or from the rs2 field of
%ir (BMUX = 1). The C field determines which of the registers in the datapath
is to be written from the C bus. The CMUX field selects whether the C Decoder
takes its input from the C field of the MIR (CMUX = 0) or from the rd field of
%ir (CMUX = 1). Since %r0 cannot be changed, the bit pattern 000000 can be
used in the C field when none of these registers are to be changed.

The RD and WR lines determine whether the memory will be read or written,
respectively. A read takes place if RD = 1, and a write takes place if WR = 1. Both
the RD and WR fields cannot be set to 1 at the same time, but both fields can be
0 if neither a read nor a write operation is to take place. For both RD and WR,
the address for the memory is taken directly from the A bus. The data input to
the memory is taken from the B bus, and the data output from the memory is
placed on the C bus. The RD line controls the 64-to-32 C Bus MUX, which
determines whether the C bus is loaded from the memory (RD = 1) or from the
ALU (RD = 0).

The ALU field determines which of the ALU operations is performed according
to the settings shown in Figure 6-4. All 16 possible ALU field bit patterns corre-
spond to valid ALU operations. This means that there is no way to “turn the
ALU off” when it is not needed, such as during a read or write to memory. For
this situation, an ALU operation should be selected that has no unwanted side
effects. For example, ANDCC changes the condition codes and would not be
appropriate, whereas the AND operation does not affect the condition codes, and
would therefore be appropriate.

The COND (conditional jump) field instructs the microcontroller to take the
next microword from either the next control store location, or from the location
in the JUMP ADDR field of the MIR, or from the opcode bits of the instruction
in %ir. The COND field is interpreted according to the table shown in Figure
6-12. If the COND field is 000, then no jump is taken, and the Next input to
the CS Address MUX is used. The Next input to the CS Address MUX is com-
puted by the control store address incrementer (CSAI) shown in Figure 6-10,
which increments the current output of the CS Address MUX by 1. If the
COND field is 001, 010, 011, 100, or 101, then a conditional jump is taken to
the control store location in the JUMP ADDR field, according to the value of
the n, z, v, or c flags, or bit 13 of %ir, respectively. The syntax “IR[13]” means
“bit 13 of the instruction register %ir.” If the COND field is 110, then an
unconditional jump is taken.

CHAPTER 6 DATAPATH AND CONTROL 213

The bit pattern 111 is used in the COND field when an instruction is being
decoded. When the COND field is 111, then the next control store location that
is copied into the MIR is taken from neither the Next input to the CS Address
MUX nor the Jump input, but is taken from a combination of 11 bits created by
appending 1 to the left of bits 30 and 31 of %ir and appending 00 to the right of
bits 19-24 of %ir. This DECODE address format is shown in Figure 6-13. The

purpose of using this addressing scheme is to allow an instruction to be decoded
in a single step, by branching to a different location according to the settings in
the op, op2, and op3 fields of an instruction.

Finally, the JUMP ADDR field appears in the rightmost 11 bits of the micro-
word format. There are 211 microwords in the control store, and so 11 bits are
needed in the JUMP ADDR field in order to jump to any microstore location.

6.2.3 TIMING

The microarchitecture operates on a two-phase clock cycle, in which the master
sections of all of the registers change on the rising edge of the clock and the slave
sections change on the falling edge of the clock as shown in Figure 6-14. All of
the registers use falling edge-triggered master/slave D flip-flops except for %r0

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

C1 C0

Use NEXT ADDR
Use JUMP ADDR if n = 1
Use JUMP ADDR if z = 1
Use JUMP ADDR if v = 1
Use JUMP ADDR if c = 1
Use JUMP ADDR if IR[13] = 1
Use JUMP ADDR
DECODE

Operation

0
0
0
0
1
1
1
1

C2

Figure 6-12 Settings for the COND field of the microword.

op

1 0 0

op2

op3

31 30 24 23 22 21 20 19IR bits

Figure 6-13 DECODE format for a microinstruction address.

214 CHAPTER 6 DATAPATH AND CONTROL

which does not need flip-flops. On the falling edge of the clock, data stored in
the master sections of the registers are clocked into the slave sections. This makes
the data available for operations involving the ALU. While the clock is low, the
ALU, CBL, and MUX functions are performed, which settle in time for the ris-
ing edge of the clock. On the rising edge of the clock, the new values of the regis-
ters are written into the master sections. The registers settle while the clock is
high, and the process then repeats.

6.2.4 DEVELOPING THE MICROPROGRAM

In a microprogrammed architecture, instructions are interpreted by the micro-
program in the control store. The microprogram is often referred to as firmware
because it bridges the gap between the hardware and the software. The microar-
chitecture shown in Figure 6-10 needs firmware in order to execute ARC instruc-
tions, and one possible coding is described in this section.

A portion of a microprogram that implements the fetch-execute cycle for the
ARC is shown in Figure 6-15. In the control store, each microstatement is stored
in coded form (1’s and 0’s) in a single microword. For simplicity, the
micro-assembly language shown in Figure 6-15 is loosely defined here, and we
will leave out labels, pseudo-ops, etc., that we would normally associate with a
full-featured assembly language. Translation to the 41-bit format used in the
microstore is not difficult to perform by hand for a small microprogram, and is
frequently performed manually in practice (as we will do here) rather than creat-
ing a suite of software tools for such a small program.

Although our micro-assembly language is indeed an assembly language, it is not
the same kind of assembly language as the ARC that we studied in Chapter 4.

Clock

Settling time for slave sections
of registers. Perform ALU
functions. n, z, v,and c flags
become stable.

Master sections settle.

Master sections of
registers loaded on
rising edge

Slave sections of
registers loaded on
falling edge

Figure 6-14 Timing relationships for the registers.

CHAPTER 6 DATAPATH AND CONTROL 215

The ARC assembly language is visible to the user, and is used for coding general
purpose programs. Our micro-assembly language is used for coding firmware,
and is not visible to the user. The sole purpose of the firmware is to interpret a
user-visible instruction set. A change to the instruction set involves changes to
the firmware, whereas a change in user-level software has no influence on the
firmware.

0000: R[ir] ← AND(R[pc],R[pc]); READ; / Read an ARC instruction from main memory
0001: DECODE; / 256-way jump according to opcode
00// / sethi
1152: R[rd] ← LSHIFT10(ir); GOTO 2047; / Copy imm22 field to target register
00// / call
1280: R[15] ← AND(R[pc],R[pc]); / Save %pc in %r15
1281: R[temp0] ← ADD(R[ir],R[ir]); / Shift disp30 field left
1282: R[temp0] ← ADD(R[temp0],R[temp0]); / Shift again
1283: R[pc] ← ADD(R[pc],R[temp0]); / Jump to subroutine
 GOTO 0;
0//0 / addcc
1600: IF R[IR[13]] THEN GOTO 1602; / Is second source operand immediate?
1601: R[rd] ← ADDCC(R[rs1],R[rs2]); / Perform ADDCC on register sources
 GOTO 2047;
1602: R[temp0] ← SEXT13(R[ir]); / Get sign extended simm13 field
1603: R[rd] ← ADDCC(R[rs1],R[temp0]); / Perform ADDCC on register/simm13
 GOTO 2047; / sources
00// / andcc
1604: IF R[IR[13]] THEN GOTO 1606; / Is second source operand immediate?
1605: R[rd] ← ANDCC(R[rs1],R[rs2]); / Perform ANDCC on register sources
 GOTO 2047;
1606: R[temp0] ← SIMM13(R[ir]); / Get simm13 field
1607: R[rd] ← ANDCC(R[rs1],R[temp0]); / Perform ANDCC on register/simm13
 GOTO 2047; / sources
00// / orcc
1608: IF R[IR[13]] THEN GOTO 1610; / Is second source operand immediate?
1609: R[rd] ← ORCC(R[rs1],R[rs2]); / Perform ORCC on register sources
 GOTO 2047;
1610: R[temp0] ← SIMM13(R[ir]); / Get simm13 field
1611: R[rd] ← ORCC(R[rs1],R[temp0]); / Perform ORCC on register/simm13 sources
 GOTO 2047;
00// / orncc
1624: IF R[IR[13]] THEN GOTO 1626; / Is second source operand immediate?
1625: R[rd] ← NORCC(R[rs1],R[rs2]); / Perform ORNCC on register sources
 GOTO 2047;
1626: R[temp0] ← SIMM13(R[ir]); / Get simm13 field
1627: R[rd] ← NORCC(R[rs1],R[temp0]); / Perform NORCC on register/simm13
 GOTO 2047; / sources
00// / srl
1688: IF R[IR[13]] THEN GOTO 1690; / Is second source operand immediate?
1689: R[rd] ← SRL(R[rs1],R[rs2]); / Perform SRL on register sources
 GOTO 2047;
1690: R[temp0] ← SIMM13(R[ir]); / Get simm13 field
1691: R[rd] ← SRL(R[rs1],R[temp0]); / Perform SRL on register/simm13 sources
 GOTO 2047;
00// / jmpl
1760: IF R[IR[13]] THEN GOTO 1762; / Is second source operand immediate?
1761: R[pc] ← ADD(R[rs1],R[rs2]); / Perform ADD on register sources
 GOTO 0;

Address Operation Statements Comment

Figure 6-15 Partial microprogram for the ARC. Microwords are shown in logical sequence

(not numerical sequence.)

216 CHAPTER 6 DATAPATH AND CONTROL

Each statement in the microprogram shown in Figure 6-15 is preceded by a dec-
imal number that indicates the address of the corresponding microword in the
2048-word control store. The address is followed by a colon. The operation
statements follow the address, and are terminated by semicolons. An optional
comment follows the operation field and begins with a slash ‘/.’ The comment
terminates at the end of the line. More than one operation is allowed per line, as
long as all of the operations can be performed in a single instruction cycle. The
ALU operations come from Figure 6-4, and there are a few others as we will see.
Note that the 65 statements are shown in logical sequence, rather than in numer-

1762: R[temp0] ← SEXT13(R[ir]); / Get sign extended simm13 field
1763: R[pc] ← ADD(R[rs1],R[temp0]); / Perform ADD on register/simm13 sources
 GOTO 0;
00// / ld
1792: R[temp0] ← ADD(R[rs1],R[rs2]); / Compute source address
 IF R[IR[13]] THEN GOTO 1794;
1793: R[rd] ← AND(R[temp0],R[temp0]); / Place source address on A bus
 READ; GOTO 2047;
1794: R[temp0] ← SEXT13(R[ir]); / Get simm13 field for source address
1795: R[temp0] ← ADD(R[rs1],R[temp0]); / Compute source address
 GOTO 1793;
00// / st
1808: R[temp0] ← ADD(R[rs1],R[rs2]); / Compute destination address
 IF R[IR[13]] THEN GOTO 1810;
1809: R[ir] ← RSHIFT5(R[ir]); GOTO 40; / Move rd field into position of rs2 field
 40: R[ir] ← RSHIFT5(R[ir]);
 41: R[ir] ← RSHIFT5(R[ir]);
 42: R[ir] ← RSHIFT5(R[ir]);
 43: R[ir] ← RSHIFT5(R[ir]);
 44: R[0] ← AND(R[temp0], R[rs2]); / Place destination address on A bus and
 WRITE; GOTO 2047; / place operand on B bus
1810: R[temp0] ← SEXT13(R[ir]); / Get simm13 field for destination address
1811: R[temp0] ← ADD(R[rs1],R[temp0]); / Compute destination address
 GOTO 1809;
00// / Branch instructions: ba, be, bcs, bvs, bneg
1088: GOTO 2; / Decoding tree for branches
 2: R[temp0] ← LSHIFT10(R[ir]); / Sign extend the 22 LSB’s of %temp0
 3: R[temp0] ← RSHIFT5(R[temp0]);
 4: R[temp0] ← RSHIFT5(R[temp0]); / bits. RSHIFT5 does sign extension.
 5: R[ir] ← RSHIFT5(R[ir]); / Move COND field to IR[13] by
 6: R[ir] ← RSHIFT5(R[ir]);
 7: R[ir] ← RSHIFT5(R[ir]);
 8: IF R[IR[13]] THEN GOTO 12; / Is it ba?
 R[ir] ← ADD(R[ir],R[ir]);
 9: IF R[IR[13]] THEN GOTO 13; / Is it not be?
 R[ir] ← ADD(R[ir],R[ir]);
 10: IF Z THEN GOTO 12; / Execute be
 R[ir] ← ADD(R[ir],R[ir]);
 11: GOTO 2047; / Branch for be not taken
 12: R[pc] ← ADD(R[pc],R[temp0]); / Branch is taken
 GOTO 0;
 13: IF R[IR[13]] THEN GOTO 16; / Is it bcs?
 R[ir] ← ADD(R[ir],R[ir]);
 14: IF C THEN GOTO 12; / Execute bcs
 15: GOTO 2047; / Branch for bcs not taken
 16: IF R[IR[13]] THEN GOTO 19; / Is it bvs?
 17: IF N THEN GOTO 12; / Execute bneg
 18: GOTO 2047; / Branch for bneg not taken
 19: IF V THEN GOTO 12; / Execute bvs
 20: GOTO 2047; / Branch for bvs not taken
2047: R[pc] ← INCPC(R[pc]); GOTO 0; / Increment %pc and start over

/ by shifting left 10 bits, then right 10

/ applying RSHIFT5 three times. (The
/ sign extension is inconsequential.)

/ by shifting to the right by 25 bits.

Figure 6-15 (cont’).

CHAPTER 6 DATAPATH AND CONTROL 217

ical sequence.

Before the microprogram begins execution, the PC is set up with the starting
address of a program that has been loaded into the main memory. This may hap-
pen as the result of an initialization sequence when the computer is powered on,
or by the operating system during the normal course of operation.

The first task in the execution of a user-level program is to bring the instruction
pointed to by the PC from the main memory into the IR. Recall from Figure
6-10 that the address lines to main memory are taken from the A bus. In line 0,
the PC is loaded onto the A bus, and a Read operation is initiated to memory.
The notation “R[x]” means “register x,” in which x is replaced with one of the
registers in the datapath, and so “R[1]” means “register %r1,” “R[ir]” means
“register %ir,” and “R[rs1]” means the register that appears in the 5-bit rs1
field of an instruction (refer to Figure 6-2.)

The expression “AND(R[pc],R[pc])” simply performs a logical AND of %pc
with itself in a literal interpretation. This operation is not very useful in a logical
sense, but what we are interested in are the side effects. In order to place %pc
onto the A bus, we have to choose an ALU operation that uses the A bus but
does not affect the condition codes. There is a host of alternative choices that can
be used, and the AND approach is arbitrarily chosen here. Note that the result of
the AND operation is discarded because the C bus MUX in Figure 6-10 only
allows the data output from main memory onto the C bus during a read opera-
tion.

A read operation normally takes more time to complete than the time required
for one microinstruction to execute. The access time of main memory can vary
depending on the memory organization, as we will see in Chapter 7. In order to
account for variations in the access times of memory, the control store address
incrementer (CSAI) does not increment the address until an acknowledge (ACK)
signal is sent which indicates the memory has completed its operation.

Flow of control within the microprogram defaults to the next higher numbered
statement unless a GOTO operation or a DECODE operation is encountered,
and so microword 1 (line 1) is read into the MIR on the next cycle. Notice that
some of the microcode statements in Figure 6-15 take up more than one line on
the page, but are part of a single microinstruction. See, for example, lines 1283
and 1601.

218 CHAPTER 6 DATAPATH AND CONTROL

Now that the instruction is in the IR as a result of the read operation in line 0,
the next step is to decode the opcode fields. This is performed by taking a
256-way branch into the microcode as indicated by the DECODE keyword in line
1 of the microprogram. The 11-bit pattern for the branch is constructed by
appending a 1 to the left of bits 30 and 31 of the IR, followed by bits 19-24 of
the IR, followed by the pattern 00. After the opcode fields are decoded, execu-
tion of the microcode continues according to which of the 15 ARC instructions
is being interpreted.

As an example of how the decode operation works, consider the addcc instruc-
tion. According to the Arithmetic instruction format in Figure 6-2, the op field
is 10 and the op3 field is 010000. If we append a 1 to the left of the op bit pat-
tern, followed by the op3 bit pattern, followed by 00, the DECODE address is
11001000000 = (1600)10. This means that the microinstructions that interpret
the addcc instruction begin at control store location 1600.

A number of DECODE addresses should never arise in practice. There is no Arith-
metic instruction that corresponds to the invalid op3 field 111111, but if this
situation does arise, possibly due to an errant program, then a microstore routine
should be placed at the corresponding DECODE address 11011111100 =
(1788)10 in order to deal with the illegal instruction. These locations are left
blank in the microprogram shown in Figure 6-15.

Instructions in the SETHI/Branch and Call formats do not have op3 fields. The
SETHI/Branch formats have op and op2 fields, and the Call format has only
the op field. In order to maintain a simple decoding mechanism, we can create
duplicate entries in the control store. Consider the SETHI format. If we follow
the rule for constructing the DECODE address, then the DECODE address will
have a 1 in the leftmost position, followed by 00 for the op field, followed by
100 which identifies SETHI in bit positions 19 – 21, followed by the bits in
positions 22 – 24 of the IR, followed by 00, resulting in the bit pattern
100100xxx00 where xxx can take on any value, depending on the imm22 field.
There are eight possible bit patterns for the xxx bits, and so we need to have
duplicate SETHI codes at locations 10010000000, 10010000100,
10010001000, 10010001100, 10010010000, 10010010100, 10010011000,
and 10010011100. DECODE addresses for the Branch and CALL formats are
constructed in duplicate locations in a similar manner. Only the lowest addressed
version of each set of duplicate codes is shown in Figure 6-15.

Although this method of decoding is fast and simple, a large amount of control

CHAPTER 6 DATAPATH AND CONTROL 219

store memory is wasted. An alternative approach that wastes much less space is to
modify the decoder for the control store so that all possible branch patterns for
SETHI point to the same location, and the same for the Branch and Call format
instructions. For our microarchitecture, we will stay with the simpler approach
and pay the price of having a large control store.

Consider now how the ld instruction is interpreted. The microprogram begins
at location 0, and at this point does not know that ld is the instruction that the
PC points to in main memory. Line 0 of the microprogram begins the Read
operation as indicated by the READ keyword, which brings an instruction into
the IR from the main memory address pointed to by the PC. For this case, let us
assume that the IR now contains the 32-bit pattern:

which is a translation of the ARC assembly code: ld %r5 + 80, %r2. Line 1
then performs a branch to control store address (11100000000)2 = (1792)10.

At line 1792, execution of the ld instruction begins. In line 1792, the immedi-
ate bit i is tested. For this example, i = 1, and so control is transferred to
microword 1794. If instead we had i = 0, then control would pass to the next
higher numbered microword, which is 1793 for this case. Line 1792 adds the
registers in the rs1 and rs2 fields of the instruction, in anticipation of a
non-immediate form of ld, but this only makes sense if i = 0, which it is not
for this example. The result that is stored in %temp0 is thus discarded when con-
trol is transferred to microword 1794, but this introduces no time penalty and
does not produce any unwanted side effects (ADD does not change the condition
codes).

In microword 1794, the simm13 field is extracted (using sign extension, as indi-
cated by the SEXT13 operation), which is added with the register in the rs1
field in microword 1795. Control is then passed to microword 1793 which is
where the READ operation takes place. Control passes to line 2047 where the PC
is incremented in anticipation of reading the next instruction from main mem-
ory. Since instructions are four bytes long and must be aligned on word bound-
aries in memory, the PC is incremented by four. Control then returns to line 0
where the process repeats. A total of seven microinstructions are thus executed in

11
op

00010
rd

000000
op3

00101
rs1

1
i

0000001010000
simm13

220 CHAPTER 6 DATAPATH AND CONTROL

interpreting the ld instruction. These microinstructions are repeated below:

The remaining instructions, except for branches, are interpreted similar to the
way ld is interpreted. Additional decoding is needed for the branch instructions
because the type of branch is determined by the COND field of the branch format
(bits 25 – 28), which is not used during a DECODE operation. The approach used
here is to shift the COND bits into IR[13] one bit at a time, and then jump to
different locations in the microcode depending on the COND bit pattern.

For branch instructions, the DECODE operation on line 2 of the microprogram
transfers control to location 1088. We need more space for the branch instruc-
tions than the four-word per instruction allocation, so line 1088 transfers control
to line 2 which is the starting address of a large section of available control store
memory.

Lines 2 – 4 extract the 22-bit displacement for the branch by zeroing the high
order 10 bits and storing the result in %temp0. This is accomplished by shifting
%ir to the left by 10 bits and storing it in %temp0, and then shifting the result
back to the right by 10 bits. (Notice that sign extension is performed on the dis-
placement, which may be negative. RSHIFT5 implements sign extension.) Lines
5 – 7 shift %ir to the right by 15 bits so that the most significant COND bit
(IR[28]) lines up in position IR[13], which allows the Jump on IR[13]=1
operation to test each bit. Alternatively, we could shift the COND field to
IR[31] one bit at a time, and use the Jump on n condition to test each bit.
(Note that there is a subtle error in how the PC is updated in line 12. See Prob-
lem 6.21 for an explanation.)

Line 8 starts the branch decoding process, which is summarized in Figure 6-16.
If IR[28], which is now in IR[13], is set to 1, then the instruction is ba,
which is executed in line 12. Notice that control returns to line 0, rather than to
line 2047, so that the PC does not get changed twice for the same instruction.

0000: R[ir] ← AND(R[pc],R[pc]); READ; / Read an ARC instruction from main memory.
0001: DECODE; / 256-way jump according to opcode
1792: R[temp0] ← ADD(R[rs1],R[rs2]); / Compute source address
 IF IR[13] THEN GOTO 1794;

1794: R[temp0] ← SEXT13(R[ir]); / Get simm13 field for source address
1795: R[temp0] ← ADD(R[rs1],R[temp0]); Compute source address
 GOTO 1793;

1793: R[rd] ← AND(R[temp0],R[temp0]); / Place source address on A bus
 READ; GOTO 2047;

2047: R[pc] ← INCPC(R[pc]); GOTO 0; / Increment %pc and start over

CHAPTER 6 DATAPATH AND CONTROL 221

If IR[28] is zero, then %ir is shifted to the left by one bit by adding it to itself,
so that IR[27] lines up in position IR[13]. Bit IR[27] is tested in line 9. If
IR[27] is zero, then the be instruction is executed in line 10, otherwise %ir is
shifted to the left and IR[26] is then tested in line 13. The remaining branch
instructions are interpreted in a similar manner.

Microassembly Language Translation

A microassembly language microprogram must be translated into binary object
code before it is stored in the control store, just as an assembly language program
must be translated into a binary object form before it is stored in main memory.
Each line in the ARC microprogram corresponds to exactly one word in the con-
trol store, and there are no unnumbered forward references in the microprogram,
so we can assemble the ARC microprogram one line at a time in a single pass.
Consider assembling line 0 of the microprogram shown in Figure 6-15:

0: R[ir] ← AND(R[pc],R[pc]); READ;

bneg bvs

bcs

be

ba

IR[25]

IR[26]

IR[27]

IR[28]Line 8

Line 13

Line 16

Line 12

Line 19Line 17

Line 10

Line 14

cond
branch

1
1
0
1
0

25

be
bcs
bneg
bvs
ba

0
0
1
1
0

26

0
1
1
1
0

27

0
0
0
0
1

28

Line 9

0 1

0 1

0 1

0 1

Figure 6-16 Decoding tree for branch instructions, showing corresponding microprogram lines.

222 CHAPTER 6 DATAPATH AND CONTROL

We can fill in the fields of the 41-bit microword as shown below:

The PC is enabled onto both the A and B busses for the AND operation, which
transfers a word through the ALU without changing it. The A and B fields have
the bit pattern for the PC (3210 = 1000002). The AMUX and BMUX fields both
contain 0’s, since the inputs to these MUXes are taken from the MIR. The target
of the Read operation is the IR, which has a corresponding bit pattern of (3710 =
1001012) for the C field. The CMUX field contains a 0 because the input to the
CMUX is taken from the MIR. A read operation to memory takes place, and so
the RD field contains a 1 and the WR field contains a 0. The ALU field contains
0101, which corresponds to the AND operation. Note that the condition codes
are not affected, which would happen if ANDCC is used instead. The COND
field contains 000 since control passes to the next microword, and so the bit pat-
tern in the JUMP ADDR field does not matter. Zeros are arbitrarily placed in
the JUMP ADDR field.

The second microword implements the 256-way branch. For this case, all that
matters is that the bit pattern 111 appears in the COND field for the DECODE
operation, and that no registers, memory, or condition codes are disturbed. The
corresponding bit pattern is then:

A number of different bit patterns would also work for line 1. For example, any
bit patterns can appear in the A, B, or JUMP ADDR fields when a DECODE
operation takes place. The use of the zero bit patterns is an arbitrary choice. The
ALU field is 0101 which is for AND, which does not affect the condition codes.
Any other ALU operation that does not affect the condition codes can also be
used.

The remainder of the microprogram is translated in a similar manner. The trans-

R
D

W
RCA B JUMP ADDRALU COND

A
M
U
X

B
M
U
X

C
M
U
X

000000 000000 001010100101000000000000001 1 1

R
D

W
RCA B JUMP ADDRALU COND

A
M
U
X

B
M
U
X

C
M
U
X

000000 000000 000000000101111000000000000 0 0

CHAPTER 6 DATAPATH AND CONTROL 223

lated microprogram is shown in Figure 6-17, except for gaps where duplicate
branch code would appear, or where “illegal instruction” code would appear.

EXAMPLE

Consider adding an instruction called subcc to the microcoded implementation
of the ARC instruction set, which subtracts its second source operand from the
first, using two’s complement arithmetic. The new instruction uses the Arith-
metic format and an op3 field of 001100.

R
D

W
RCA B JUMP ADDRALU COND

A
M
U
X

B
M
U
X

C
M
U
X

1 000001 00000 001010100101000

11111111111

0
0 000000 00000 000000000101111000000000001
1 010100 00000 000001001010110

00000000000

1152
1 000001 00000 011110000101000000000000001280
1 010101 01010 000010001000000000000000001281
1 000101 00010 000010001000000000000000001282
1 000001 00010 0000000010001101283
0 000000 00000 000000000101101110010000101600
0 000010 00001 0000010000111101601
1 010100 00000 000010001100000000000000001602
0 000011 00010 0000010000111101603
0 000000 00000 000000000101101110010001101604
0 000010 00001 0000010000001101605
1 010100 00000 000010001011000000000000001606
0 000011 00010 0000010000001101607
0 000000 00000 000000000101101110010010101608
0 000010 00001 0000010000011101609
1 010100 00000 000010001011000000000000001610
0 000011 00010 000001000001110

0

1611
0 000000 00000 000000000101101110010110101624
0 000010 00001 0000010000101101625
1 010100 00000 000010001011000000000000001626
0 000011 00010 000001000010111627
0 000000 00000 000000000101000110100110101688
0 000010 00001 0000010001001101689
1 010100 00000 000010001011000000000000001690
0 000011 00010 0000010001001101691
0 000000 00000 000000000101101110111000101760
0 000010 00001 000000001000110000000000001761
1 010100 00000 000010001100000000000000001762
0 000011 00010 000000001000110000000000001763

000010 00001 000010001000101111000000101792

11111111111

11111111111

11111111111

00000000000

11111111111

11111111111

11111111111

11111111111

11111111111

11111111111

11111111111

Microstore
Address

0

1
0
0
0
1
1
1
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Figure 6-17 Assembled microprogram for the ARC instruction subset.

224 CHAPTER 6 DATAPATH AND CONTROL

We need to modify the microprogram to add this new instruction. We start by
computing the starting location of subcc in the control store, by appending a
‘1’ to the left of the op field, which is 10, followed by the op3 field which is
001100, followed by 00. This results in the bit pattern 11000110000 which cor-
responds to control store location (1584)10. We can then create microassembly
code that is similar to the addcc microassembly code at location 1600, except
that the two’s complement negative of the subtrahend (the second source oper-
and) is formed before performing the addition. The subtrahend is complemented
by making use of the NOR operation, and 1 is added to it by using the INC oper-
ation. The subtraction is then completed by using the code for addcc. A

0 000000 000000 0000000010111020
1 000000 000001 0000000111011000000000002047

R
D

W
RCA B JUMP ADDRALU COND

A
M
U
X

B
M
U
X

C
M
U
X

1 000101 000100 00001100101110111111111111793
1 010100 000001 00010001100000000000000001794
0 000011 000101 00010001000110111000000011795
0 000010 000011 00010001000101111000100101808
1 010100 000001 01010001111110000001010001809
1 010100 000001 010100011110000000000000040
1 010100 000001 010100011110000000000000041
1 010100 000001 010100011110000000000000042
1 010100 000001 010100011110000000000000043
1 000100 000010 000000101011101111111111144
1 010100 000001 00010001100000000000000001810
0 000011 000101 00010001000110111000100011811
0 000000 000000 00000000101110000000000101088
1 010100 000001 00010001010000000000000002
1 000100 000001 00010001111000000000000003
1 000100 000001 00010001111000000000000004
1 010100 000001 01010001111000000000000005
1 010100 000001 01010001111000000000000006
1 010100 000001 01010001111000000000000007
1 010101 010001 01010001000101000000011008
1 010101 010001 01010001000101000000011019
1 010101 010001 010100010000100000000110010
0 000000 000000 00000000101110

11111111111

11
1 000001 000101 000000010001100000000000012
1 010101 010101 010100010001010000001000013
0 000000 000000 000000001011000000000110014
0 000000 000000 0000000010111015
0 000000 000000 000000001011010000001001116
0 000000 000000 000000001010010000000110017
0 000000 000000 0000000010111018
0 000000 000000 000000001010110000000110019

11111111111

11111111111

11111111111

0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Figure 6-17 (Continued.)

CHAPTER 6 DATAPATH AND CONTROL 225

microassembly coding for subcc is shown below:

The corresponding microcode for one possible translation is then:

6.2.5 TRAPS AND INTERRUPTS

A trap is an automatic procedure call initiated by the hardware after an excep-
tional condition caused by an executing program, such as an illegal instruction,
overflow, underflow, dividing by zero, etc. When a trap occurs, control is trans-
ferred to a “trap handler” which is a routine that is part of the operating system.
The handler might do something like print a message and terminate the offend-
ing program.

One way to handle traps is to modify the microcode, possibly to check the status
bits. For instance, we can check the v bit to see if an overflow has occurred. The
microcode can then load an address into the PC (if a trap occurs) for the starting
location of the trap handler.

Normally, there is a fixed section of memory for trap handler starting addresses
where only a single word is allocated for each handler. This section of memory
forms a branch table that transfers control to the handlers, as illustrated in Fig-
ure 6-18. The reason for using a branch table is that the absolute addresses for
each type of trap can be embedded in the microcode this way, while the targets of
the jumps can be changed at the user level to handle traps differently.

1584: R[temp0] ← SEXT13(R[ir]); / Extract rs2 operand

 IF IR[13] THEN GOTO 1586; / Is second source immediate?

1585: R[temp0] ← R[rs2]; / Extract sign extended immediate operand

1586: R[temp0] ← NOR(R[temp0], R[0]); / Form one’s complement of subtrahend

1587: R[temp0] ← INC(R[temp0]); GOTO 1603; / Form two’s complement of subtrahend

�

R
D

W
RCA B JUMP ADDRALU COND

A
M
U
X

B
M
U
X

C
M
U
X

01010 000001 00010001100101110001100101584

00000 00001 00010001000000000000000001585

00010 00000 00010000111000000000000001586

00010 00000 00010001101110110010000111587

1 0

0 0 1

1 0 1

1 0 1

0 0 0

0 0 0

0 0 0

0 0 0

226 CHAPTER 6 DATAPATH AND CONTROL

A historically common trap is for floating point instructions, which may be
emulated by the operating system if they are not implemented directly in hard-
ware. Floating point instructions have their own opcodes, but if they are not
implemented by the hardware (that is, the microcode does not know about
them) then they will generate an illegal instruction trap when an attempt is made
to execute them. When an illegal instruction occurs, control is passed to the ille-
gal instruction handler which checks to see if the trap is caused by a floating
point instruction, and then passes control to a floating point emulation routine
as appropriate for the cause of the trap. Although floating point units are nor-
mally integrated into CPU chips these days, this method is still used when
extending the instruction set for other instructions, such as graphics extensions
to the ISA.

Interrupts are similar to traps, but are initiated after a hardware exception such
as a user hitting a key on a keyboard, an incoming telephone call for a modem, a
power fluctuation, an unsafe operating temperature, etc. Traps are synchronous
with a running program, whereas interrupts are asynchronous. Thus, a trap will
always happen at the same place in the same program running with the same
data set, whereas the timing of interrupts is largely unpredictable.

When a key is pressed on an interrupt based keyboard, the keyboard asserts an
interrupt line on the bus, and the CPU then asserts an acknowledge line as soon
as it is ready (this is where bus arbitration comes in, which is covered in Chapter
8, if more than one device wants to interrupt at the same time). The keyboard
then places an interrupt vector onto the data bus which identifies itself to the

JUMP TO 2000

ContentsAddress Trap Handler
.
.
.

.

.

.

60 Illegal instruction

JUMP TO 300064 Overflow

JUMP TO 360068 Underflow

JUMP TO 522472 Zerodivide

JUMP TO 418076 Disk

JUMP TO 536480 Printer

JUMP TO 590884 TTY

88 TimerJUMP TO 6048

Figure 6-18 A branch table for trap handlers and interrupt service routines.

CHAPTER 6 DATAPATH AND CONTROL 227

CPU. The CPU then pushes the program counter and processor status register
(where the flags are stored) onto the stack. The interrupt vector is used to index
into the branch table, which lists the starting addresses of the interrupt service
routines.

When a trap handler or an interrupt service routine begins execution, it saves the
registers that it plans to modify on the stack, performs its task, restores the regis-
ters, and then returns from the interrupt. The process of returning from a trap is
different from returning from a subroutine, since the process of entering a trap is
different from a subroutine call (because the %psr register is also saved and
restored). For the ARC, the rett instruction (see Chapter 8) is used for return-
ing from a trap or interrupt. Interrupts can interrupt other interrupts, and so the
first thing that an interrupt service routine might do is to raise its priority (using
a special supervisor mode instruction) so that no interrupts of lower priority are
accepted.

6.2.6 NANOPROGRAMMING

If the microstore is wide, and has lots of the same words, then we can save
microstore memory by placing one copy of each unique microword in a nanos-
tore, and then use the microstore to index into the nanostore. For instance, in
the microprogram shown in Figure 6-15, lines 1281 and 1282 are the same.
Lines 3, 4, and 40-44 are the same, and there are a number of other microin-
structions that recur, especially for the duplicated branch microcode and the
duplicated illegal instruction microcode.

Figure 6-19a illustrates the space requirement for the original microstore ROM.
There are n=2048 words that are each 41 bits wide, giving an area complexity of
2048 × 41 = 83,968 bits. Suppose now that there are 100 unique microwords in
the ROM (the microprogram in Figure 6-15 is only partially complete so we can-
not measure the number of unique microwords directly). Figure 6-19b illustrates
a configuration that uses a nanostore, in which an area savings can be realized if
there are a number of bit patterns that recur in the original microcode sequence.
The unique microwords (100 for this case) form a nanoprogram, which is stored
in a ROM that is 100 words deep by 41 bits wide.

The microprogram now indexes into the nanostore. The microprogram has the
same number of microwords regardless of whether or not a nanostore is used, but
when a nanostore is used, pointers into the nanostore are stored in the microstore
rather than the wider 41-bit words. For this case, the microstore is now 2048

228 CHAPTER 6 DATAPATH AND CONTROL

words deep by log2(100) = 7 bits wide. The area complexity using a nanostore
is then 100 × 41 + 2048 × 7 = 18,436 bits, which is a considerable savings in area
over the original microcoded approach.

For small m and large n, where m is the length of the nanoprogram, we can real-
ize a large savings in memory. This frees up area that can be applied in some
other way, possibly to improve performance. However, instead of accessing only
the microstore, we must now access the microstore first, followed by an access to
the nanostore. The machine will thus run more slowly, but will fit into a smaller
area.

6.3 Hardwired Control
An alternative approach to a microprogrammed control unit is to use a hard-
wired approach, in which a direct implementation is created using flip-flops and
logic gates, instead of using a control store and a microword selection mecha-
nism. States in a finite state machine replace steps in the microprogram.

In order to manage the complexity of design for a hardwired approach, a hard-
ware description language (HDL) is frequently used to represent the control

Original
Microprogram

w = 41 bits

n
=

 2
04

8
w

or
ds

k = log2(n)
= log2(100)

= 7 bits

n
=

 2
04

8
w

or
ds

w = 41 bits

(a) (b)

m
 =

 100 nanow
ords

Micro-
program

Total Area = n × w =
2048 × 41 = 83,968 bits

Microprogram Area = n × k = 2048 × 7
 = 14,336 bits
Nanoprogram Area = m × w = 100 × 41
 = 4100 bits
Total Area = 14,336 + 4100 = 18,436 bits

Figure 6-19 (a) Microprogramming vs. (b) nanoprogramming.

CHAPTER 6 DATAPATH AND CONTROL 229

structure. One example of an HDL is VHDL, which is an acronym for VHSIC
Hardware Description Language (in which VHSIC is yet another acronym for
Very High Speed Integrated Circuit). VHDL is used for describing an architec-
ture at a very high level, and can be compiled into hardware designs through a
process known as silicon compilation. For the hardwired control unit we will
design here, a lower level HDL that is sometimes referred to as a register trans-
fer language (RTL) is more appropriate.

We will define a simple HDL/RTL in this section that loosely resembles Hill &
Peterson’s A Hardware Programming Language (AHPL) (Hill and Peterson,
1987). The general idea is to express a control sequence as a series of numbered
statements, which can then be directly translated into a hardware design. Each
statement consists of a data portion and a transfer portion, as shown below:

5: A ← ADD(B,C); ! Data portion
GOTO {10 CONDITIONED ON IR[12]}. ! Control portion

The statement is labelled “5,” which means that it is preceded by statement 4
and is succeeded by statement 6, unless an out-of-sequence transfer of control
takes place. The left arrow (←) indicates a data transfer, to register A for this
case. The “ADD(B,C)” construct indicates that registers B and C are sent to a
combinational logic unit (CLU) that performs the addition. Comments begin
with an exclamation mark (!) and terminate at the end of the line. The GOTO
construct indicates a transfer of control. For this case, control is transferred to
statement 10 if bit 12 of register IR is true, otherwise control is transferred to the
next higher numbered statement (6 for this case).

Figure 6-20 shows an HDL description of a modulo 4 counter. The counter pro-
duces the output sequence: 00, 01, 10, 11 and then repeats as long as the input
line x is 0. If the input line is set to 1, then the counter returns to state 0 at the
end of the next clock cycle. The comma is the catenation operator, and so the
statement “Z ← 0,0;” assigns the two-bit pattern 00 to the two-bit output Z.

The HDL sequence is composed of three sections: the preamble, the numbered
statements, and the epilogue. The preamble names the module with the “MODULE”
keyword and declares the inputs with the “INPUTS” keyword, the outputs with
the “OUTPUTS” keyword, and the arity (number of signals) of both, as well as
any additional storage with the “MEMORY” keyword (none for this example). The
numbered statements follow the preamble. The epilogue closes the sequence
with the key phrase “END SEQUENCE.” The key phrase “END

230 CHAPTER 6 DATAPATH AND CONTROL

MOD_4_COUNTER” closes the description of the module. Anything that appears
between “END SEQUENCE” and “END MOD_4_COUNTER” occurs continuously,
independent of the statement number. There are no such statements for this case.

In translating an HDL description into a design, the process can be decomposed
into separate parts for the control section and the data section. The control sec-
tion deals with how transitions are made from one statement to another. The
data section deals with producing outputs and changing the values of any mem-
ory elements.

We consider the control section first. There are four numbered statements, and
so we will use four flip-flops, one for each statement, as illustrated in Figure
6-21. This is referred to as a one-hot encoding approach, because exactly one
flip-flop holds a true value at any time. Although four states can be encoded
using only two flip-flops, studies have shown that the one-hot encoding
approach results in approximately the same circuit area when compared with a
more densely encoded approach; but more importantly, the complexity of the
transfers from one state to the next are generally simpler and can be implemented
with shallow combinational logic circuits, which means that the clock rate can be
faster for a one-hot encoding approach than for a densely encoded approach.

In designing the control section, we first draw the flip-flops, apply labels as

MODULE: MOD_4_COUNTER.
INPUTS: x.
OUTPUTS: Z[2].
MEMORY:

0: Z ← 0,0;
 GOTO {0 CONDITIONED ON x,
 1 CONDITIONED ON x}.
1: Z ← 0,1;
 GOTO {0 CONDITIONED ON x,
 2 CONDITIONED ON x}.
2: Z ← 1,0;
 GOTO {0 CONDITIONED ON x,
 3 CONDITIONED ON x}.
3: Z ← 1,1;
 GOTO 0.

END SEQUENCE.
END MOD_4_COUNTER.

Preamble

Statements

Epilogue

Figure 6-20 HDL sequence for a resettable modulo 4 counter.

CHAPTER 6 DATAPATH AND CONTROL 231

appropriate, and connect the clock inputs. The next step is to simply scan the
numbered statements in order and add logic as appropriate for the transitions.
From statement 0, there are two possible transitions to statements 0 or 1, condi-
tioned on x or its complement, respectively. The output of flip-flop 0 is thus con-
nected to the inputs of flip-flops 0 and 1, through AND gates that take the value
of the x input into account. Note that the AND gate into flip-flop 1 has a circle
at one of its inputs, which is a simplified notation that means x is complemented
by an inverter before entering the AND gate.

A similar arrangement of logic gates is applied for statements 1 and 2, and no
logic is needed at the output of flip-flop 3 because statement 3 returns to state-
ment 1 unconditionally. The control section is now complete and can execute
correctly on its own. No outputs are produced, however, until the data section is
implemented.

We now consider the design of the data section, which is trivial for this case.
Both bits of the output Z change in every statement, and so there is no need to
condition the generation of an output on the state. We only need to produce the
correct output values for each of the statements. The least significant bit of Z is
true in statements 1 and 3, and so the outputs of the corresponding control
flip-flops are ORed to produce Z[0]. the most significant bit of Z is true in state-
ments 2 and 3, and so the outputs of the corresponding control flip-flops are
ORed to produce Z[1]. The entire circuit for the mod 4 counter is now com-
plete, as shown in Figure 6-21.

CLK

QD
0

x

QD QD QD
1 2 3

Z[1]

Z[0]

CONTROL SECTION

DATA SECTION

Figure 6-21 Logic design for a modulo 4 counter described in HDL.

232 CHAPTER 6 DATAPATH AND CONTROL

We can now use our HDL in describing the control section of the ARC microar-
chitecture. There is no need to design the data section, since we have already
defined its form in Figure 6-10. The data section is the same for both the micro-
coded and hardwired approaches. As for the microcoded approach, the opera-
tions that take place for a hardwired approach are:

1) Fetch the next instruction to be executed from memory.

2) Decode the opcode.

3) Read operand(s) from main memory or registers, if any.

4) Execute the instruction and store results.

5) Go to Step 1.

The microcode of Figure 6-15 can serve as a guide for what needs to be done.
The first step is to fetch the next user-level instruction from main memory. The
following HDL line describes this operation:

0: ir ← AND(pc, pc); Read = 1.

The structure of this statement is very similar to the first line of the micropro-
gram, which may not be surprising since the same operations must be carried out
on the same datapath.

Now that the instruction has been fetched, the next operation is to decode the
opcode. This is where the power of a hardwired approach comes into play. Since
every instruction has an op field, we can decode that field first, and then decode
the op2, op3, and cond fields as appropriate for the instruction.

The next line of the control sequence decodes the op field:

The product symbol “×” indicates a logical AND operation. Control is thus

GOTO {2 CONDITIONED ON IR[31]×IR[30], ! Branch/Sethi format: op=00
 4 CONDITIONED ON IR[31]×IR[30], ! Call format: op=01
 8 CONDITIONED ON IR[31]×IR[30], ! Arithmetic format: op=10
 10 CONDITIONED ON IR[31]×IR[30]}. ! Memory format: op=11

1:

CHAPTER 6 DATAPATH AND CONTROL 233

transferred to one of the four numbered statements: 2, 4, 8, or 10 depending on
the bit pattern in the op field.

Figure 6-24 shows a complete HDL description of the control section. We may

have to do additional decoding depending on the value of the op field. At line 4,
which is for the Call format, no additional decoding is necessary. The call
instruction is then implemented in statements 4-7, which are similar to the
microcoded version.

MODULE: ARC_CONTROL_UNIT.

INPUTS:

OUTPUTS: C, N, V, Z. ! These are set by the ALU

MEMORY: R[16][32], pc[32], ir[32], temp0[32], temp1[32], temp2[32],

 temp3[32].

0: ir ← AND(pc, pc); Read ← 1; ! Instruction fetch

 ! Decode op field

1: GOTO {2 CONDITIONED ON ir[31]×ir[30], ! Branch/sethi format: op=00
 4 CONDITIONED ON ir[31]×ir[30], ! Call format: op=01
 8 CONDITIONED ON ir[31]×ir[30], ! Arithmetic format: op=10
 10 CONDITIONED ON ir[31]×ir[30]}. ! Memory format: op=11
 ! Decode op2 field

2: GOTO 19 CONDITIONED ON ir[24]. ! Goto 19 if Branch format

3: R[rd] ← ir[imm22]; ! sethi

 GOTO 20.

4: R[15] ← AND(pc, pc). ! call: save pc in register 15

5: temp0 ← ADD(ir, ir). ! Shift disp30 field left

6: temp0 ← ADD(ir, ir). ! Shift again

7: pc ← ADD(pc, temp0); GOTO 0. ! Jump to subroutine

 ! Get second source operand into temp0 for Arithmetic format

8: temp0 ← { SEXT13(ir) CONDITIONED ON ir[13]×NOR(ir[19:22]), ! addcc
 R[rs2] CONDITIONED ON ir[13]×NOR(ir[19:22]), ! addcc
 SIMM13(ir) CONDITIONED ON ir[13]×OR(ir[19:22]), ! Remaining
 R[rs2] CONDITIONED ON ir[13]×OR(ir[19:22])}. ! Arithmetic instructions
 ! Decode op3 field for Arithmetic format

9: R[rd] ← {
 ADDCC(R[rs1], temp0) CONDITIONED ON XNOR(IR[19:24], 010000), ! addcc

 ANDCC(R[rs1], temp0) CONDITIONED ON XNOR(IR[19:24], 010001), ! andcc

 ORCC(R[rs1], temp0) CONDITIONED ON XNOR(IR[19:24], 010010), ! orcc

 NORCC(R[rs1], temp0) CONDITIONED ON XNOR(IR[19:24], 010110), ! orncc

 SRL(R[rs1], temp0) CONDITIONED ON XNOR(IR[19:24], 100110), ! srl

 ADD(R[rs1], temp0) CONDITIONED ON XNOR(IR[19:24], 111000)}; ! jmpl

 GOTO 20.

 ! Get second source operand into temp0 for Memory format

10: temp0 ← {SEXT13(ir) CONDITIONED ON ir[13],

 R[rs2] CONDITIONED ON ir[13]}.

11: temp0 ← ADD(R[rs1], temp0).

 ! Decode op3 field for Memory format

 GOTO {12 CONDITIONED ON ir[21], ! ld

 13 CONDITIONED ON ir[21]}. ! st

12: R[rd] ← AND(temp0, temp0); Read ← 1; GOTO 20.

13: ir ← RSHIFT5(ir).

Figure 6-22 HDL description of the ARC control unit.

234 CHAPTER 6 DATAPATH AND CONTROL

In statement 2, additional decoding is performed on the op2 field which is
checked to determine if the instruction is sethi or a branch. Since there are
only two possibilities, only one bit of op2 needs to be checked in line 2. Line 3
then implements sethi and line 19 implements the branch instructions.

Line 8 begins the Arithmetic format section of the code. Line 8 gets the second
source operand, which can be either immediate or direct, and can be sign
extended to 32 bits (for addcc) or not sign extended. Line 9 implements the
Arithmetic format instructions, conditioned on the op3 field. The XNOR func-
tion returns true if its arguments are equal, otherwise it returns false, which is
useful in making comparisons.

Line 10 begins the Memory format section of the code. Line 10 gets the second
source operand, which can either be a register or an immediate operand. Line 11
decodes the op3 field. Since the only Memory format instructions are ld and
st, only a single bit (IR[21]) needs to be observed in the op3 field. Line 12
then implements the ld instruction, and lines 13-18 implement the st instruc-
tion. Finally, line 20 increments the program counter and transfers control back
to the first statement.

Now that the control sequence is defined, the next step is to design the logic for
the control section. Since there are 21 statements, there are 21 flip-flops in the
control section as shown in Figure 6-23. A control signal (CSi) is produced for
each of the 21 states, which is used in the data section of the hardwired control-
ler.

14: ir ← RSHIFT5(ir).

15: ir ← RSHIFT5(ir).

16: ir ← RSHIFT5(ir).

17: ir ← RSHIFT5(ir).

18: r0 ← AND(temp0, R[rs2]); Write ← 1; GOTO 20.

19: pc ← { ! Branch instructions

 ADD(pc, temp0) CONDITIONED ON ir[28] + ir[28]×ir[27]×Z +
 ir[28]×ir[27]×ir[26]×C + ir[28]×ir[27]×ir[26]×ir[25]×N +
 ir[28]×ir[27]×ir[26]×ir[25]×V,
 INCPC(pc) CONDITIONED ON ir[28]×ir[27]×Z +
 ir[28]×ir[27]×ir[26]×C + ir[28]×ir[27]×ir[26]×ir[25]×N +
 ir[28]×ir[27]×ir[26]×ir[25]×V};
 GOTO 0.

20: pc ← INCPC(pc); GOTO 0.

END SEQUENCE.

END ARC_CONTROL_UNIT.

Figure 6-22 (Continued.)

CHAPTER 6 DATAPATH AND CONTROL 235

In Figure 6-24, the data section of the hardwired controller generates the signals
that control the datapath. There are 27 OR gates that correspond to the 27 sig-
nals that control the datapath. (Refer to Figure 6-10. Count the 27 signals that
originate in the control section that terminate in the datapath.) The AMUX sig-
nal is set to 1 only in lines 9 and 11, which correspond to operations that place

CLK

QD
0

QD
1

QD
2

QD
3

QD
4

QD
5

QD
6

QD
7

QD
8

QD
9

QD
10

QD
11

QD
12

QD
13

QD
14

QD
15

QD
16

QD
17

QD
18

QD
19

IR[31]

IR[30] IR[24]

IR[21]

QD
20

CS0 CS3

CS4

CS5

CS6

CS0

CS8

CS9

CS10
CS11

CS12

CS13 CS14

CS15

CS16 CS17
CS18

CS19

CS20

Figure 6-23 The hardwired control section of the ARC: generation of the control signals.

236 CHAPTER 6 DATAPATH AND CONTROL

rs1 onto the A bus. Signals CS9 and CS11 are thus logically OR’d to produce
AMUX. Likewise, rd is placed on the C bus in lines 3, 9, and 12, and so CS3,
CS9, and CS12 are logically OR’d to produce CMUX.

The BMUX signal is more complex. rs2 is placed on the B bus in lines 8, 10,
and 18, and so CS8, CS10, and CS18 are used to generate BMUX as shown.
However, in line 8, BMUX is set (indicating rs2 is placed on the B bus) only if
IR[13] = 0 and IR[19:22] are all 0 (for the rightmost 4 bits of the 6-bit
op3 pattern for addcc: 010000.) The corresponding logic is shown for this case.
Likewise, in line 10, BMUX is set to 1 only when IR[13] = 0. Again, the cor-
responding logic is shown.

The Read signal is set in lines 10 and 12, and so CS0 and CS12 are logically OR’d
to produce Read. The Write signal is generated only in line 18, and thus needs
no logic other than the signal CS18.

AMUX
CS9

CS11

WriteCS18

CMUX
CS3

CS9
CS12

Read
CS0

CS12

BMUX

CS18
IR[13]

CS10

CS8

IR
[1

9] IR
[2

2]
IR

[2
0]

IR
[2

1]

ALU[3]

CS9

IR[19]
IR[20]

IR[24]

IR[23]

IR[22]
IR[21]

CS20
CS19

CS8

CS5
CS6CS7

CS16
CS14

CS15

CS17

CS11

CS13

ALU[2]

CS20
CS18

CS4

CS10

CS12

CS16

CS14

CS15

CS1

CS13
CS17

CS2

CS3

CS8

IR[13]

IR[19]
IR[20]

IR[22]
IR[21]

CS9

IR
[2

4]
IR

[2
3]

IR[19]
IR[20]IR

[2
2]

IR[21]

CS19
IR[28]

IR[28]
IR[27]

IR[26]
IR[25]

C

IR[28]
IR[27]

IR[26]
IR[25] N

IR[28]
IR[27]

IR[26]
C

IR[28]

IR[27]
Z

CS2CS3IR[24]

ALU[0]

ALU[1]

CS20CS16

CS14
CS15

CS13

CS17

IR[20]
IR[21]

CS19

CS8

IR[13]
IR[19]

IR[22]

IR[20]

IR[21]

CS9

IR
[1

9]
IR

[2
2]

IR[24]IR[23]

CS4 CS1

CS0

IR[13]
CS8

IR[22]
IR[21]

IR[19]

IR[23]

B[5]

B[2]

B[3]

B[4]

B[0]

B[1]

C[3]

C[4]

C[5]

IR[13]

IR[13]

A[1]

A[3]

A[4]

0

0

0

A[0]

CS5
CS6

CS16
CS14

CS15

CS17

CS13

CS12CS8

CS10

CS18

A[2]

A[5]
CS4

CS0

CS20
CS19

CS7

C[0]

C[1]

C[2]

Figure 6-24 The hardwired control section of the ARC: signals from the data section of the control

unit to the datapath. (Shaded areas are not detailed.)

CHAPTER 6 DATAPATH AND CONTROL 237

There are 4 signals that control the ALU: ALU[0], ALU[1], ALU[2], and
ALU[3], which correspond to F0, F1, F2, and F3, respectively, in the ALU opera-
tion table shown in Figure 9-4. These four signals need values in each of the 20
HDL lines. In line 0, the ALU operation is AND, which corresponds to
ALU[3:0] = 0101. Line 1 has no ALU operation specified, and so we can arbi-
trarily choose an ALU operation that has no side effects, like AND (0101). Con-
tinuing in this way, taking CONDITIONED ON statements into account, produces
the logic for ALU[3:0] as shown in the figure.

The control signals are sent to the datapath, similar to the way that the MIR con-
trols the datapath in the microprogrammed approach of Figure 6-10. The hard-
wired and microcontrolled approaches can thus be considered interchangeable,
except with varying costs. There are only 21 flip-flops in the hardwired approach,
but there are 2048×41 = 83,968 flip-flops in the microprogrammed approach
(although in actuality, a ROM would be used, which consumes less space because
smaller storage elements than flip/flops can be used.) The amount of additional
combinational logic is comparable. The hardwired approach is faster in executing
ARC instructions, especially in decoding the Branch format instructions, but is
more difficult to change once it is committed to fabrication.

EXAMPLE

Consider adding the same subcc instruction from the previous EXAMPLE to the
hardwired implementation of the ARC instruction set. As before, the subcc
instruction uses the Arithmetic format and an op3 field of 001100.

Only line 9 of the HDL code needs to be changed, by inserting the expression:

ADDCC (R[rs1], INC_1(temp0)) CONDITIONED ON XNOR(IR[19:24], 001100), ! subcc

before the line for addcc.

The corresponding signals that need to be modified are ALU[3:0]. The INC_1
construct in the line above indicates that an adder CLU, which would be defined
in another HDL module, should be created (in a hardwired control unit, there is
a lot of flexibility on what can be done.) �

6.4 Case Study: The VHDL Hardware Description Language
In this section we present a brief overview of VHDL (VHSIC Hardware

238 CHAPTER 6 DATAPATH AND CONTROL

Description Language, in which VHSIC is yet another acronym for Very High
Speed Integrated Circuit). Hardware description languages (HDLs), like VHDL
and AHPL, are languages used for describing computer hardware, focusing pri-
marily on logic devices and IC design. In the case of VHDL, however, designs
can be specified at many different levels. For example, the control unit imple-
mented in this chapter could be specified in VHDL.

We first cover the background that led to the development of VHDL, and then
describe some of its properties. We then take a look at a VHDL specification of
the majority function.

6.4.1 BACKGROUND

VHDL was the result of a collaboration between the Department of Defense
(DOD), and many US industries. DOD, primarily through its Defense
Advanced Research Products Agency (DARPA), realized in the late 1970’s that
IC design and fabrication was becoming so complex that a set of integrated
design tools was needed for both design and simulation. It was felt that the tools
should allow the user to specify a circuit or system from the highest, or behav-
ioral level down to the lowest levels of actual IC layout and design, and further-
more, all of these specifications should be verifiable by simulators and other rule
checkers.

The first preliminary requirements definition for the language was issued by
DOD in 1981, as a recognition of the need for a more consistent approach to
computer hardware design. The contract for the first version of the language was
won by a consortium of IBM, Texas Instruments, and Intermetrics, a software
engineering firm specializing in programming language design and implementa-
tion.

The consortium released a preliminary version for testing and comment in 1985.
An updated version was submitted to the IEEE for standardization in 1986, the
result being named IEEE 1076-1987. In 1993, a newer version, IEEE
1076-1993, was approved that addressed a number of minor problems and
added several new features.

By almost any measure VHDL is a success, with many users both inside and out-
side the defense contractor community. DOD now requires that all Applica-
tion-Specific Integrated Circuits (ASICs) be accompanied by their VHDL model
for checking and simulation. Almost all CAD vendors now support VHDL in

CHAPTER 6 DATAPATH AND CONTROL 239

their toolsets.

6.4.2 WHAT IS VHDL?

In its most basic terms VHDL is a hardware description language that can be
used to describe and model digital systems. VHDL has an inherent sense of time,
and can manage the progression of events through time. Unlike most procedural
languages that are in common use, VHDL supports concurrent execution, and
is event driven.

Concurrent execution

Concurrent execution means that unless special efforts are taken to specify
sequential execution, all of the statements in a VHDL specification are executed
in parallel. This is the way it should be, since when power is applied to a digital
system the system runs “in parallel.” That is, current flows through circuits
according to the rules of physics and logic, without any inherent sense of “which
came first.”

Event-driven systems

VHDL deals with signals propagating through digital systems, and therefore log-
ically and naturally supports the concept of changes in state as a function of time.
Having a sense of time, it supports concepts such as “after,” “until,” and “wait.”
As an event-driven system, it begins execution by executing any initialization
code, and then records all changes in signal values, from 0→1 and 1→0, occur-
ring at the inputs and outputs of components. It records these changes, or events,
in a time-ordered queue, known as the event queue. It examines these events and
if an event has an effect upon some component, that effect is evaluated. If the
effect causes further events to take place the simulator likewise places these new
events in the event queue, and the process continues until and unless there are no
further events to process.

Levels of abstraction, and hierarchical decomposition

As mentioned above, VHDL specifications can be written at almost any level of
abstraction from the purely algorithmic level, where behavior is specified by for-
mal algorithms, to the logic level, where behavior is specified by Boolean expres-
sions.

240 CHAPTER 6 DATAPATH AND CONTROL

Furthermore, a VHDL specification may be composed of a hierarchy of compo-
nents, that is, components may contain components, which may themselves con-
tain components. This models the physical world, where, for example, a
motherboard may contain IC chips, which are composed of modules, which are
in turn composed of sub-modules, all the way down to individual logic gates,
and finally transistors.

6.4.3 A VHDL SPECIFICATION OF THE MAJORITY FUNCTION

Let us explore how VHDL can be used to implement a small digital component
by examining several implementations of the majority function, which pro-
duces a 1 at its output when more than half of its inputs are 1, otherwise it pro-
duces a 0 at its output. This is a useful function for fault tolerance, in which
multiple systems that perform the same operations on the same data set “vote,”
and if one of the systems deviates from the others, its output is effectively
ignored. The majority function is discussed in detail in Appendix A. Its truth
table is shown in Figure A-15 and Figure A-16, reproduced here as Figure 6-25.

In VHDL the specification of any component such as the majority function is
split into two parts, an entity part and an architecture part. These correspond
roughly to the syntactic and semantic parts of a language specification: the entity
part describes the interface of the component without saying anything about its
internal structure. The architecture part describes the internal behavior of the
component. Here is an entity specification for the 3-input majority function:

B CA

b) c)a)

F

Majority
Function

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B C

0
0
0
0
1
1
1
1

A

0
0
0
1
0
1
1
1

F

0
1
2
3
4
5
6
7

Minterm
Index

F

A B C

A B C

A B C

A B C

A B C

Figure 6-25 The majority function. a) truth table, b) AND-OR implementation, c) black box represen-

tation.

CHAPTER 6 DATAPATH AND CONTROL 241

Interface specification for the majority component

-- Interface
entity MAJORITY is

port
(A_IN, B_IN, C_IN : in BIT
 F_OUT : out BIT);

end MAJORITY;

Keywords are shown in bold, and comments begin with “--” and end at the end
of the line. Statements are separated by semicolons, “;”.

The entity specification describes just the “black box” input and output sig-
nals in Figure 6-25c. The port declaration describes the kind of signals going
into and out of the entity. Port modes include in for signals that flow into the
entity, out for signals that flow out of the entity, and inout for bidirectional
signals. There are also several other special purpose port modes.

With the interface to the majority component specified we can now model the
internal functioning of the component, using the architecture specification:

Behavioral model for the majority component

 -- Body
architecture LOGIC_SPEC of MAJORITY is
begin
-- compute the output using a Boolean expression
F_OUT <= (not A_IN and B_IN and C_IN) or

(A_IN and not B_IN and C_IN) or
(A_IN and B_IN and not C_IN) or
(A_IN and B_IN and C_IN) after 4 ns;

end LOGIC_SPEC;

This model describes the relationship between the entity declaration of MAJOR-
ITY and the architecture of MAJORITY. The names A_IN, B_IN, C_IN,
and F_OUT in the architecture model must match the names used in the entity
declaration.

This kind of architectural specification is referred to as a behavioral one, since it
defines the input/output function by specifying an explicit transfer function.
That function is a Boolean expression that implements the Boolean function
shown in Figure 6-25a,b. Notice, however, that even at this level of specification

242 CHAPTER 6 DATAPATH AND CONTROL

that we can include a time delay between inputs and outputs, using the after
keyword. In this case, the event computing the value of F_OUT will be triggered
4 ns after a change in any of the input values.

It is also possible to specify the architecture at a level closer to the hardware by
specifying logic gates instead of logic equations. This is referred to as a structural
model. Here is such a specification:

Structural model for the majority component

In generating a structural model for the MAJORITY entity we will follow the
gate design given in Figure 6-25b. We begin the model by describing a collection
of logic operators, in a special construct of VHDL known as a package. The
package is assumed to be stored in a working library called WORK. Following
the package specification we repeat the entity declaration, and then, using the
package and entity declarations we specify the internal workings of the majority
component by specifying the architecture at a structural level:

-- Package declaration, in library WORK
package LOGIC_GATES is
component AND3

port (A, B, C : in BIT; X : out BIT);
end component;
component OR4

port (A, B, C, D : in BIT; X : out BIT);
end component;
component NOT1

port (A : in BIT; X : out BIT);
end component;

-- Interface
entity MAJORITY is

port
(A_IN, B_IN, C_IN : in BIT
 F_OUT : out BIT);

end MAJORITY;

 -- Body
-- Uses components declared in package LOGIC_GATES
-- in the WORK library
-- import all the components in WORK.LOGIC_GATES
use WORK.LOGIC_GATES.all
architecture LOGIC_SPEC of MAJORITY is
-- declare signals used internally in MAJORITY
signal A_BAR, B_BAR, C_BAR, I1, I2, I3, I4: BIT;
begin
-- connect the logic gates
NOT_1 : NOT1 port map (A_IN, A_BAR);
NOT_2 : NOT1 port map (B_IN, B_BAR);
NOT_3 : NOT1 port map (C_IN, C_BAR);

CHAPTER 6 DATAPATH AND CONTROL 243

AND_1 : AND3 port map (A_BAR, B_IN, C_IN, I1);
AND_2 : AND3 port map (A_IN, B_BAR, C_IN, I2);
AND_3 : AND3 port map (A_IN, B_IN, C_BAR, I3);
AND_4 : AND3 port map (A_IN, B_IN, C_IN, I4);
OR_1 : OR3 port map (I1, I2, I3, I4, F_OUT);
end LOGIC_SPEC;

The package declaration supplies three gates, a 3-input AND gate, AND3, a
4-input OR gate, OR4, and a NOT gate, NOT1. The architectures of these
gates are assumed to be declared elsewhere in the package. The entity declara-
tion is unchanged, as we would expect, since it specifies MAJORITY as a “black
box.”

The body specification begins with a use clause, which imports all of the dec-
larations in the LOGIC_GATES package within the WORK library. The sig-
nal declaration declares seven BIT signals that will be used internally. These
signals are used to interconnect the components within the architecture.

The instantiations of the three NOT gates follow, NOT_1, NOT_2, and
NOT_3, all of which are NOT1 gates, and the mapping of their input and out-
put signals are specified, following the port map keywords. Signals at the
inputs and outputs of the logic gates are mapped according to the order in which
they were declared within the package.

The rest of the body specification connects the NOT gates, the AND gates, and
the OR gate together as shown in Figure 6-25b.

Notice that this form of architecture specification separates the design and imple-
mentation of the logic gates from the design of the MAJORITY entity. It would
be possible to have several different implementations of the logic gates in differ-
ent packages, and to use any one of them by merely changing the uses clause.

6.4.4 9-VALUE LOGIC SYSTEM

This brief treatment of VHDL only gives a small taste of the scope and power of
the language. The full language contains capabilities to specify clock signals and
various timing mechanisms, sequential processes, and several different kinds of
signals. There is an IEEE standard 9-value logic system, known as
STD_ULOGIC, IEEE 1164-1993. It has the following logic values:

type STD_ULOGIC is (
‘U’, -- Uninitialized

244 CHAPTER 6 DATAPATH AND CONTROL

‘X’, -- Forcing unknown
‘0’, -- Forcing 0
‘1’, -- Forcing 1
‘Z’, -- High impedance
‘W’, -- Weak unknown
‘L’, -- Weak 0
‘H’, -- Weak 1
‘-’, -- Don’t care
);

Without getting into too much detail, these values allow the user to detect logic
flaws within a design, and to follow the propagation of uninitialized or weak sig-
nals through the design.

� SUMMARY

A microarchitecture consists of a datapath and a control section. The datapath
contains data registers, an ALU, and the connections among them. The control
section contains registers for microinstructions (for a microprogramming
approach) and for condition codes, and a controller. The controller can be micro-
programmed or hardwired. A microprogrammed controller interprets microin-
structions by executing a microprogram that is stored in a control store. A
hardwired controller is organized as a collection of flip-flops that maintain state
information, and combinational logic that implements transitions among the
states.

The hardwired approach is fast, and consumes a small amount of hardware in
comparison with the microprogrammed approach. The microprogrammed
approach is flexible, and simplifies the process of modifying the instruction set. The
control store consumes a significant amount of hardware, which can be reduced to
a degree through the use of nanoprogramming. Nanoprogramming adds delay to
the microinstruction execution time. The choice of microprogrammed or hard-
wired control thus involves trade-offs: the microprogrammed approach is large
and slow, but is flexible and lends itself to simple implementations, whereas the
hardwired approach is small and fast, but is difficult to modify, and typically
results in more complicated implementations.

CHAPTER 6 DATAPATH AND CONTROL 245

� FURTHER READING
(Wilkes, 1958) is a classic reference on microprogramming. (Mudge, 1978) cov-
ers microprogramming on the DEC PDP 11/60. (Tanenbaum, 1990) and
(Mano, 1991) provide instructional examples of microprogrammed architec-
tures. (Hill and Peterson, 1987) gives a tutorial treatment of the AHPL hardware
description language, and hardwired control in general. (Lipsett et. al., 1989)
and (Navabi, 1993) describe the commercial VHDL hardware description lan-
guage and provide examples of its use. (Gajski, 1988) covers various aspects of
silicon compilation.

Gajski, D., Silicon Compilation, Addison Wesley, (1988).

Hill, F. J. and G. R. Peterson, Digital Systems: Hardware Organization and
Design, 3/e, John Wiley & Sons, (1987).

Lipsett, R., C. Schaefer, and C. Ussery, VHDL: Hardware Description and Design,
Kluwer Academic Publishers, (1989).

Mano, M., Digital Design, 2/e, Prentice Hall, (1991).

Mudge, J. Craig, Design Decisions for the PDP11/60 Mid-Range Minicomputer, in
Computer Engineering, A DEC View of Hardware Systems Design, Digital Press,
Bedford MA, (1978).

Navabi, Z., VHDL: Analysis and Modeling of Digital Systems, McGraw Hill,
(1993).

Tanenbaum, A., Structured Computer Organization, 3/e, Prentice Hall, Engle-
wood Cliffs, New Jersey, (1990).

Wilkes, M. V., W. Redwick, and D. Wheeler, “The Design of a Control Unit of
an Electronic Digital Computer,” Proc. IRE, vol. 105, p. 21, (1958).

� PROBLEMS
6.1 Design a 1-bit arithmetic logic unit (ALU) using the circuit shown in Fig-

ure 6-26 that performs bitwise addition, AND, OR, and NOT on the 1-bit
inputs A and B. A 1-bit output Z is produced for each operation, and a carry
is also produced for the case of addition. The carry is zero for AND, OR, and

246 CHAPTER 6 DATAPATH AND CONTROL

NOT. Design the 1-bit ALU using the components shown in the diagram.
Just draw the connections among the components. Do not add any logic
gates, MUXes, or anything else. Note: The Full Adder takes two one-bit
inputs (X and Y) and a Carry In, and produces a Sum and a Carry Out.

6.2 Design an ALU that takes two 8-bit operands X and Y and produces an
8-bit output Z. There is also a two-bit control input C in which 00 selects log-
ical AND, 01 selects OR, 10 selects NOR, and 11 selects XOR. In designing
your ALU, follow this procedure: (1) draw a block diagram of eight 1-bit
ALUs that each accept a single bit from X and Y and both control bits, and
produce the corresponding single-bit output for Z; (2) create a truth table that
describes a 1-bit ALU; (3) design one of the 1-bit ALUs using an 8-to-1
MUX.

6.3 Design a control unit for a simple hand-held video game in which a char-
acter on the display catches objects. Treat this as an FSM problem, in which
you only show the state transition diagram. Do not show a circuit. The input
to the control unit is a two-bit vector in which 00 means “Move Left,” 01
means “Move Right,” 10 means “Do Not Move,” and 11 means “Halt.” The
output Z is 11 if the machine is halted, and is 00, 01, or 10 otherwise, corre-
sponding to the input patterns. Once the machine is halted, it must remain in
the halted state indefinitely.

Z

Carry
Out

Output

Full
Adder

X Y

Carry In

Carry Out Sum

A

B

Carry
In

Data
Inputs

F0

F1

00

01

10

11

2-to-4 Decoder

Function
Select

0
0
1
1

0
1
0
1

Fo F1

ADD(A,B)
AND(A,B)
OR(A,B)
NOT(A)

Function

Figure 6-26 A one-bit ALU.

CHAPTER 6 DATAPATH AND CONTROL 247

6.4 In Figure 6-3, there is no line from the output of the C Decoder to %r0.
Why is this the case?

6.5 Refer to diagram Figure 6-27. Registers 0, 1, and 2 are general purpose

registers. Register 3 is initialized to the value +1, which can be changed by the
microcode, but you must make certain that it does not get changed.

a) Write a control sequence that forms the two’s complement difference of the
contents of registers 0 and 1, leaving the result in register 0. Symbolically, this
might be written as: r0 ← r0 – r1. Do not change any registers except r0 and
r1 (if needed). Fill in the table shown below with 0’s or 1’s (use 0’s when the
choice of 0 or 1 does not matter) as appropriate. Assume that when no regis-
ters are selected for the A-bus or the B-bus, that the bus takes on a value of 0.

F0
F1

Scratchpad

(Four 16-bit
registers)

A-bus B-bus

C-bus

0 1 2 3 0 1 2 3

0
1
2
3

Output Enables
A-bus B-bus

Write
Enables

ALU

F0 F1

0

0

1

1

0

1

0

1

ADD(A, B)

AND(A, B)
A_
A

Function

Figure 6-27 A small microarchitecture.

F0 F10 1 2 30 1 2 30 1 2 3
Write Enables A-bus enables B-bus enables

Time

0

1

2

248 CHAPTER 6 DATAPATH AND CONTROL

b) Write a control sequence that forms the exclusive-OR of the contents of
registers 0 and 1, leaving the result in register 0. Symbolically, this might be
written as: r0 ← XOR(r0, r1). Use the same style of solution as for part (a).

6.6 Write the binary form for the microinstructions shown below. Use the
style shown in Figure 6-17. Use the value 0 for any fields that are not needed.

60: R[temp0] ← NOR(R[0],R[temp0]); IF Z THEN GOTO 64;
61: R[rd] ← INC(R[rs1]);

6.7 Three binary words are shown below, each of which can be interpreted as
a microinstruction. Write the mnemonic version of the binary words using the
micro-assembly language introduced in this chapter.

6.8 Rewrite the microcode for the call instruction starting at line 1280 so
that only 3 lines of microcode are used instead of 4. Use the LSHIFT2 opera-
tion once instead of using ADD twice.

6.9 (a) How many microinstructions are executed in interpreting the subcc
instruction that was introduced in the first Example section? Write the num-
bers of the microinstructions in the order they are executed, starting with
microinstruction 0.

(b) Using the hardwired approach for the ARC microcontroller, how many
states are visited in interpreting the addcc instruction? Write the states in the
order they are executed, starting with state 0.

6.10 (a) List the microinstructions that are executed in interpreting the ba
instruction.

(b) List the states (Figure 6-22) that are visited in interpreting the ba instruc-
tion.

R
D

W
RCA B JUMP ADDRALU COND

A
M
U
X

B
M
U
X

C
M
U
X

010100 000001 0001000110000000000000000
000011 000101 0001000100011011100000001

1
0
0 000010 000011 0001000100010111100010010

0 0 0
0 0 0
0 0 0

CHAPTER 6 DATAPATH AND CONTROL 249

6.11 Register %r0 can be designed using only tri-state buffers. Show this
design.

6.12 What bit pattern should be placed in the C field of a microword if none of
the registers are to be changed?

6.13 A control unit for a machine tool is shown in Figure 6-28. You are to cre-

ate the microcode for this machine. The behavior of the machine is as follows:
If the Halt input A is ever set to 1, then the output of the machine stays halted
forever and outputs a perpetual 1 on the X line, and 0 on the V and W lines. A
waiting light (output V) is enabled (set to 1) when no inputs are enabled. That
is, V is lit when the A, B, and C inputs are 0, and the machine is not halted. A
bell is sounded (W=1) on every input event (B=1 and/or C=1) except when
the machine is halted. Input D and output S can be used for state information
for your microcode. Use 0’s for any fields that do not matter. Hint: Fill in the
lower half of the table first.

Microstore ROM

A

Clock

ROM ContentsAddress

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

A B C D

B C D

V W

V W X

SX

Register

S

Halt

Waiting Bell Halted

Figure 6-28 Control unit for a machine tool.

250 CHAPTER 6 DATAPATH AND CONTROL

6.14 For this problem, you are to extend the ARC instruction set to include a
new instruction by modifying the microprogram. The new ARC instruction
to be microcoded is:

xorcc — Perform an exclusive OR on the operands, and set the condition
codes accordingly. This is an Arithmetic format instruction. The op3 field is
010011.

Show the new microinstructions that will be added for xorcc.

6.15 Show a design for a four-word register stack, using 32-bit registers of the
form shown below:

Four registers are stacked so that the output of the top register is the input to
the second register, which outputs to the input of the third, which outputs to
the input of the fourth. The input to the stack goes into the top register, and
the output of the stack is taken from the output of the top register (not the
bottom register). There are two additional control lines, push and pop,
which cause data to be pushed onto the stack or popped off the stack, respec-
tively, when the corresponding line is 1. If neither line is 1, or if both lines are
1, then the stack is unchanged.

6.16 In line 1792 of the ARC microprogram, the conditional GOTO appears at
the end of the line, but in line 8 it appears at the beginning. Does the position
of the GOTO within a micro-assembly line matter?

6.17 A microarchitecture is shown in Figure 6-29. The datapath has four regis-
ters and an ALU. The control section is a finite state machine, in which there
is a RAM and a register. For this microarchitecture, a compiler translates a
high level program directly into microcode; there is no intermediate assembly

Read

Data In

32

Data Out

32

Write
Clock

32-Bit Register

CHAPTER 6 DATAPATH AND CONTROL 251

language form, and so there are no instruction fetch or decode cycles.

F 1
F 0

0 0 1 1

0 1 0 1

Fu
nc

tio
n

A
D

D
(A

, B
)

A
N

D
(A

, B
)

O
R

(A
, B

)
N

O
T

(A
)

A
L

U
C

1
C

0

0 0 1 1

0 1 0 1

C
on

di
tio

n

U
se

 N
ex

t A
dd

re
ss

U
se

 J
um

p
A

dd
re

ss
U

se
 J

um
p

A
dd

re
ss

 o
n

Z
er

o

 R
es

ul
t

U
se

 J
um

p
A

dd
re

ss
 o

n
N

eg
at

iv
e

 R

es
ul

tC
on

d

A
L

U
A

-B
us

B
-B

us
C

-B
us

C
on

d
Ju

m
p

A
dd

re
ss

N
ex

t A
dd

re
ss

F
0

A
L

U

R
0

R
1

R
2

R
3

A
-b

us
B

-b
us

C
-b

us

F
1

In
pu

t

O
ut

pu
t

R
A

M

22
4
 w

or
ds

 ×
 3

6
bi

ts

36

10
10

2

2n
(n

eg
at

iv
e)

 a
nd

 z
 (

ze
ro

)
bi

ts

2

C
0

C
1

A
2

3
, A

2
2

A
2

1
, A

2
0

A
1

9
 –

 A
1

0
A

9
 –

 A
0

A
dd

re
ss

 b
its

A
L

U
A

-B
us

B
-B

us
C

-B
us

C
on

d
Ju

m
p

A
dd

re
ss

N
ex

t A
dd

re
ss

0 1 2 3

R
A

M

A
dd

re
ss

4
4

4

R
2

R
3

R
0

R
1

R
2

R
3

R
0

R
1

R
2

R
3

R
0

R
1

A
 E

na
bl

e
L

in
es

B
 E

na
bl

e
L

in
es

C
 E

na
bl

e
L

in
es

Figure 6-29 An example microarchitecture.

252 CHAPTER 6 DATAPATH AND CONTROL

For this problem, you are to write the microcode that implements the instruc-
tions listed below. The microcode should be stored in locations 0, 1, 2, and 3
of the RAM. Although there are no lines that show it, assume that the n and z
bits are both 0 when C0C1 = 00. That is, A23 and A22 are both 0 when there is
no possible jump. Note: Each bit of the A, B, and C fields corresponds
directly to a register. Thus, the pattern 1000 selects register R3, not register 8,
which does not exist. There are some complexities with respect to how
branches are made in this microarchitecture, but you do not need to be con-
cerned with how this is done in order to generate the microcode.

0: R1 ← ADD(R2, R3)
1: Jump if negative to (15)10
2: R3 ← AND(R1, R2)
3: Jump to (20)10

6.18 In line 2047 of the ARC microprogram shown in Figure 6-15, would the
program behave differently if the “GOTO 0” portion of the instruction is
deleted?

6.19 In horizontal microprogramming, the microwords are wide, whereas in
vertical microprogramming the words are narrow. In general, horizontal
microwords can be executed quickly, but require more space than vertical
microwords, which take more time to execute. If we make the microword for-
mat shown in Figure 6-11 more horizontal by expanding the A, B, and C
fields to contain a single bit for each of the 38 registers instead of a coded
six-bit version, then we can eliminate the A, B, and C decoders shown in Fig-
ure 6-3. This allows the clock frequency to be increased, but also increases the
space for the microstore.

(a) How wide will the new horizontal microword be?

(b) By what percentage will the microstore increase in size?

6.20 Refer to Figure 6-7. Show the ALU LUT0 and ALU LUTx (x > 0) entries
for the INC(A) operation.

6.21 On some architectures, there is special hardware that updates the PC,
which takes into account the fact that the rightmost two bits are always 0.
There is no special hardware presented in this chapter for updating the PC,

CHAPTER 6 DATAPATH AND CONTROL 253

and the branch microcode in lines 2 - 20 of Figure 6-15 has an error in how
the PC is updated on line 12 because branch displacements are given in terms
of words. Identify the error, and explain how to fix it.

254 CHAPTER 6 DATAPATH AND CONTROL

CHAPTER 7 MEMORY

255

In the past few decades, CPU processing speed as measured by the number of
instructions executed per second has doubled every 18 months, for the same
price. Computer memory has experienced a similar increase along a different
dimension, quadrupling in size every 36 months, for the same price. Memory
speed, however, has only increased at a rate of less than 10% per year. Thus,
while processing speed increases at the same rate that memory size increases, the
gap between the speed of the processor and the speed of memory also increases.

As the gap between processor and memory speeds grows, architectural solutions
help bridge the gap. A typical computer contains several types of memory, rang-
ing from fast, expensive internal registers (see Appendix A), to slow, inexpensive
removable disks. The interplay between these different types of memory is
exploited so that a computer behaves as if it has a single, large, fast memory,
when in fact it contains a range of memory types that operate in a highly coordi-
nated fashion. We begin the chapter with a high-level discussion of how these
different memories are organized, in what is referred to as the

 memory hierarchy

.

7.1 The Memory Hierarchy

Memory in a conventional digital computer is organized in a hierarchy as illus-
trated in Figure 7-1. At the top of the hierarchy are registers that are matched in
speed to the CPU, but tend to be large and consume a significant amount of
power. There are normally only a small number of registers in a processor, on the
order of a few hundred or less. At the bottom of the hierarchy are secondary and
off-line storage memories such as hard magnetic disks and magnetic tapes, in
which the cost per stored bit is small in terms of money and electrical power, but
the access time is very long when compared with registers. Between the registers
and secondary storage are a number of other forms of memory that bridge the
gap between the two.

MEMORY

 7

256

CHAPTER 7 MEMORY

As we move up through the hierarchy, greater performance is realized, at a greater
cost. Table 7- 1shows some of the properties of the components of the memory

hierarchy in the late 1990’s. Notice that Typical Cost, arrived at by multiplying
Cost/MB

 ×

Typical Amount Used (in which “MB” is a unit of megabytes), is
approximately the same for each member of the hierarchy. Notice also that access
times vary by approximately factors of 10 except for disks, which have access
times 100,000 times slower than main memory. This large mismatch has an
important influence on how the operating system handles the movement of
blocks of data between disks and main memory, as we will see later in the chap-
ter.

Memory Type Access Time Cost /MB Typical
Amount
Used

Typical Cost

Registers 1ns High 1KB –

Cache 5-20 ns $100 1MB $100

Main memory 60-80ns $1.10 64 MB $70

Disk memory 10 ms $0.05 4 GB $200

Table 7- 1 Properties of the memory hierarchy

Registers

Cache

Main memory

Secondary storage (disks)

Off-line storage (tape)

Fast and expensive

Slow and inexpensive

Increasing
performance and
increasing cost

Figure 7-1 The memory hierarchy.

CHAPTER 7 MEMORY

257

7.2 Random Access Memory

In this section, we look at the structure and function of

random access memory

(RAM). In this context the term “random” means that any memory location can
be accessed in the same amount of time, regardless of its position in the memory.

Figure 7-2 shows the functional behavior of a RAM cell used in a typical com-

puter. The figure represents the memory element as a D flip-flop, with additional
controls to allow the cell to be selected, read, and written. There is a (bidirec-
tional) data line for data input and output. We will use cells similar to the one
shown in the figure when we discuss RAM chips. Note that this illustration does
not necessarily represent the actual physical implementation, but only its func-
tional behavior. There are many ways to implement a memory cell.

RAM chips that are based upon flip-flops, as in Figure 7-2, are referred to as

static

 RAM (SRAM), chips, because the contents of each location persist as long
as power is applied to the chips.

Dynamic RAM

 chips, referred to as

DRAM

s,
employ a

capacitor

, which stores a minute amount of electric charge, in which
the charge level represents a 1 or a 0. Capacitors are much smaller than flip-flops,
and so a capacitor based DRAM can hold much more information in the same
area than an SRAM. Since the charges on the capacitors dissipate with time, the
charge in the capacitor storage cells in DRAMs must be restored, or

refreshed

frequently.

DRAMs are susceptible to premature discharging as a result of interactions with
naturally occurring gamma rays. This is a statistically rare event, and a system

QD

CLK

Read

Select

Data
In/Out

Figure 7-2 Functional behavior of a RAM cell.

258

CHAPTER 7 MEMORY

may run for days before an error occurs. For this reason, early personal comput-
ers (PCs) did not use error detection circuitry, since PCs would be turned off at
the end of the day, and so undetected errors would not accumulate. This helped
to keep the prices of PCs competitive. With the drastic reduction in DRAM
prices and the increased uptimes of PCs operating as automated teller machines
(ATMs) and network file servers (NFSs), error detection circuitry is now com-
monplace in PCs.

In the next section we explore how RAM cells are organized into chips.

7.3 Chip Organization

A simplified pinout of a RAM chip is shown in Figure 7-3. An

m

-bit address,

having lines numbered from 0 to

m

-1 is applied to pins

A

0

-

A

m

-1

, while asserting
CS (Chip Select), and either WR (for writing data to the chip) or WR (for read-
ing data from the chip). The overbars on CS and WR indicate that the chip is
selected when CS=0 and that a write operation will occur when WR=0. When
reading data from the chip, after a time period

t

AA

 (the time delay from when the
address lines are made valid to the time the data is available at the output), the

w

-bit data word appears on the data lines

D

0

-

D

w

-1

. When writing data to a chip,
the data lines must also be held valid for a time period

t

AA

. Notice that the data
lines are bidirectional in Figure 7-3, which is normally the case.

The address lines

A

0

-

A

m

-1

 in the RAM chip shown in Figure 7-3 contain an
address, which is decoded from an

m

-bit address into one of 2

m

 locations within
the chip, each of which has a

w

-bit word associated with it. The chip thus con-
tains 2

m

×

w

 bits.

A0-Am-1 D0-Dw-1

WR

CS

Memory
Chip

Figure 7-3 Simplified RAM chip pinout

CHAPTER 7 MEMORY

259

Now consider the problem of creating a RAM that stores four four-bit words. A
RAM can be thought of as a collection of registers. We can use four-bit registers
to store the words, and then introduce an addressing mechanism that allows one
of the words to be selected for reading or for writing. Figure 7-4 shows a design

for the memory. Two address lines

A

0

 and

A

1

 select a word for reading or writing
via the 2-to-4 decoder. The outputs of the registers can be safely tied together
without risking an electrical short because the 2-to-4 decoder ensures that at
most one register is enabled at a time, and the disabled registers are electrically
disconnected through the use of tri-state buffers. The Chip Select line in the
decoder is not necessary, but will be used later in constructing larger RAMs. A
simplified drawing of the RAM is shown in Figure 7-5 .

There are two common ways to organize the generalized RAM shown in Figure
7-3. In the smallest RAM chips it is practical to use a single decoder to select one

D3
D2

D1
D0

Q3
Q2

Q1
Q0

WR

CS
Word 0

00

01

10

11

A0

A1

WR

WR

CS
Word 1

WR

CS
Word 2

WR

CS
Word 3

2-to-4
decoder

Chip Select
(CS)

Figure 7-4 A four-word memory with four bits per word in a 2D organization.

260

CHAPTER 7 MEMORY

out of 2

m

 words, each of which is

w

 bits wide. However, this organization is not
economical in ordinary RAM chips. Consider that a 64M

×

1 chip has 26 address
lines (64M = 2

26

). This means that a conventional decoder would need 2

26

26-input AND gates, which manifests itself as a large cost in terms of chip area –
and this is just for the decode.

Since most ICs are roughly square, an alternate decoding structure that signifi-
cantly reduces the decoder complexity decodes the rows separately from the col-
umns. This is referred to as a 2-1/2D organization. The 2-1/2D organization is
by far the most prevalent organization for RAM ICs. Figure 7-6 shows a 2

6

-word

×

1-bit RAM with a 2 1/2D organization. The six address lines are evenly split
between a row decoder and a column decoder (the column decoder is actually a
MUX/DEMUX combination). A single bidirectional data line is used for input
and output.

During a read operation, an entire row is selected and fed into the column

Q3 Q2 Q1 Q0

A0

A1

WR

CS

D3 D2 D1 D0

4×4 RAM

Figure 7-5 A simplified version of the four-word by four-bit RAM.

Row
Dec-
oder

Column Decoder (MUX/DEMUX)

A0

A1

A2

A3
A4

A5

Data

One Stored Bit

QD

CLK

Read

Row
Select

Column
Select

Data
In/Out

Read/Write
Control

Two bits wide:
One bit for data and
one bit for select.

Figure 7-6 2-1/2D organization of a 64-word by one-bit RAM.

CHAPTER 7 MEMORY

261

MUX, which selects a single bit for output. During a write operation, the single
bit to be written is distributed by the DEMUX to the target column, while the
row decoder selects the proper row to be written.

In practice, to reduce pin count, there are generally only

m/

2 address pins on the
chip, and the row and column addresses are time-multiplexed on these

m/

2
address lines. First, the

m/

2-bit row address is applied along with a row address
strobe, RAS, signal. The row address is latched and decoded by the chip. Then
the

m/

2-bit column address is applied, along with a column address strobe, CAS.
There may be additional pins to control the chip refresh and other memory func-
tions.

Even with this 2-1/2D organization and splitting the address into row and col-
umn components, there is still a great fanin/fanout demand on the decoder logic
gates, and the (still) large number of address pins forces memory chips into large
footprints on printed circuit boards (PCBs). In order to reduce the fanin/fanout
constraints,

tree decoders

 may be used, which are discussed in Section 7.8.1. A
newer memory architecture that serializes the address lines onto a single input
pin is discussed in Section 7.9.

Although DRAMs are very economical, SRAMs offer greater speed. The refresh
cycles, error detection circuitry, and the low operating powers of DRAMs create
a speed difference that is roughly 1/4 of SRAM speed, but SRAMs also incur a
significant cost.

The performance of both types of memory (SRAM and DRAM) can be
improved. Normally a number of words constituting a

block

 will be accessed in
succession. In this situation, memory accesses can be

interleaved

 so that while
one memory is accessing address

A

m

, other memories are accessing

A

m

+1

,

A

m

+2

,

A

m

+3

etc

. In this way the access time for each word can appear to be many times
faster.

7.3.1

CONSTRUCTING LARGE RAMS FROM SMALL RAMS

We can construct larger RAM modules from smaller RAM modules. Both the
word size and the number of words per module can be increased. For example,
eight 16M

×

 1-bit RAM modules can be combined to make a 16M

×

 8-bit RAM
module, and 32 16M

×

 1-bit RAM modules can be combined to make a 64M

×

8-bit RAM module.

262

CHAPTER 7 MEMORY

As a simple example, consider using the 4 word

×

 4-bit RAM chip shown in Fig-
ure 7-5, as a building block to first make a 4-word

×

 8-bit module, and then an
8-word

×

 4-bit module. We would like to increase the width of the four-bit
words and also increase the number of words. Consider first the problem of
increasing the word width from four bits to eight. We can accomplish this by
simply using two chips, tying their CS (chip select) lines together so they are
both selected together, and juxtaposing their data lines, as shown in Figure 7-7.

Consider now the problem of increasing the number of words from four to eight.
Figure 7-8 shows a configuration that accomplishes this. The eight words are dis-
tributed over the two four-word RAMs. Address line

A

2

 is needed because there
are now eight words to be addressed. A decoder for

A

2

 enables either the upper or
lower memory module by using the CS lines, and then the remaining address
lines (

A

0

 and

A

1

) are decoded within the enabled module. A combination of
these two approaches can be used to scale both the word size and number of
words to arbitrary sizes.

7.4 Commercial Memory Modules

Commercially available memory chips are commonly organized into standard
configurations. Figure 7-9 (Texas Instruments, 1991) shows an organization of
eight 2

20

-bit chips on a single-in-line memory module (SIMM) that form a 2

20

×

 8 (1MB) module. The electrical contacts (numbered 1 – 30) all lie in a single
line. For 2

20

 memory locations we need 20 address lines, but only 10 address
lines (A0 – A9) are provided. The 10-bit addresses for the row and column are
loaded separately, and the Column Address Strobe and Row Address Strobe sig-
nals are applied after the corresponding portion of the address is made available.
Although this organization appears to double the time it takes to access any par-

A0

A1

WR
CS

D7 D6 D5 D4 D3 D2 D1 D0

4×4 RAM

Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0

4×4 RAM

Figure 7-7 Two four-word by four-bit RAMs are used in creating a four-word by eight-bit RAM.

CHAPTER 7 MEMORY

263

ticular memory location, on average, the access time is much better since only
the row or column address needs to be updated.

The eight data bits on lines DQ1 – DQ8 form a byte that is read or written in
parallel. In order to form a 32-bit word, four SIMM modules are needed. As
with the other “active low” signals, the Write Enable line has a bar over the corre-
sponding symbol () which means that a write takes place when a 0 is placed
on this line. A read takes place otherwise. The RAS line also causes a refresh
operation, which must be performed at least every 8 ms to restore the charges on
the capacitors.

7.5 Read-Only Memory

When a computer program is loaded into the memory, it remains in the memory
until it is overwritten or until the power is turned off. For some applications, the
program never changes, and so it is hardwired into a

read-only memory

A0

A1

WR

D3 D2 D1 D0

4×4 RAM

Q3 Q2 Q1 Q0

4×4 RAM

1-to-2
decoder

0

1
A2

CS

CS

CS

Figure 7-8 Two four-word by four-bit RAMs are used in creating an eight-word by four-bit RAM.

W

264 CHAPTER 7 MEMORY

(ROM). ROMs are used to store programs in videogames, calculators, micro-
wave ovens, and automobile fuel injection controllers, among many other appli-
cations.

The ROM is a simple device. All that is needed is a decoder, some output lines,
and a few logic gates. There is no need for flip-flops or capacitors. Figure 7-10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Vcc

CAS

DQ1

A0

A1

DQ2

A2

A3

Vss

DQ3

A4

A5

DQ4

A6

A7

DQ5

A8

A9

NC

DQ6

W

Vss

DQ7

NC

DQ8

NC

RAS

NC

NC

Vcc

PIN NOMENCLATURE

Address Inputs
Column-Address Strobe

Data In/Data Out
No Connection

Row-Address Strobe
5-V Supply

Ground
Write Enable

DQ1-DQ8

CAS
A0-A9

NC

RAS
Vcc
Vss
W

Figure 7-9 Single-in-line memory module (Texas Instruments, 1991).

Q3 Q2 Q1 Q0

00

01

10

11

A0

A1

2-to-4
decoder

Enable

Location Stored
word

00
01
10
11

0101
1011
1110
0000

Figure 7-10 A ROM stores four four-bit words.

CHAPTER 7 MEMORY 265

shows a four-word ROM that stores four four-bit words (0101, 1011, 1110, and
0000). Each address input (00, 01, 10, or 11) corresponds to a different stored
word.

For high-volume applications, ROMs are factory-programmed. As an alternative,
for low-volume or prototyping applications, programmable ROMs (PROMs) are
often used, which allow their contents to be written by a user with a relatively
inexpensive device called a PROM burner. Unfortunately for the early videog-
ame industry, these PROM burners are also capable of reading the contents of a
PROM, which can then be duplicated onto another PROM, or worse still, the
contents can be deciphered through reverse engineering and then modified and
written to a new, contraband game cartridge.

Although the PROM allows the designer to delay decisions about what informa-
tion is stored, it can only be written once, or can be rewritten only if the existing
pattern is a subset of the new pattern. Erasable PROMs (EPROMs) can be writ-
ten several times, after being erased with ultraviolet light (for UVPROMs)
through a window that is mounted on the integrated circuit package. Electrically
erasable PROMs (EEPROMs) allow their contents to be rewritten electrically.
Newer flash memories can be electrically rewritten tens of thousands of times,
and are used extensively in digital video cameras, and for control programs in
set-top cable television decoders, and other devices.

PROMs will be used later in the text for control units and for arithmetic logic
units (ALUs). As an example of this type of application, consider creating an
ALU that performs the four functions: Add, Subtract, Multiply, and Divide on
eight-bit operands. We can generate a truth table that enumerates all 216 possible
combinations of operands and all 22 combinations of functions, and send the
truth table to a PROM burner which loads it into the PROM.

This brute force lookup table (LUT) approach is not as impractical as it may
seem, and is actually used in a number of situations. The PROM does not have
to be very big: there are 28 × 28 combinations of the two input operands, and
there are 22 functions, so we need a total of 28 × 28 × 22 = 218 words in the
PROM, which is small by current standards. The configuration for the PROM
ALU is shown in Figure 7-11. The address lines are used for the operands and for
the function select inputs, and the outputs are produced by simply recalling the
precomputed word stored at the addressed location. This approach is typically
faster than using a hardware implementation for the functions, but it is not
extensible to large word widths without applying some form of decomposition.

266 CHAPTER 7 MEMORY

32-bit operands are standard on computers today, and a corresponding PROM
ALU would require 232 × 232 × 22 = 266 words which is prohibitively large.

7.6 Cache Memory
When a program executes on a computer, most of the memory references are
made to a small number of locations. Typically, 90% of the execution time of a
program is spent in just 10% of the code. This property is known as the locality
principle. When a program references a memory location, it is likely to reference
that same memory location again soon, which is known as temporal locality.
Similarly, there is spatial locality, in which a memory location that is near a
recently referenced location is more likely to be referenced than a memory loca-
tion that is farther away. Temporal locality arises because programs spend much
of their time in iteration or in recursion, and thus the same section of code is vis-
ited a disproportionately large number of times. Spatial locality arises because
data tends to be stored in contiguous locations. Although 10% of the code
accounts for the bulk of memory references, accesses within the 10% tend to be
clustered. Thus, for a given interval of time, most of memory accesses come from
an even smaller set of locations than 10% of a program’s size.

Memory access is generally slow when compared with the speed of the central
processing unit (CPU), and so the memory poses a significant bottleneck in
computer performance. Since most memory references come from a small set of
locations, the locality principle can be exploited in order to improve perfor-
mance. A small but fast cache memory, in which the contents of the most com-
monly accessed locations are maintained, can be placed between the main
memory and the CPU. When a program executes, the cache memory is searched
first, and the referenced word is accessed in the cache if the word is present. If the

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7

Operand
A

Operand
B

Function
select

Output
0
0
1
1

0
1
0
1

Add
Subtract
Multiply
Divide

A17 A16 Function

Figure 7-11 A lookup table (LUT) implements an eight-bit ALU.

CHAPTER 7 MEMORY 267

referenced word is not in the cache, then a free location is created in the cache
and the referenced word is brought into the cache from the main memory. The
word is then accessed in the cache. Although this process takes longer than
accessing main memory directly, the overall performance can be improved if a
high proportion of memory accesses are satisfied by the cache.

Modern memory systems may have several levels of cache, referred to as Level 1
(L1), Level 2 (L2), and even, in some cases, Level 3 (L3). In most instances the
L1 cache is implemented right on the CPU chip. Both the Intel Pentium and the
IBM-Motorola PowerPC G3 processors have 32 Kbytes of L1 cache on the CPU
chip.

A cache memory is faster than main memory for a number of reasons. Faster
electronics can be used, which also results in a greater expense in terms of money,
size, and power requirements. Since the cache is small, this increase in cost is rel-
atively small. A cache memory has fewer locations than a main memory, and as a
result it has a shallow decoding tree, which reduces the access time. The cache is
placed both physically closer and logically closer to the CPU than the main
memory, and this placement avoids communication delays over a shared bus.

A typical situation is shown in Figure 7-12. A simple computer without a cache

memory is shown in the left side of the figure. This cache-less computer contains
a CPU that has a clock speed of 400 MHz, but communicates over a 66 MHz
bus to a main memory that supports a lower clock speed of 10 MHz. A few bus
cycles are normally needed to synchronize the CPU with the bus, and thus the
difference in speed between main memory and the CPU can be as large as a fac-
tor of ten or more. A cache memory can be positioned closer to the CPU as
shown in the right side of Figure 7-12, so that the CPU sees fast accesses over a
400 MHz direct path to the cache.

CPU
400 MHz

Main
Memory
10 MHz

Bus 66 MHz

Main
Memory
10 MHz

Bus 66 MHz

CPU

Cache

400 MHz

Without cache With cache

Figure 7-12 Placement of cache in a computer system.

268 CHAPTER 7 MEMORY

7.6.1 ASSOCIATIVE MAPPED CACHE

A number of hardware schemes have been developed for translating main mem-
ory addresses to cache memory addresses. The user does not need to know about
the address translation, which has the advantage that cache memory enhance-
ments can be introduced into a computer without a corresponding need for
modifying application software.

The choice of cache mapping scheme affects cost and performance, and there is
no single best method that is appropriate for all situations. In this section, an
associative mapping scheme is studied. Figure 7-13 shows an associative map-

ping scheme for a 232 word memory space that is divided into 227 blocks of 25 =
32 words per block. The main memory is not physically partitioned in this way,
but this is the view of main memory that the cache sees. Cache blocks, or cache
lines, as they are also known, typically range in size from 8 to 64 bytes. Data is
moved in and out of the cache a line at a time using memory interleaving (dis-
cussed earlier).

The cache for this example consists of 214 slots into which main memory blocks
are placed. There are more main memory blocks than there are cache slots, and
any one of the 227 main memory blocks can be mapped into each cache slot
(with only one block placed in a slot at a time). To keep track of which one of the
227 possible blocks is in each slot, a 27-bit tag field is added to each slot which
holds an identifier in the range from 0 to 227 – 1. The tag field is the most signif-

Slot 0

Slot 1

Slot 2

Slot 214–1

.

.

.

.

.

.

Block 0

Block 1

Block 128

Block 129

Block 227–1

Cache Memory

Main Memory

TagValid Dirty

32 words
per block

27

.

.

.

Figure 7-13 An associative mapping scheme for a cache memory.

CHAPTER 7 MEMORY 269

icant 27 bits of the 32-bit memory address presented to the cache. All the tags
are stored in a special tag memory where they can be searched in parallel. When-
ever a new block is stored in the cache, its tag is stored in the corresponding tag
memory location.

When a program is first loaded into main memory, the cache is cleared, and so
while a program is executing, a valid bit is needed to indicate whether or not the
slot holds a block that belongs to the program being executed. There is also a
dirty bit that keeps track of whether or not a block has been modified while it is
in the cache. A slot that is modified must be written back to the main memory
before the slot is reused for another block.

A referenced location that is found in the cache results in a hit, otherwise, the
result is a miss. When a program is initially loaded into memory, the valid bits
are all set to 0. The first instruction that is executed in the program will therefore
cause a miss, since none of the program is in the cache at this point. The block
that causes the miss is located in the main memory and is loaded into the cache.

In an associative mapped cache, each main memory block can be mapped to any
slot. The mapping from main memory blocks to cache slots is performed by par-
titioning an address into fields for the tag and the word (also known as the “byte”
field) as shown below:

When a reference is made to a main memory address, the cache hardware inter-
cepts the reference and searches the cache tag memory to see if the requested
block is in the cache. For each slot, if the valid bit is 1, then the tag field of the
referenced address is compared with the tag field of the slot. All of the tags are
searched in parallel, using an associative memory (which is something different
than an associative mapping scheme. See Section 7.8.3 for more on associative
memories.) If any tag in the cache tag memory matches the tag field of the mem-
ory reference, then the word is taken from the position in the slot specified by the
word field. If the referenced word is not found in the cache, then the main mem-
ory block that contains the word is brought into the cache and the referenced
word is then taken from the cache. The tag, valid, and dirty fields are updated,
and the program resumes execution.

Consider how an access to memory location (A035F014)16 is mapped to the

27 bits 5 bits

Tag Word

270 CHAPTER 7 MEMORY

cache. The leftmost 27 bits of the address form the tag field, and the remaining
five bits form the word field as shown below:

If the addressed word is in the cache, it will be found in word (14)16 of a slot that
has a tag of (501AF80)16, which is made up of the 27 most significant bits of the
address. If the addressed word is not in the cache, then the block corresponding
to the tag field (501AF80)16 will be brought into an available slot in the cache
from the main memory, and the memory reference that caused the “cache miss”
will then be satisfied from the cache.

Although this mapping scheme is powerful enough to satisfy a wide range of
memory access situations, there are two implementation problems that limit per-
formance. First, the process of deciding which slot should be freed when a new
block is brought into the cache can be complex. This process requires a signifi-
cant amount of hardware and introduces delays in memory accesses. A second
problem is that when the cache is searched, the tag field of the referenced address
must be compared with all 214 tag fields in the cache. (Alternative methods that
limit the number of comparisons are described in Sections 7.6.2 and 7.6.3.)

Replacement Policies in Associative Mapped Caches

When a new block needs to be placed in an associative mapped cache, an avail-
able slot must be identified. If there are unused slots, such as when a program
begins execution, then the first slot with a valid bit of 0 can simply be used.
When all of the valid bits for all cache slots are 1, however, then one of the active
slots must be freed for the new block. Four replacement policies that are com-
monly used are: least recently used (LRU), first-in first-out (FIFO), least fre-
quently used (LFU), and random. A fifth policy that is used for analysis
purposes only, is optimal.

For the LRU policy, a time stamp is added to each slot, which is updated when
any slot is accessed. When a slot must be freed for a new block, the contents of
the least recently used slot, as identified by the age of the corresponding time
stamp, are discarded and the new block is written to that slot. The LFU policy
works similarly, except that only one slot is updated at a time by incrementing a
frequency counter that is attached to each slot. When a slot is needed for a new
block, the least frequently used slot is freed. The FIFO policy replaces slots in

Tag Word

1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0

CHAPTER 7 MEMORY 271

round-robin fashion, one after the next in the order of their physical locations in
the cache. The random replacement policy simply chooses a slot at random.

The optimal replacement policy is not practical, but is used for comparison pur-
poses to determine how effective other replacement policies are to the best possi-
ble. That is, the optimal replacement policy is determined only after a program
has already executed, and so it is of little help to a running program.

Studies have shown that the LFU policy is only slightly better than the random
policy. The LRU policy can be implemented efficiently, and is sometimes pre-
ferred over the others for that reason. A simple implementation of the LRU pol-
icy is covered in Section 7.6.7.

Advantages and Disadvantages of the Associative Mapped Cache

The associative mapped cache has the advantage that any main memory block
can be placed into any cache slot. This means that regardless of how irregular the
data and program references are, if a slot is available for the block, it can be
stored in the cache. This results in considerable hardware overhead needed for
cache bookkeeping. Each slot must have a 27-bit tag that identifies its location in
main memory, and each tag must be searched in parallel. This means that in the
example above the tag memory must be 27 × 214 bits in size, and as described
above, there must be a mechanism for searching the tag memory in parallel.
Memories that can be searched for their contents, in parallel, are referred to as
associative, or content-addressable memories. We will discuss this kind of
memory later in the chapter.

By restricting where each main memory block can be placed in the cache, we can
eliminate the need for an associative memory. This kind of cache is referred to as
a direct mapped cache, which is discussed in the next section.

7.6.2 DIRECT MAPPED CACHE

Figure 7-14 shows a direct mapping scheme for a 232 word memory. As before,
the memory is divided into 227 blocks of 25 = 32 words per block, and the cache
consists of 214 slots. There are more main memory blocks than there are cache
slots, and a total of 227/214 = 213 main memory blocks can be mapped onto each
cache slot. In order to keep track of which of the 213 possible blocks is in each
slot, a 13-bit tag field is added to each slot which holds an identifier in the range

272 CHAPTER 7 MEMORY

from 0 to 213 – 1.

This scheme is called “direct mapping” because each cache slot corresponds to an
explicit set of main memory blocks. For a direct mapped cache, each main mem-
ory block can be mapped to only one slot, but each slot can receive more than
one block. The mapping from main memory blocks to cache slots is performed
by partitioning an address into fields for the tag, the slot, and the word as shown
below:

The 32-bit main memory address is partitioned into a 13-bit tag field, followed
by a 14-bit slot field, followed by a five-bit word field. When a reference is made
to a main memory address, the slot field identifies in which of the 214 slots the
block will be found if it is in the cache. If the valid bit is 1, then the tag field of
the referenced address is compared with the tag field of the slot. If the tag fields
are the same, then the word is taken from the position in the slot specified by the
word field. If the valid bit is 1 but the tag fields are not the same, then the slot is
written back to main memory if the dirty bit is set, and the corresponding main
memory block is then read into the slot. For a program that has just started exe-
cution, the valid bit will be 0, and so the block is simply written to the slot. The
valid bit for the block is then set to 1, and the program resumes execution.

Slot 0

Slot 1

Slot 2

Slot 214–1

.

.

.

.

.

.

.

.

.

Block 0

Block 1

Block 2

Block 2

Block 227

+1

Cache Memory

Main Memory

TagValid Dirty

32 words
per block

13

14

14

Figure 7-14 A direct mapping scheme for cache memory.

13 bits 5 bits14 bits

Tag WordSlot

CHAPTER 7 MEMORY 273

Consider how an access to memory location (A035F014)16 is mapped to the
cache. The bit pattern is partitioned according to the word format shown above.
The leftmost 13 bits form the tag field, the next 14 bits form the slot field, and
the remaining five bits form the word field as shown below:

If the addressed word is in the cache, it will be found in word (14)16 of slot
(2F80)16, which will have a tag of (1406)16.

Advantages and Disadvantages of the Direct Mapped Cache

The direct mapped cache is a relatively simple scheme to implement. The tag
memory in the example above is only 13 × 214 bits in size, less than half of the
associative mapped cache. Furthermore, there is no need for an associative
search, since the slot field of the main memory address from the CPU is used to
“direct” the comparison to the single slot where the block will be if it is indeed in
the cache.

This simplicity comes at a cost. Consider what happens when a program refer-
ences locations that are 219 words apart, which is the size of the cache. This pat-
tern can arise naturally if a matrix is stored in memory by rows and is accessed by
columns. Every memory reference will result in a miss, which will cause an entire
block to be read into the cache even though only a single word is used. Worse
still, only a small fraction of the available cache memory will actually be used.

Now it may seem that any programmer who writes a program this way deserves
the resulting poor performance, but in fact, fast matrix calculations use
power-of-two dimensions (which allows shift operations to replace costly multi-
plications and divisions for array indexing), and so the worst-case scenario of
accessing memory locations that are 219 addresses apart is not all that unlikely.
To avoid this situation without paying the high implementation price of a fully
associative cache memory, the set associative mapping scheme can be used,
which combines aspects of both direct mapping and associative mapping. Set
associative mapping, which is also known as set-direct mapping, is described in
the next section.

Tag Word

1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0

Slot

274 CHAPTER 7 MEMORY

7.6.3 SET ASSOCIATIVE MAPPED CACHE

The set associative mapping scheme combines the simplicity of direct mapping
with the flexibility of associative mapping. Set associative mapping is more prac-
tical than fully associative mapping because the associative portion is limited to
just a few slots that make up a set, as illustrated in Figure 7-15. For this example,

two blocks make up a set, and so it is a two-way set associative cache. If there are
four blocks per set, then it is a four-way set associative cache.

Since there are 214 slots in the cache, there are 214/2 = 213 sets. When an address
is mapped to a set, the direct mapping scheme is used, and then associative map-
ping is used within a set. The format for an address has 13 bits in the set field,
which identifies the set in which the addressed word will be found if it is in the
cache. There are five bits for the word field as before and there is a 14-bit tag field
that together make up the remaining 32 bits of the address as shown below:

As an example of how the set associative cache views a main memory address,
consider again the address (A035F014)16. The leftmost 14 bits form the tag
field, followed by 13 bits for the set field, followed by five bits for the word field

Slot 0

Slot 1

Slot 2

Slot 214–1

.

.

.

.

.

.

.

.

.

Block 0

Block 1

Block 213

Block 213+1

Block 227–1

Cache

Main Memory

TagValid Dirty

32 words
per block

Set 0

Set 1

Set 213–1

14

Figure 7-15 A set associative mapping scheme for a cache memory.

Tag WordSet

14 bits 5 bits13 bits

CHAPTER 7 MEMORY 275

as shown below:

As before, the partitioning of the address field is known only to the cache, and
the rest of the computer is oblivious to any address translation.

Advantages and Disadvantages of the Set Associative Mapped Cache

In the example above, the tag memory increases only slightly from the direct
mapping example, to 13 × 214 bits, and only two tags need to be searched for
each memory reference. The set associative cache is almost universally used in
today’s microprocessors.

7.6.4 CACHE PERFORMANCE

Notice that we can readily replace the cache direct mapping hardware with asso-
ciative or set associative mapping hardware, without making any other changes
to the computer or the software. Only the runtime performance will change
between methods.

Runtime performance is the purpose behind using a cache memory, and there are
a number of issues that need to be addressed as to what triggers a word or block
to be moved between the cache and the main memory. Cache read and write pol-
icies are summarized in Figure 7-16. The policies depend upon whether or not
the requested word is in the cache. If a cache read operation is taking place, and
the referenced data is in the cache, then there is a “cache hit” and the referenced
data is immediately forwarded to the CPU. When a cache miss occurs, then the
entire block that contains the referenced word is read into the cache.

In some cache organizations, the word that causes the miss is immediately for-
warded to the CPU as soon as it is read into the cache, rather than waiting for the
remainder of the cache slot to be filled, which is known as a load-through oper-
ation. For a non-interleaved main memory, if the word occurs in the last position
of the block, then no performance gain is realized since the entire slot is brought
in before load-through can take place. For an interleaved main memory, the
order of accesses can be organized so that a load-through operation will always
result in a performance gain.

Tag Word

1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0

Set

276 CHAPTER 7 MEMORY

For write operations, if the word is in the cache, then there may be two copies of
the word, one in the cache, and one in main memory. If both are updated simul-
taneously, this is referred to as write-through. If the write is deferred until the
cache line is flushed from the cache, this is referred to as write-back. Even if the
data item is not in the cache when the write occurs, there is the choice of bring-
ing the block containing the word into the cache and then updating it, known as
write-allocate, or to update it in main memory without involving the cache,
known as write-no-allocate.

Some computers have separate caches for instructions and data, which is a varia-
tion of a configuration known as the Harvard architecture (also known as a
split cache), in which instructions and data are stored in separate sections of
memory. Since instruction slots can never be dirty (unless we write self-modify-
ing code, which is rare these days), an instruction cache is simpler than a data
cache. In support of this configuration, observations have shown that most of the
memory traffic moves away from main memory rather than toward it. Statisti-
cally, there is only one write to memory for every four read operations from
memory. One reason for this is that instructions in an executing program are
only read from the main memory, and are never written to the memory except by

Cache
Read

Cache
Write

Data is
in the
cache

Data is
not in the
cache

Data is
in the
cache

Data is
not in the
cache

Forward
to CPU.

Write Through:
Write data to both
cache and main
memory,

Write Back: Write
data to cache only.
Defer main memory
write until block is
flushed.

Load Through:
Forward the word
as cache line is
filled,
 -or-
Fill cache line and
then forward word.

Write Allocate: Bring
line into cache, then
update it,
 -or-
Write No-Allocate:
Update main memory
only.

-or-

Figure 7-16 Cache read and write policies.

CHAPTER 7 MEMORY 277

the system loader. Another reason is that operations on data typically involve
reading two operands and storing a single result, which means there are two read
operations for every write operation. A cache that only handles reads, while send-
ing writes directly to main memory can thus also be effective, although not nec-
essarily as effective as a fully functional cache.

As to which cache read and write policies are best, there is no simple answer. The
organization of a cache is optimized for each computer architecture and the mix
of programs that the computer executes. Cache organization and cache sizes are
normally determined by the results of simulation runs that expose the nature of
memory traffic.

7.6.5 HIT RATIOS AND EFFECTIVE ACCESS TIMES

Two measures that characterize the performance of a cache memory are the hit
ratio and the effective access time. The hit ratio is computed by dividing the
number of times referenced words are found in the cache by the total number of
memory references. The effective access time is computed by dividing the total
time spent accessing memory (summing the main memory and cache access
times) by the total number of memory references. The corresponding equations
are given below:

Consider computing the hit ratio and the effective access time for a program
running on a computer that has a direct mapped cache with four 16-word slots.
The layout of the cache and the main memory are shown in Figure 7-17. The
cache access time is 80 ns, and the time for transferring a main memory block to
the cache is 2500 ns. Assume that load-through is used in this architecture and
that the cache is initially empty. A sample program executes from memory loca-
tions 48 – 95, and then loops 10 times from 15 – 31 before halting.

We record the events as the program executes as shown in Figure 7-18. Since the
memory is initially empty, the first instruction that executes causes a miss. A miss
thus occurs at location 48, which causes main memory block #3 to be read into
cache slot #3. This first memory access takes 2500 ns to complete. Load-through
is used for this example, and so the word that causes the miss at location 48 is
passed directly to the CPU while the rest of the block is loaded into the cache

Hit ratio No. times referenced words are in cache
Total number of memory accesses

---=

Eff. access time # hits() Time per hit() # misses() Time per miss()+
Total number of memory access

---=

278 CHAPTER 7 MEMORY

slot. The next event consists of 15 hits for locations 49 through 63. The events
that follow are recorded in a similar manner, and the result is a total of 213 hits
and five misses. The total number of accesses is 213 + 5 = 218. The hit ratio and
effective access time are computed as shown below:

Although the hit ratio is 97.6%, the effective access time for this example is

Slot 0

Slot 1

Slot 2

Slot 3

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

0 - 15

Cache

Main Memory

16 - 31

32 - 47

48 - 63

64 - 79

80 - 95

.

.

.

Figure 7-17 An example of a direct mapped cache memory.

Event Location Time Comment

48 2500ns Memory block 3 to cache slot 31 miss
49-63 80ns×15=1200ns15 hits
64 2500ns Memory block 4 to cache slot 01 miss
65-79 80ns×15=1200ns15 hits
80 2500ns Memory block 5 to cache slot 11 miss
81-95 80ns×15=1200ns15 hits
15 2500ns Memory block 0 to cache slot 01 miss
16 2500ns Memory block 1 to cache slot 11 miss
17-31 80ns×15=1200ns15 hits
15 80ns×9=720ns Last nine iterations of loop9 hits
16-31 80ns×144=12,240ns Last nine iterations of loop144 hits

Total hits = 213 Total misses = 5

Figure 7-18 A table of events for a program executing on an architecture with a small direct mapped

cache memory.

Hit ratio 213
218
--------- 97.7%= =

EffectiveAccessTime 213() 80ns() 5() 2500ns()+
218

--- 136ns= =

CHAPTER 7 MEMORY 279

almost 75% longer than the cache access time. This is due to the large amount of
time spent in accessing a block from main memory.

7.6.6 MULTILEVEL CACHES

As the sizes of silicon ICs have increased, and the packing density of components
on ICs has increased, it has become possible to include cache memory on the
same IC as the processor. Since the on-chip processing speed is faster than the
speed of communication between chips, an on-chip cache can be faster than an
off-chip cache. Current technology is not dense enough to allow the entire cache
to be placed on the same chip as the processor, however. For this reason, multi-
level caches have been developed, in which the fastest level of the cache, L1, is
on the same chip as the processor, and the remaining cache is placed off of the
processor chip. Data and instruction caches are separately maintained in the L1
cache. The L2 cache is unified, which means that the same cache holds both data
and instructions.

In order to compute the hit ratio and effective access time for a multilevel cache,
the hits and misses must be recorded among both caches. Equations that repre-
sent the overall hit ratio and the overall effective access time for a two-level cache
are shown below. H1 is the hit ratio for the on-chip cache, H2 is the hit ratio for
the off-chip cache, and TEFF is the overall effective access time. The method can
be extended to any number of levels.

7.6.7 CACHE MANAGEMENT

Management of a cache memory presents a complex problem to the system pro-
grammer. If a given memory location represents an I/O port, as it may in mem-
ory-mapped systems, then it probably should not appear in the cache at all. If it
is cached, the value in the I/O port may change, and this change will not be
reflected in the value of the data stored in the cache. This is known as “stale”

H1
 No. times accessed word is in on-chip cache

Total number of memory accesses
--=

H2
 No. times accessed word is in off-chip cache

No. times accessed word is not in on-chip cache
--=

TEFF No. on-chip cache hits() On-chip cache hit time()
No. off-chip cache hits() Off-chip cache hit time()
No. off-chip cache misses() Off-chip cache miss time()

+
+

Total number of memory accesses⁄

=

280 CHAPTER 7 MEMORY

data: the copy that is in the cache is “stale” compared with the value in main
memory. Likewise, in shared-memory multiprocessor environments (see Chap-
ter 10), where more than one processor may access the same main memory,
either the cached value or the value in main memory may become stale due to
the activity of one or more of the CPUs. At a minimum, the cache in a multipro-
cessor environment should implement a write-through policy for those cache
lines which map to shared memory locations.

For these reasons, and others, most modern processor architectures allow the sys-
tem programmer to have some measure of control over the cache. For example,
the Motorola PPC 601 processor’s cache, which normally enforces a write-back
policy, can be set to a write-through policy on a per-line basis. Other instructions
allow individual lines to be specified as noncacheable, or to be marked as invalid,
loaded, or flushed.

Internal to the cache, replacement policies (for associative and set-associative
caches) need to be implemented efficiently. An efficient implementation of the
LRU replacement policy can be achieved with the Neat Little LRU Algorithm
(origin unknown). Continuing with the cache example used in Section 7.6.5, we
construct a matrix in which there is a row and a column for every slot in the
cache, as shown in Figure 7-19. Initially, all of the cells are set to 0. Each time

that a slot is accessed, 1’s are written into each cell in the row of the table that

0

1

2

3

0 1 2 3

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Cache slot

C
ac

he
 s

lo
t

0

1

2

3

0 1 2 3

0 1 0 0

0 0 0 0

1 1 0 0

1 1 1 0

0

1

2

3

0 1 2 3

0 0 0 0

1 0 1 1

1 0 0 0

1 0 1 0

0

1

2

3

0 1 2 3

0 1 1 1

0 0 1 1

0 0 0 0

0 0 1 0

0

1

2

3

0 1 2 3

0 1 0 1

0 0 0 1

1 1 0 1

0 0 0 0

0

1

2

3

0 1 2 3

0 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

0

1

2

3

0 1 2 3

0 1 0 1

0 0 0 0

1 1 0 1

0 0 0 0

Initial Block accesses: 0 0, 2

0, 2, 3 0, 2, 3, 1 0, 2, 3, 1, 5 0, 2, 3, 1, 5, 4

Figure 7-19 A sequence is shown for the Neat Little LRU Algorithm for a cache with four slots.

Main memory blocks are accessed in the sequence: 0, 2, 3, 1, 5, 4.

CHAPTER 7 MEMORY 281

corresponds to that slot. 0’s are then written into each cell in the column that
corresponds to that slot. Whenever a slot is needed, the row that contains all 0’s
is the oldest and is used next. At the beginning of the process, more than one row
will contain all 0’s, and so a tie-breaking mechanism is needed. The first row with
all 0’s is one method that will work, which we use here.

The example shown in Figure 7-19 shows the configuration of the matrix as
blocks are accessed in the order: 0, 2, 3, 1, 5, 4. Initially, the matrix is filled with
0’s. After a reference is made to block 0, the row corresponding to block 0 is
filled with 1’s and the column corresponding to block 0 is filled with 0’s. For this
example, block 0 happens to be placed in slot 0, but for other situations, block 0
can be placed in any slot. The process continues until all cache slots are in use at
the end of the sequence: 0, 2, 3, 1. In order to bring the next block (5) into the
cache, a slot must be freed. The row for slot 0 contains 0’s, and so it is the least
recently used slot. Block 5 is then brought into slot 0. Similarly, when block 4 is
brought into the cache, slot 2 is overwritten.

7.7 Virtual Memory
Despite the enormous advancements in creating ever larger memories in smaller
areas, computer memory is still like closet space, in the sense that we can never
have enough of it. An economical method of extending the apparent size of the
main memory is to augment it with disk space, which is one aspect of virtual
memory that we cover in this section. Disk storage appears near the bottom of
the memory hierarchy, with a lower cost per bit than main memory, and so it is
reasonable to use disk storage to hold the portions of a program or data sets that
do not entirely fit into the main memory. In a different aspect of virtual memory,
complex address mapping schemes are supported, which give greater flexibility in
how the memory is used. We explore these aspects of virtual memory below.

7.7.1 OVERLAYS

An early approach of using disk storage to augment the main memory made use
of overlays, in which an executing program overwrites its own code with other
code as needed. In this scenario, the programmer has the responsibility of man-
aging memory usage. Figure 7-20 shows an example in which a program contains
a main routine and three subroutines A, B, and C. The physical memory is
smaller than the size of the program, but is larger than any single routine. A strat-
egy for managing memory using overlays is to modify the program so that it
keeps track of which subroutines are in memory, and reads in subroutine code as

282 CHAPTER 7 MEMORY

needed. Typically, the main routine serves as the driver and manages the bulk of
the bookkeeping. The driver stays in memory while other routines are brought in
and out.

Figure 7-20 shows a partition graph that is created for the example program.
The partition graph identifies which routines can overlay others based on which
subroutines call others. For this example, the main routine is always present, and
supervises which subset of subroutines are in memory. Subroutines B and C are
kept in the same partition in this example because B calls C, but subroutine A is
in its own partition because only the main routine calls A. Partition #0 can thus
overlay partition #1, and partition #1 can overlay partition #0.

Although this method will work well in a variety of situations, a cleaner solution
might be to let an operating system manage the overlays. When more than one
program is loaded into memory, however, then the routines that manage the
overlays cannot operate without interacting with the operating system in order to
find out which portions of memory are available. This scenario introduces a great
deal of complexity into managing the overlay process since there is a heavy inter-
action between the operating system and each program. An alternative method
that can be managed by the operating system alone is called paging, which is
described in the next section.

Main Routine

Subroutine A

Subroutine B

Subroutine C

Compiled program

Main A

BC

Partition graph

Partition #0

Partition #1

Physical Memory

Smaller
than

program

Figure 7-20 A partition graph for a program with a main routine and three subroutines.

CHAPTER 7 MEMORY 283

7.7.2 PAGING

Paging is a form of automatic overlaying that is managed by the operating sys-
tem. The address space is partitioned into equal sized blocks, called pages. Pages
are normally an integral power of two in size such as 210 = 1024 bytes. Paging
makes the physical memory appear larger than it truly is by mapping the physical
memory address space to some portion of the virtual memory address space,
which is normally stored on a disk. An illustration of a virtual memory mapping
scheme is shown in Figure 7-21. Eight virtual pages are mapped to four physical
page frames.

An implementation of virtual memory must handle references that are made out-
side of the portion of virtual space that is mapped to physical space. The follow-
ing sequence of events is typical when a referenced virtual location is not in
physical memory, which is referred to as a page fault:

1) A page frame is identified to be overwritten. The contents of the page
frame are written to secondary memory if changes were made to it, so that
the changes are recorded before the page frame is overwritten.

2) The virtual page that we want to access is located in secondary memory
and is written into physical memory, in the page frame located in (1) above.

3) The page table (see below) is updated to map the new section of virtual
memory onto the physical memory.

Virtual memory

Physical memory

Page frame 0

Page frame 1

Page frame 2

Page frame 3

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7

Virtual
addresses

Physical
addresses

0 - 1023

1024 - 2047

2048 - 3071

3072 - 4095

4096 - 5119

5120 - 6143

6144 - 7167

7168 - 8191

0 - 1023

1024 - 2047

2048 - 3071

3072 - 4095

Figure 7-21 A mapping between a virtual and a physical memory.

284 CHAPTER 7 MEMORY

4) Execution continues.

For the virtual memory shown in Figure 7-21, there are 213 = 8192 virtual loca-
tions and so an executing program must generate 13-bit addresses, which are
interpreted as a 3-bit page number and a 10-bit offset within the page. Given the
3-bit page number, we need to find out where the page is: it is either in one of
the four page frames, or it is in secondary memory. In order to keep track of
which pages are in physical memory, a page table is maintained, as illustrated in
Figure 7-22, which corresponds to the mapping shown in Figure 7-21.

The page table has as many entries as there are virtual pages. The present bit
indicates whether or not the corresponding page is in physical memory. The disk
address field is a pointer to the location that the corresponding page can be
found on a disk unit. The operating system normally manages the disk accesses,
and so the page table only needs to maintain the disk addresses that the operating
system assigns to blocks when the system starts up. The disk addresses normally
do not change during the course of computation. The page frame field indicates
which physical page frame holds a virtual page, if the page is in physical memory.
For pages that are not in physical memory, the page frame fields are invalid, and
so they are marked with “xx” in Figure 7-22.

In order to translate a virtual address to a physical address, we take two page
frame bits from the page table and append them to the left of the 10-bit offset,
which produces the physical address for the referenced word. Consider the situa-
tion shown in Figure 7-23, in which a reference is made to virtual address
1001101000101. The three leftmost bits of the virtual address (100) identify the

Present bit:
0: Page is not in

physical memory
1: Page is in physical

memory

Present bit

Page #

0

1

2

3

4

5

6

7

1

0

1

0

1

0

0

1

00

xx

01

xx

11

xx

xx

10

Disk address

Page frame

01001011100

11101110010

10110010111

00001001111

01011100101

10100111001

00110101100

01010001011

Figure 7-22 A page table for a virtual memory.

CHAPTER 7 MEMORY 285

page. The bit pattern that appears in the page frame field (11) is appended to the
left of the 10-bit offset (1101000101), and the resulting address
(111101000101) indicates which physical memory address holds the referenced
word.

It may take a relatively long period of time for a program to be loaded into mem-
ory. The entire program may never be executed, and so the time required to load
the program from a disk into the memory can be reduced by loading only the
portion of the program that is needed for a given interval of time. The demand
paging scheme does not load a page into memory until there is a page fault.
After a program has been running for a while, only the pages being used will be
in physical memory (this is referred to as the working set), so demand paging
does not have a significant impact on long running programs.

Consider again the memory mapping shown in Figure 7-21. The size of the vir-
tual address space is 213 words, and the physical address space is 212 words.
There are eight pages that each contain 210 words. Assume that the memory is
initially empty, and that demand paging is used for a program that executes from
memory locations 1030 to 5300. The execution sequence will make accesses to
pages 1, 2, 3, 4, and 5, in that order. The page replacement policy is FIFO. Fig-
ure 7-24 shows the configuration of the page table as execution proceeds. The
first access to memory will cause a page fault on virtual address 1030, which is in
page #1. The page is brought into physical memory, and the valid bit and page
frame field are updated in the page table. Execution continues, until page #5

0

1

2

3

4

5

6

7

1

0

1

0

1

0

0

1

00

xx

01

xx

11

xx

xx

10

01001011100

11101110010

10110010111

00001001111

01011100101

10100111001

00110101100

01010001011

1 0 0 1 1 0 1 0 0 0 1 0 1 Virtual address

Page table

1 1 1 1 0 1 0 0 0 1 0 1

Physical address

Page Offset

Figure 7-23 A virtual address is translated into a physical address.

286 CHAPTER 7 MEMORY

must be brought in, which forces out page #1 due to the FIFO page replacement
policy. The final configuration of the page table in Figure 7-24 is shown after
location 5300 is accessed.

7.7.3 SEGMENTATION

Virtual memory as we have discussed it up to this point is one-dimensional in
the sense that addresses grow either up or down. Segmentation divides the
address space into segments, which may be of arbitrary size. Each segment is its
own one-dimensional address space. This allows tables, stacks, and other data
structures to be maintained as logical entities that grow without bumping into
each other. Segmentation allows for protection, so that a segment may be speci-
fied as “read only” to prevent changes, or “execute only” to prevent unauthorized
copying. This also protects users from trying to write data into instruction areas.

When segmentation is used with virtual memory, the size of each segment’s
address space can be very large, and so the physical memory devoted to each seg-
ment is not committed until needed.

0

1

2

3

4

5

6

7

0

1

0

0

0

0

0

0

xx

00

xx

xx

xx

xx

xx

xx

01001011100

11101110010

10110010111

00001001111

01011100101

10100111001

00110101100

01010001011

After
fault on
page #1

0

1

2

3

4

5

6

7

0

1

1

1

0

0

0

0

xx

00

01

10

xx

xx

xx

xx

01001011100

11101110010

10110010111

00001001111

01011100101

10100111001

00110101100

01010001011

0

1

2

3

4

5

6

7

0

1

1

0

0

0

0

0

xx

00

01

xx

xx

xx

xx

xx

01001011100

11101110010

10110010111

00001001111

01011100101

10100111001

00110101100

01010001011

0

1

2

3

4

5

6

7

0

0

1

1

1

1

0

0

xx

xx

01

10

11

00

xx

xx

01001011100

11101110010

10110010111

00001001111

01011100101

10100111001

00110101100

01010001011

Final

After
fault on
page #2

After
fault on
page #3

Figure 7-24 The configuration of a page table changes as a program executes. Initially, the page

table is empty. In the final configuration, four pages are in physical memory.

CHAPTER 7 MEMORY 287

Figure 7-25 illustrates a segmented memory. The executable code for a word pro-

cessing program is loaded into Segment #0. This segment is marked as “execute
only” and is thus protected from writing. Segment #1 is used for the data space
for user #0, and is marked as “read/write” for user #0, so that no other user can
have access to this area. Segment #2 is used for the data space for user #1, and is
marked as “read/write” for user #1. The same word processor can be used by both
user #0 and user #1, in which case the code in segment #0 is shared, but each
user has a separate data segment.

Segmentation is not the same thing as paging. With paging, the user does not see
the automatic overlaying. With segmentation, the user is aware of where segment
boundaries are. The operating system manages protection and mapping, and so
an ordinary user does not normally need to deal with bookkeeping, but a more
sophisticated user such as a computer programmer may see the segmentation fre-
quently when array pointers are pushed past segment boundaries in errant pro-
grams.

In order to specify an address in a segmented memory, the user’s program must
specify a segment number and an address within the segment. The operating sys-
tem then translates the user’s segmented address to a physical address.

7.7.4 FRAGMENTATION

When a computer is “booted up,” it goes through an initialization sequence that
loads the operating system into memory. A portion of the address space may be
reserved for I/O devices, and the remainder of the address space is then available
for use by the operating system. This remaining portion of the address space may

Address space for
code segment of
word processor

Data space
for user #0

Data space
for user #1

Used

Used

Used

Free

Free

Unused

Segment #0
Execute only

Segment #1
Read/write by

user #0

Segment #2
Read/write by

user #1

Figure 7-25 A segmented memory allows two users to share the same word processor.

288 CHAPTER 7 MEMORY

be only partially filled with physical memory: the rest comprises a “Dead Zone”
which must never be accessed since there is no hardware that responds to the
Dead Zone addresses.

Figure 7-26a shows the state of a memory just after the initialization sequence.

The “Free Area” is a section of memory that is available to the operating system
for loading and executing programs. During the course of operation, programs of
various sizes will be loaded into memory and executed. When a program finishes
execution, the memory space that is assigned to that program is released to the
operating system. As programs are loaded and executed, the Free Area becomes
subdivided into a collection of small areas, none of which may be large enough to
hold a program that would fit unless some or all of the free areas are combined
into a single large area. This is a problem known as fragmentation, and is
encountered with segmentation, because the segments must ultimately be
mapped within a single linear address space.

Figure 7-26b illustrates the fragmentation problem. When the operating system
needs to find a free area that is large enough to hold a program, it will rarely find
an exact match. The free area will generally be larger than the program, which
has the effect of subdividing the free areas more finely as programs are mis-
matched with free areas. One method of assigning programs to free areas is called
first fit, in which the free areas are scanned until a large enough area is found
that will satisfy the program. Another method is called best fit, in which the free

(a) (b) (c)

Operating
System

Free Area

I/O Space

Dead Zone

Operating
System

I/O Space

Dead Zone

Free Area

Free Area

Free Area

Free Area

Program A

Program B

Program C

Operating
System

I/O Space

Dead Zone

Free Area

Free Area

Free Area

Program A

Program B

Program C

Figure 7-26 (a) Free area of memory after initialization; (b) after fragmentation; (c) after coalescing.

CHAPTER 7 MEMORY 289

area is used that wastes the least amount of space. While best fit makes better use
of memory than first fit, it requires more time because all of the free areas must
be scanned.

Regardless of which algorithm is used, the process of assigning programs or data
to free areas tends to produce smaller free areas (Knuth, 1974). This makes it
more difficult to find a single contiguous free area that is large enough to satisfy
the needs of the operating system. An approach that helps to solve this problem
coalesces adjacent free areas into a single larger free area. In Figure 7-26b, the two
adjacent free areas are combined into a single free area, as illustrated in Figure
7-26c.

7.7.5 VIRTUAL MEMORY VS. CACHE MEMORY

Virtual memory is divided into pages, which are relatively large when compared
with cache memory blocks, which tend to be only a few words in size. Copies of
the most heavily used blocks are kept in cache memory as well as in main mem-
ory, and also in the virtual memory image that is stored on a hard disk. When a
memory reference is made on a computer that contains both cache and virtual
memories, the cache hardware sees the reference first and satisfies the reference if
the word is in the cache. If the referenced word is not in the cache, then the
block that contains the word is read into the cache from the main memory, and
the referenced word is then taken from the cache. If the page that contains the
word is not in the main memory, then the page is brought into the main memory
from a disk unit, and the block is then loaded into the cache so that the reference
can be satisfied.

The use of virtual memory causes some intricate interactions with the cache. For
example, since more than one program may be using the cache and the virtual
memory, the timing statistics for two runs of a program executing on the same
set of data may be different. Also, when a dirty block needs to be written back to
main memory, it is possible that the page frame that contains the corresponding
virtual page has been overwritten. This causes the page to be loaded back to main
memory from secondary memory in order to flush the dirty block from the cache
memory to the main memory.

7.7.6 THE TRANSLATION LOOKASIDE BUFFER

The virtual memory mechanism, while being an elegant solution to the problem
of accessing large programs and data files, has a significant problem associated

290 CHAPTER 7 MEMORY

with it. At least two memory references are needed to access a value in memory:
One reference is to the page table to find the physical page frame, and another
reference is for the actual data value. The translation lookaside buffer (TLB) is
a solution to this problem.

The TLB is a small associative memory typically placed inside of the CPU that
stores the most recent translations from virtual to physical address. The first time
a given virtual address is translated into a physical address, this translation is
stored in the TLB. Each time the CPU issues a virtual address, the TLB is
searched for that virtual address. If the virtual page number exists in the TLB, the
TLB returns the physical page number, which can be immediately sent to the
main memory (but normally, the cache memory would intercept the reference to
main memory and satisfy the reference out of the cache.)

An example TLB is shown in Figure 7-27. The TLB holds 8 entries, for a system

that has 32 pages and 16 page frames. The virtual page field is 5 bits wide
because there are 25 = 32 pages. Likewise, the physical page field is 4 bits wide
because there are 24=16 page frames.

TLB misses are handled in much the same way as with other memory misses.
Upon a TLB miss the virtual address is applied to the virtual memory system,
where it is looked up in the page table in main memory. If it is found in the page
table, then the TLB is updated, and the next reference to that page will thus
result in a TLB hit.

Valid
Virtual page

number
Physical

page number

1

1

0

0

1

0

1

0

0 1 0 0 1 1 1 0 0

1 0 1 1 1 1 0 0 1

- - - - - - - - -

- - - - - - - - -

0 1 1 1 0 0 0 0 0

- - - - - - - - -

0 0 1 1 0 0 1 1 1

- - - - - - - - -

Figure 7-27 An example TLB that holds 8 entries for a system with 32 virtual pages and 16 page

frames.

CHAPTER 7 MEMORY 291

7.8 Advanced Topics
This section covers two topics that are of practical importance in designing
memory systems: tree decoders and content-addressable memories. The former
are required in large memories. The latter are required for associative caches, such
as a TLB, or in other situations when data must be looked up at high speed based
on its value, rather than on the address of where it is stored.

7.8.1 TREE DECODERS

Decoders (see Appendix A) do not scale well to large sizes due to practical limita-
tions on fan-in and fan-out. The decoder circuit shown in Figure 7-28 illustrates

the problem. For N address bits, every AND gate has a fan-in of N. Each address
line is fanned out to 2N AND gates. The circuit depth is two gates.

The circuit shown in Figure 7-29a is a tree decoder, which reduces the fan-in
and fan-out by increasing circuit depth. For this case, each AND gate has a
fan-in of F (for this example, F = 2) and only the address line that is introduced
at the deepest level (a0 here) is fanned out to 2N/2 AND gates. The depth has
now increased to logF(2N). The large fan-out for the higher order address bits
may be a problem, but this can be easily fixed without increasing the circuit
depth by adding fan-out buffers in the earlier levels, as shown in Figure 7-29b.

Thus, the depth of a memory decoder tree is logF(2N), the width is 2N, and the

d0

d1

d2

d3

d4

d5

d6

d7

a0

a1

a2

Figure 7-28 A conventional decoder.

292 CHAPTER 7 MEMORY

maximum fan-in and fan-out of the logic gates within the decoder is F.

7.8.2 DECODERS FOR LARGE RAMS

For very large RAMs, if the 2-1/2D decoding scheme is not used, tree decoders
are employed to keep fanin and fanout to manageable levels. In a conventional
RAM an M-bit wide address uniquely identifies one memory location out of a
memory space of 2M locations. In order to access a particular location, an address
is presented to the root of a decoder tree containing M levels and 2M leaves.
Starting with the root (the top level of the tree) a decision is made at each ith level
of the tree, corresponding to the ith bit of the address. If the ith bit is 0 at the ith

level, then the tree is traversed to the left, otherwise the tree is traversed to the
right. The target leaf is at level M – 1 (counting starts at 0). There is exactly one
leaf for each memory address.

The tree structure results in an access time that is logarithmic in the size of the
memory. That is, if a RAM contains N words, then the memory can be accessed
in OlogFN time, where F is the fan-out of the logic gates in the decoder tree
(here, we assume a fan-out of two). For a RAM of size N, M = logFN address
bits are needed to uniquely identify each word. As the number of words in the

a0

a1

d0

d1

d2

d3

d4

d5

d6

d7

a2

(a)

a0

a1

d0

d1

d2

d3

d4

d5

d6

d7

a2

(b)

Fan-out
buffers

Figure 7-29 (a) A tree decoder; (b) a tree decoder with fan-ins and fan-outs of two.

CHAPTER 7 MEMORY 293

memory grows, the length of the address grows logarithmically, so that one level
of depth is added to the decoder tree each time the size of the memory doubles.
As a practical example, consider a 128 megaword memory that requires 27 levels
of decoding (227 = 128 Mwords). If we assume that logic gates in the decoding
tree switch in 2 ns, then an address can be decoded in 54 ns.

A four level decoder tree for a 16-word RAM is shown in Figure 7-30. As an

example of how the decoder tree works, the address 1011 is presented at the root
node. The most significant bit in the address is a 1 so the right path is traversed at
Level 0 as indicated by the arrow. The next most significant bit is a 0 so the left
path is traversed at Level 1, the next bit is a 1 so the right path is traversed at
Level 2, and the least significant bit is a 1 so the rightmost path is traversed next
and the addressed leaf is then reached at Level 3.

7.8.3 CONTENT-ADDRESSABLE (ASSOCIATIVE) MEMORIES

In an ordinary RAM, an address is applied to the memory, and the contents of
the given location are either read or written. In a content-addressable memory
(CAM), also known as an associative memory, a word composed of fields is
applied to the memory and the resulting address (or index) is returned if the
word or field is present in the memory. The physical location of a CAM word is
generally not as significant as the values contained in the fields of the word. Rela-

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

1011

0 _ _ _ 1 _ _ _

0 0 _ _ 0 1 _ _ 1 0 _ _ 1 1 _ _

0 0 0 _ 0 0 1 _ 0 1 0 _ 0 1 1 _ 1 0 0 _ 1 0 1 _ 1 1 0 _ 1 1 1 _

Level 0

Level 1

Level 2

Level 3

Figure 7-30 A decoding tree for a 16-word random access memory.

294 CHAPTER 7 MEMORY

tionships between addresses, values, and fields for RAM and CAM are shown in
Figure 7-31.

Values are stored in sequential locations in a RAM, with an address acting as the
key to locate a word. Four-byte address increments are used in this example, in
which the word size is four bytes. Values are stored in fields in the CAM, and in
principle any field of a word can be used to key on the rest of the word. If the
CAM words are reordered, then the contents of the CAM are virtually
unchanged since physical location has no bearing on the interpretation of the
fields. A reordering of the RAM may change the meanings of its values entirely.
This comparison suggests that CAM may be a preferred means for storing infor-
mation when there is a significant cost in maintaining data in sorted order.

When a search is made through a RAM for a particular value, the entire memory
may need to be searched, one word at a time, when the memory is not sorted.
When the RAM is maintained in sorted order, a number of accesses may still be
required to either find the value being searched or to determine the value is not
stored in the memory. In a CAM, the value being searched is broadcast to all of
the words simultaneously, and logic at each word makes a field comparison for
membership, and in just a few steps the answer is known. A few additional steps
may be needed to collect the results but in general the time required to search a
CAM is less than for a RAM in the same technology, for a number of applica-
tions.

Except for maintaining tags in cache memories and in translating among net-
work addresses for routing applications (see Chapter 8), CAMs are not in com-
mon use largely due to the difficulty of implementing an efficient design with
conventional technology. Consider the block diagram of a CAM shown in Figure

Address Value Field1 Field2 Field3

Random access memory Content addressable memory

0000A000 0F0F0000 000 A 9E
186734F1
0F000000
FE681022
3152467C
C3450917
00392B11
10034561

0000A004
0000A008
0000A00C
0000A010
0000A014
0000A018
0000A01C

011
149
091
000
749
000
575

0
7
4
E
C
0
1

F0
01
00
FE
6E
50
84

32 bits 32 bits 12 bits 4 bits 8 bits

Figure 7-31 Relationships between random access memory and content addressable memory.

CHAPTER 7 MEMORY 295

7-32. A Central Control unit sends a comparand to each of 4096 cells, where

comparisons are made. The result is put in the Tag bits Ti which are collected by
a Data Gathering Device and sent to the Central Control unit (Note that “Tag”
is used differently here than in cache memory). When the Central Control unit
loads the value to be searched into the comparand register, it sets up a mask to
block out fields that are not part of the value. A small local processor in each cell
makes a comparison between its local word and the broadcast value and reports
the result of the comparison to the Data Gathering Device.

A number of problems arise when an attempt is made to implement this CAM
architecture in a conventional technology such as very large scale integration
(VLSI). The broadcast function that sends the comparand to the cells can be
implemented with low latency if a tree structure is used. An H-tree (Mead and
Conway, 1980) can be used for the tree layout if it will fit on a single IC. If the
tree cannot be contained on a single chip, then connections must be made
among a number of chips, which quickly limits chip density. For example, a
node of a tree that has a single four-bit input and two four-bit outputs needs 12
input/output (I/O) pins and three control pins if only one node is placed on a
chip. A three node subtree needs 25 pins and a seven node subtree needs 45 pins

In
fo

rm
at

io
n

an
d

C
om

m
an

ds

D
at

a
G

at
he

ri
ng

 D
ev

ic
e

T0

T1

T2

T4095

Cell 0

Cell 1

Cell 2

Cell 4095

Central
Control

Comparand

Mask

Figure 7-32 Overview of CAM (Foster, 1976).

296 CHAPTER 7 MEMORY

as illustrated in Figure 7-33. A 63 node subtree requires 325 pins, excluding

power and control pins, which is getting close to the limit of most present day
packaging technologies which do not go much higher than 1000 pins per pack-
age. A useful CAM would contain thousands of such nodes with wider data
paths, so the I/O bandwidth limit is realized early in the design of the CAM.
Compromises can be made by multiplexing data onto the limited number of I/O
connections but this reduces effective speed, which is a major reason for using a
CAM in the first place.

Although implementations of CAMs are difficult, they do find practical uses,
such as in TLBs and in computer networks. One application is in a network con-
troller which receives data packets from several processors and then distributes
those packets back to the processors or to other network controllers. Each pro-
cessor has a unique address which the CAM keys on to determine if the target
processor for a packet is in its own network or if it must be forwarded to another
network.

MEMORY DESIGN EXAMPLE: A DUAL-PORT RAM

A dual-read, or dual-port RAM allows any two words to be simultaneously read
from the same memory. As an example, we will design a 220 word by 8-bit
dual-read RAM. For our design, any two words can be read at a time, but only
one word can be written at a time. Our approach is to create two separate 220

word memories. When writing into the dual-read RAM, the address lines of both

4

44 44

44 44 44 44

4

4

4

4

Control: one bit
per channel

Data: four bits
per channel

Figure 7-33 Addressing subtrees for a CAM.

CHAPTER 7 MEMORY 297

single-read RAMs are set identically and the same data is written to both sin-
gle-read memories. During a read operation, the address lines of each single-read
RAM are set independently, so that two different words can be simultaneously
read.

Figure 7-34 shows a block diagram for the dual-read RAM. During a write oper-

ation, the A address is used for both single-read RAMs. Tri-state buffers at the B
RAM address inputs are controlled by the WR line. When WR=0, the A address
is used at the B address input, otherwise, the B address is used at the B address
input. The numbers that appear adjacent to the slashes indicate the number of
individual lines that are represented by the single line. An 8 next to a slash indi-
cates 8 lines, and a 20 next to a slash indicates 20 lines.

Each tri-state buffer has 20 input lines and 20 output lines, but Figure 7-34 uses
a notation in which a single buffer represents 20 separate tri-state buffers that
share the same control input. A buffer delay is inserted on the WR line in order
to compensate for the delay on the complemented WR line, so that the A and B
addresses are not unintentionally simultaneously enabled. �

Data In

220 Word ×
8 bits

A RAM

WR CS

D0 – D7

A0 – A19

20
A Address

8
Port A

Data In

220 Word ×
8 bits

B RAM

WR CS

8
Port B

A0 – A19

20
A Address

B0 – B19

20
B Address

20

WR

CS

Figure 7-34 Block diagram of dual-read RAM.

298 CHAPTER 7 MEMORY

7.9 Case Study: Rambus Memory
There was a time when computer technology would be pushed from the labora-
tory into the marketplace. As the consumer marketplace for computing devices
exploded, the “technology push” was replaced by “market pull,” and consumer
demand then dominated the preferences of technologists when it came to devel-
oping a new memory technology. High performance, expensive memory for
high-end processors was displaced by high density, low-cost memory for con-
sumer electronics, such as videogames. It became more profitable for memory
manufacturers to address the needs of high volume consumer markets, rather
than devote costly chip fabrication facilities to a comparatively small high-end
market.

The consumer electronics industry now dominates the memory market, and
even high-end, non-consumer processors make heavy use of consumer electron-
ics technology, exploiting architectural enhancements instead, or innovations in
supporting technologies (such as high speed interconnects) to compensate for the
performance shortcomings of what we might call “videogame memory.”

Videogame memory is not all that low-end, however, and in fact, makes use of
extraordinary technology enhancements that squeeze the most performance out
of ever denser, low-cost devices. A leading memory technology that is being
introduced into Intel-based personal computers in 1999 was developed by Ram-
bus, Inc. The Rambus DRAM (RDRAM) retrieves a block of 8 bytes internal to
the DRAM chip on every access, and multiplexes the 8 bytes onto a narrow 8-bit
or 16-bit channel, operating at a rate of 800 MHz (or higher).

A typical DRAM core (that is, the storage portion of an ordinary DRAM) can
store or retrieve a line of 8 bytes with a 100 MHz cycle. This is internal to the
DRAM chip: most DRAMs only deliver one byte per cycle, but the RDRAM
technology can multiplex that up to 1 byte per cycle using a higher external clock
of 800 MHz. That higher rate is fed to a memory controller (the “chipset” on an
Intel machine) which demuxes it to a 32-bit wide data stream at a lower rate,
such as 200 MHz, going into a Pentium (or other processor chip).

The Rambus “RIMM” modules (Rambus Inline Memory Modules) look similar
to ordinary SIMMs and DIMMs, but they operate differently. The Rambus
memory uses microstrip technology (also known as transmission lines) on the
motherboard, which implements a crude shield that reduces radio frequency
(RF) effects that interfere with data traveling through wires on the motherboard,
which are called board traces. In designing a printed circuit board (PCB) for

CHAPTER 7 MEMORY 299

Rambus technology, the critical parameters are (1) dielectric thickness of the
PCB, (2) separation of the memory modules, and (3) trace width. There must be
a ground plane (an electrical return path) beneath every signal line, with no vias
(connections between board layers) along the path. All signals go on the top
layer of the PCB. (A PCB can have a number of layers, typically no more than 8).
The memory controller and memory modules must all be equally spaced, such as
.5 inches from the memory controller to the first RIMM, then .5 in to the next,
etc.

The “Rambus Channel” is made up of transmission line traces. The trace widths
end up being about twice as wide as ordinary traces, on the order of 12 mils (300
microns). Although 300 microns is relatively small for a board trace, if we want
to send 128 signals over a PCB, using a 600 micron pitch (center-to-center spac-
ing) with 300 microns between 300 micron traces, this corresponds to a foot-
print of 128 × 600 microns = 76 mm. This is a large footprint compared with
lower speed solutions that allow a much closer packing density.

In reality, the Rambus Channel only has 13 high speed signals, (the address is
serialized onto a single line, there are 8 data lines, 1 parity line, 2 clock lines, and
1 command line) and so the seemingly large footprint is not a near-term prob-
lem. With a 16-bit version of the Rambus Channel on the horizon, the band-
width problem appears to be in hand for a number of years using this technology.
Extensibility to large word widths such as 64 bits or 128 bits will pose a signifi-
cant challenge down the road, however, because the chipset will need to support
that same word width – a formidable task with current packaging methods, that
already have over 500 pins on the chipset.

Although Rambus memory of this type became available in 1998, the RIMM
modules were not widely available until 1999, timed for the availability of a new
memory controller (chipset) for the RIMMs. The memory controller is an
important aspect of this type of memory because the view of memory that the
CPU perceives is different from the physical memory.

Rambus memory is more expensive than conventional DRAM memory, but
overall system cost can be reduced, which makes it attractive in low-cost, high
performance consumer electronics such as the Nintendo 64 video game console.
The Nintendo 64 (see Figure 7-35) has four primary chips: a 64-bit MIPS
RS4300i CPU; a Reality coprocessor which integrates all graphics, audio and
memory management functions; and two Rambus memory chips.

300 CHAPTER 7 MEMORY

The Rambus technology provides the Nintendo 64 with a bandwidth of 562.5
MB/s using a 31-pin interface to the memory controller. By comparison, a sys-
tem using typical 64-bit-wide synchronous DRAMs (SDRAMs) requires a
110-pin interface to the memory controller. This reduction in pin count allows
the memory controller to fit on the same die (the silicon chip) as the graphics
and sound functions, in a relatively low-cost, 160-pin packaged chip.

The Rambus memory subsystem is made up of two memory chips which occupy
1.5 square inches of board space. An equivalent SDRAM design would require 6
square inches of board space. The space savings of using the Rambus approach
enabled Nintendo to fit all of its components on a board measuring five by six
inches, which is one quarter the size of the system board used in the competing
Sega Saturn. In addition, Nintendo was able to use only a two-layer board
instead of the four layers used in the Sega Saturn.

The cost savings Nintendo realized by choosing the Rambus solution over the
64-bit SDRAM approach are considerable, but should be placed in perspective
with the overall market. The ability to use a two-layer implementation saved
Nintendo $5 per unit in manufacturing costs. Taken altogether, Nintendo esti-

Figure 7-35 Rambus technology on the Nintendo 64 motherboard (top left and bottom right) en-

ables cost savings over the conventional Sega Saturn motherboard design (bottom left). The Ninten-

do 64 uses costlier plug-in cartridges (top right), as opposed to inexpensive CD-ROMs used by the

Sega Saturn. [Photo source: Rambus, Inc.]

CHAPTER 7 MEMORY 301

mates the total bill of materials cost savings over an equivalent SDRAM-based
design was about 20 percent.

These cost savings need to be placed in perspective with the marketplace, how-
ever. The competing Sega Saturn and Sony Playstation use CD-ROMs for game
storage, which cost under $2 each to mass produce. The Nintendo 64 uses a
plug-in ROM cartridge that costs closer to $10 each to mass produce, and can
only store 1% of what can be stored on a CD-ROM. This choice of media may
have a great impact on the overall system architecture, and so the Rambus
approach may not benefit all systems to the same degree. Details matter a great
deal when it comes to evaluating the impact of a new technology on a particular
market, or even a segment of a market.

7.10 Case Study: The Intel Pentium Memory System
The Intel Pentium processor is typical of modern processors in its memory con-
figurations. Figure 7-36 shows a simplified diagram of the memory elements and

data paths. There are two L1 caches on board the actual Pentium chip, an
instruction, or I-cache, and a data, or D-cache. Each cache has a 256 bit (32
byte) line size, with an equally-sized data path to the CPU. The L1 caches are
2-way set associative, and each way has a single LRU bit. The D-cache can be set
to write-through or writeback on a per-line basis. The D cache is write no-allo-
cate: misses on writes do not result in a cache fill. Each cache is also equipped
with a TLB that translates virtual to physical addresses. The D-cache TLB is
4-way set associative, with 64 entries, and is dual-ported, allowing two simulta-
neous data reference translations. The I-cache TLB is 4-way set associative with
32 entries.

CPU Level 1
Instruction
Cache
8 KB

Level 1
Data Cache
8 KB

Level 2
Cache
Up to
512KB

Main Memory
Up to 8GB

256

Pentium Processor Chip

n n
TLB

TLB

Figure 7-36 The Intel Pentium memory system.

302 CHAPTER 7 MEMORY

The L2 cache, if present, is 2-way set associative, and can be 256 KB or 512 KB
in size. The data bus, shown as “n” in the figure, can be 32, 64, or 128 bits in
size.

THE MESI PROTOCOL

The Pentium D cache, and the L2 cache if present support the MESI cache
coherency protocol for managing multiprocessor access to memory. Each
D-cache line has two bits associated with it that store the MESI state. Each cache
line will be in one of the four states:

• M - Modified. The contents of the cache line have been modified and
are different from main memory.

• E - Exclusive. The contents of the cache line have not been modified,
and are the same as the line in main memory.

• S - Shared. The line is, or may be shared with another cache line
belonging to another processor.

• I - Invalid. The line is not in the cache. Reads to lines in the I state will
result in cache misses.

Table 7- 2† shows the relationship between the MESI state, the cache line, and

Cache Line State M
Modified

E
Exclusive

S
Shared

I
Invalid

Cache line valid? Yes Yes Yes No

Copy in memory is... ...out of date. ...valid ...valid —

Copies exist in other
caches?

No No Maybe Maybe

A write to this line... ...does not go
to the bus

...does not go
to the bus

...goes to the bus
and updates cache

...goes directly
to the bus

Table 7- 2 MESI cache line states.

†. Taken from Pentium Processor User’s Manual, Volume 3, Architecture and Programming
Manual, © Intel Corporation, 1993.

CHAPTER 7 MEMORY 303

the equivalent line in main memory. The MESI protocol is becoming a standard
way of dealing with cache coherency in multiprocessor systems.

The Pentium processor also supports up to six main memory segments (there can
be several thousand segments, but no more than 6 can be referenced through the
segment registers.) As discussed in the chapter, each segment is a separate address
space. Each segment has a base—a starting location within the 32-bit physical
address space, and a limit, the maximum size of the segment. The limit may be
either 216 bytes or 216 × 212 bytes in size. That is, the granularity of the limit
may be one byte or 212 bytes in size.

Paging and segmentation on the Pentium can be applied in any combination:

Unsegmented, unpaged memory: The virtual address space is the same as the phys-
ical address space. No page tables or mapping hardware is needed. This is good
for high performance applications that do not have a lot of complexity, that do
not need to support growing tables, for example.

Unsegmented, paged memory: Same as for the unsegmented, unpaged memory
above, except that the linear address space is larger as a result of using disk stor-
age. A page table is needed to translate between virtual and physical addresses. A
translation lookaside buffer is needed on the Pentium core, working in conjunc-
tion with the L1 cache, to reduce the number of page table accesses.

Segmented, unpaged memory: Good for high complexity applications that need to
support growing data structures. This is also fast: segments are fewer in number
than pages in a virtual memory, and all of the segmentation mapping hardware
typically fits on the CPU chip. There is no need for disk accesses as there would
be for paging, and so access times are more predictable than when paging is used.

Segmented, paged memory: A page table, segment mapping registers, and TLB all
work in conjunction to support multiple address spaces.

Segmentation on the Intel Pentium processor is quite powerful but is also quite
complex. We only explore the basics here, and the interested reader is referred to
(Intel, 1993) for a more complete description.

304 CHAPTER 7 MEMORY

� SUMMARY

Memory is organized in a hierarchy in which the densest memory offers the least
performance, whereas the greatest performance is realized with the memory that
has the least density. In order to bridge the gap between the two, the principle of
locality is exploited in cache and virtual memories.

A cache memory maintains the most frequently used blocks in a small, fast mem-
ory that is local to the CPU. A paged virtual memory augments a main memory
with disk storage. The physical memory serves as a window on the paged virtual
memory, which is maintained in its entirety on a hard magnetic disk.

Cache and paged virtual memories are commonly used on the same computer, but
for different reasons. A cache memory improves the average access time to the main
memory, whereas a paged virtual memory extends the size of the main memory.

In an example memory architecture, the Intel Pentium has a split L1 cache and a
TLB that reside on the Pentium core, and a unified L2 cache that resides in the
same package as the Pentium although on a different silicon die. When paging is
implemented, the page table is located in main memory, with the TLB reducing
the number of times that the TLB is referenced. The L1 and L2 cache memories
then reduce the number of times main memory is accessed for data. The Pentium
also supports segmentation, which has its own set of mapping registers and control
hardware that resides on the Pentium.

� FURTHER READING
(Stallings, 1993) and (Mano, 1991) give readable explanations of RAM. A num-
ber of memory databooks (Micron, 1992) and (Texas Instruments, 1991) give
practical examples of memory organization. (Foster, 1976) is the seminal refer-
ence on CAM. (Mead and Conway, 1980) describe the H-tree structure in the
context of VLSI design. (Franklin et al, 1982) explores issues in partitioning
chips, which arise in splitting an H-tree for a CAM. (Sedra and Smith, 1997)
discuss the implementation of several kinds of static and dynamic RAM.

(Hamacher et al, 1990) gives a classic treatment of cache memory. (Tanenbaum,
1990) gives a readable explanation of virtual memory. (Hennessy and Patterson,
1995) and (Przybylski, 1990) cover issues relating to cache performance. Seg-
mentation on the Intel Pentium processor is covered in (Intel, 1993). Kingston

CHAPTER 7 MEMORY 305

Technology gives a broad tutorial on memory technologies at http://www.king-
ston.com/king/mg0.htm.

Foster, C. C., Content Addressable Parallel Processors, Van Nostrand Reinhold
Company, (1976).

Franklin, M. A., D. F. Wann, and W. J. Thomas, “Pin Limitations and Partition-
ing of VLSI Interconnection Networks,” IEEE Trans Comp., C-31, 1109, (Nov.
1982).

Hamacher, V. C., Z. G. Vranesic, and S. G. Zaky, Computer Organization, 3/e,
McGraw Hill, (1990).

Hennessy, J. L. and D. A. Patterson, Computer Architecture: A Quantitative
Approach, 2/e, Morgan Kaufmann Publishers, San Mateo, California, (1995).

Intel Corporation, Pentium Processor User’s Manual, Volume 3: Architecture and
Programming Manual, (1993).

Knuth, D., The Art of Computer Programming: Fundamental Algorithms, vol. 1,
2/e, Addison-Wesley, (1974).

Mano, M., Digital Design, 2/e, Prentice Hall, (1991).

Mead, C. and L. Conway, Introduction to VLSI Systems, Addison Wesley, (1980).

Micron, DRAM Data Book, Micron Technologies, Inc., 2805 East Columbia
Road, Boise, Idaho, (1992).

Przybylski, S. A., Cache and Memory Hierarchy Design, Morgan Kaufmann Pub-
lishers, (1990).

Sedra, A., and Smith, K., Microelectronic Circuits, 4/e, Oxford University Press,
New York, (1997).

Stallings, W., Computer Organization and Architecture, 3/e, MacMillan Publish-
ing, New York, (1993).

Tanenbaum, A., Structured Computer Organization, 3/e, Prentice Hall, Engle-

306 CHAPTER 7 MEMORY

wood Cliffs, New Jersey, (1990).

Texas Instruments, MOS Memory: Commercial and Military Specifications Data
Book, Texas Instruments, Literature Response Center, P.O. Box 172228, Denver,
Colorado, (1991).

� PROBLEMS
7.1 A ROM lookup table and two D flip-flops implement a state machine as

shown in the diagram below. Construct a state table that describes the
machine.

7.2 Fill in four memory locations for the lookup table shown in Figure 7-11
in which each of the four operations: add, subtract, multiply, and divide are
performed on A=16 and B=4. Show the address and the value for each case.

7.3 Design an eight-word, 32-bit RAM using 8×8 RAMs.

7.4 Design a 16-word, four-bit RAM using 4×4 RAMs and a single external
decoder.

7.5 Given a number of n-word by p-bit RAM chips:

(a) Show how to construct an n-word × 4p-bit RAM using these chips. Use
any other logic components that you have seen in the text that you feel are
needed.

(b) Show how to construct a 4n-word × p-bit RAM using these chips.

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

A2

0
0
0
0
1
1
1
1

A1A0

0
1
0
0
0
1
0
0

1
0
0
0
1
1
1
0

R2

0
1
1
0
1
1
0
0

R1R0

Location Value

ROM contents

ROM

A0

A1

A2

X ZR0

R1

R2

QD
S0

QD
S1

CLK

CHAPTER 7 MEMORY 307

7.6 Draw the circuit for a 4-to-16 tree decoder, using a maximum fan-in and
fan-out of two.

7.7 A direct mapped cache consists of 128 slots. Main memory contains 16K
blocks of 16 words each. Access time of the cache is 10 ns, and the time
required to fill a cache slot is 200 ns. Load-through is not used; that is, when
an accessed word is not found in the cache, the entire block is brought into
the cache, and the word is then accessed through the cache. Initially, the cache
is empty. Note: When referring to memory, 1K = 1024.

(a) Show the format of the memory address.

(b) Compute the hit ratio for a program that loops 10 times from locations 15
– 200. Note that although the memory is accessed twice during a miss (once
for the miss, and once again to satisfy the reference), a hit does not occur for
this case. To a running program, only a single memory reference is observed.

(c) Compute the effective access time for this program.

7.8 A fully associative mapped cache has 16 blocks, with eight words per
block. The size of main memory is 216 words, and the cache is initially empty.
Access time of the cache is 40 ns, and the time required to transfer eight words
between main memory and the cache is 1 µs.

(a) Compute the sizes of the tag and word fields.

(b) Compute the hit ratio for a program that executes from 20–45, then loops
four times from 28–45 before halting. Assume that when there is a miss, that
the entire cache slot is filled in 1 µs, and that the first word is not seen by the
CPU until the entire slot is filled. That is, assume load-through is not used.
Initially, the cache is empty.

(c) Compute the effective access time for the program described in part (b)
above.

7.9 Compute the total number of bits of storage needed for the associative
mapped cache shown in Figure 7-13 and the direct mapped cache shown in
Figure 7-14. Include Valid, Dirty, and Tag bits in your count. Assume that the
word size is eight bits.

308 CHAPTER 7 MEMORY

7.10 (a) How far apart do memory references need to be spaced to cause a miss
on every cache access using the direct mapping parameters shown in Figure
7-14?

(b) Using your solution for part (a) above, compute the hit ratio and effective
access time for that program with TMiss = 1000 ns, and THit = 10 ns. Assume
that load-through is used.

7.11 A computer has 16 pages of virtual address space but only four physical
page frames. Initially the physical memory is empty. A program references the
virtual pages in the order: 0 2 4 5 2 4 3 11 2 10.

(a) Which references cause a page fault with the LRU page replacement pol-
icy?

(b) Which references cause a page fault with the FIFO page replacement pol-
icy?

7.12 On some computers, the page table is stored in memory. What would
happen if the page table is swapped out to disk? Since the page table is used
for every memory reference, is there a page replacement policy that guarantees
that the page table will not get swapped out? Assume that the page table is
small enough to fit into a single page (although usually it is not).

7.13 A virtual memory system has a page size of 1024 words, eight virtual
pages, four physical page frames, and uses the LRU page replacement policy.
The page table is as follows:

Present bit

Page #

0

1

2

3

4

5

6

7

0

0

1

0

1

0

1

0

xx

xx

00

xx

01

xx

11

xx

Disk address

Page frame field

01001011100

11101110010

10110010111

00001001111

01011100101

10100111001

00110101100

01010001011

CHAPTER 7 MEMORY 309

(a) What is the main memory address for virtual address 4096?

(b) What is the main memory address for virtual address 1024?

(c) A fault occurs on page 0. Which page frame will be used for virtual page 0?

7.14 When running a particular program with N memory accesses, a computer
with a cache and paged virtual memory generates a total of M cache misses
and F page faults. T1 is the time for a cache hit; T2 is the time for a main
memory hit; and T3 is the time to load a page into main memory from the
disk.

(a) What is the cache hit ratio?

(b) What is the main memory hit ratio? That is, what percentage of main
memory accesses do not generate a page fault?

(c) What is the overall effective access time for the system?

7.15 A computer contains both cache and paged virtual memories. The cache
can hold either physical or virtual addresses, but not both. What are the issues
involved in choosing between caching virtual or physical addresses? How can
these problems be solved by using a single unit that manages all memory map-
ping functions?

7.16 How much storage is needed for the page table for a virtual memory that
has 232 bytes, with 212 bytes per page, and 8 bytes per page table entry?

7.17 Compute the gate input count for the decoder(s) of a 64 × 1-bit RAM for
both the 2D and the 2-1/2D cases. Assume that an unlimited fan-in/fan-out
is allowed. For both cases, use ordinary two-level decoders. For the 2 1/2D
case, treat the column decoder as an ordinary MUX. That is, ignore its behav-
ior as a DEMUX during a write operation.

7.18 How many levels of decoding are needed for a 220 word 2D memory if a
fan-in of four and a fan-out of four are used in the decoder tree?

7.19 A video game cartridge needs to store 220 bytes in a ROM.

310 CHAPTER 7 MEMORY

(a) If a 2D organization is used, how many leaves will be at the deepest level of
the decoder tree?

(b) How many leaves will there be at the deepest level of the decoder tree for a
2-1/2D organization?

7.20 The contents of a CAM are shown below. Which set of words will
respond if a key of 00A00020 is used on fields 1 and 3? Fields 1 and 3 of the
key must match the corresponding fields of a CAM word in order for that
word to respond. The remaining fields are ignored during the matching pro-
cess but are included in the retrieved words.

7.21 When the TLB shown in Figure 7-27 has a miss, it accesses the page table
to resolve the reference. How many entries are in that page table?

Field

F 1 A 0 0 0 2 8

01234

0 4 2 9 D 1 F 0
3 2 A 1 1 0 3 E
D F A 0 5 0 2 D
0 0 5 3 7 F 2 4

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

293

In the earlier chapters, we considered how the CPU interacts with data that is
accessed internal to the CPU, or is accessed within the main memory, which may
be extended to a hard magnetic disk through virtual memory. While the access
speeds at the different levels of the memory hierarchy vary dramatically, for the
most part, the CPU sees the same response rate from one access to the next. The
situation when accessing input/output (I/O) devices is very different.

• The speeds of I/O data transfers can range from extremely slow, such as
reading data entered from a keyboard, to so fast that the CPU may not be
able to keep up, as may be the case with data streaming from a fast disk
drive, or real time graphics being written to a video monitor.

• I/O activities are

asynchronous

, that is, not synchronized to the CPU
clock, as are memory data transfers. Additional signals, called

handshaking

signals, may need to be incorporated on the I/O bus to coordinate when
the device is ready to have data read from it or written to it.

• The quality of the data may be suspect. For example, line noise during data
transfers using the public telephone network, or errors caused by media de-
fects on disk drives mean that error detection and correction strategies may
be needed to ensure data integrity.

• Many I/O devices are mechanical, and are in general more prone to failure
than the CPU and main memory. A data transfer may be interrupted due
to mechanical failure, or special conditions such as a printer being out of
paper, for example.

• I/O software modules, referred to as

device drivers

, must be written in
such a way as to compensate for the properties mentioned above.

In this chapter we will first discuss the nature of the I/O devices themselves,

INPUT, OUTPUT, AND
COMMUNICATION

 8

294

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

beginning with mass storage devices and then input and output devices. Follow-
ing that we discuss the nature of the communications process with these devices,
and we conclude with a treatment of error detection and correction techniques.

8.1 Mass Storage

In Chapter 7, we saw that computer memory is organized as a hierarchy, in
which the fastest method of storing information (registers) is expensive and not
very dense, and the slowest methods of storing information (tapes, disks,

etc

.) are
inexpensive and are very dense. Registers and random access memories require
continuous power to retain their stored data, whereas

media

 such as magnetic
tapes and magnetic disks retain information indefinitely after the power is
removed, which is known as

indefinite persistence

. This type of storage is said
to be

non-volatile

. There are many kinds of non-volatile storage, and only a few
of the more common methods are described below. We start with one of the
more prevalent forms: the

magnetic disk

.

8.1.1

MAGNETIC DISKS

A magnetic disk is a device for storing information that supports a large storage
density and a relatively fast access time. A

moving head

 magnetic disk is com-
posed of a stack of one or more

platters

 that are spaced several millimeters apart
and are connected to a

spindle

, as shown in Figure 8-1. Each platter has two

sur-
faces

made of aluminum or glass (which expands less than aluminum as it heats
up), which are coated with extremely small particles of a magnetic material such
as iron oxide, which is the essence of rust. This is why disk platters, floppy dis-
kettes, audio tapes, and other magnetic media are brown. Binary 1’s and 0’s are
stored by magnetizing small areas of the material.

A single

head

 is dedicated to each surface. Six heads are used in the example
shown in Figure 8-1, for the six surfaces. The top surface of the top platter and
the bottom surface of the bottom platter are sometimes not used on multi-platter
disks because they are more susceptible to contamination than the inner surfaces.
The heads are attached to a common

arm

 (also known as a

comb

) which moves
in and out to reach different portions of the surfaces.

In a “hard disk drive,” as it is called, the platters rotate at a constant speed of typ-
ically 3600 to 10,000 revolutions per minute (RPM). The heads read or write
data by magnetizing the magnetic material as it passes under the heads when
writing, or by sensing the magnetic fields when reading. Only a single head is

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

295

used for reading or writing at any time, so data is stored in serial fashion even
though the heads can theoretically be used to read or write several bits in parallel.
One reason that the parallel mode of operation is not normally used is that heads
can become misaligned, which corrupts the way that data is read or written. A
single surface is relatively insensitive to the alignment of the corresponding head
because the head position is always accurately known with respect to reference
markings on the disk.

Data encoding

Only the transitions between magnetized areas are sensed when reading a disk,
and so runs of 1’s or 0’s will not be detected unless a method of encoding is used
that embeds timing information into the data to identify the breaks between bits.

Manchester encoding

 is one method that addresses this problem, and another
method is

modified frequency modulation

 (MFM). For comparison, Figure
8-2a shows an ASCII ‘F’ character encoded in the

non-return-to-zero

 (NRZ)
format, which is the way information is encoded inside of a CPU. Figure 8-2b
shows the same character encoded in the Manchester code. In Manchester
encoding there is a transition between high and low signals on every bit, resulting
in a transition at every bit time. A transition from low to high indicates a 1,
whereas a transition from high to low indicates a 0. These transitions are used to
recover the timing information.

Direction of
arm (comb)

motion

Surface 3
Surface 2

Surface 1
Surface 0

Top surface
not used

Bottom surface
not used

Spindle

Platter

Head

SurfaceAir cushion

5 µm

Comb

Read/write head
(1 per surface)

Figure 8-1 A magnetic disk with three platters.

296

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

A single surface contains several hundred concentric

tracks

, which in turn are
composed of

sectors

 of typically 512 bytes in size, stored serially, as shown in
Figure 8-3. The sectors are spaced apart by

inter-sector gaps

, and the tracks are

spaced apart by

inter-track gaps

, which simplify positioning of the head. A set
of corresponding tracks on all of the surfaces forms a

cylinder

. For instance,
track 0 on each of surfaces 0, 1, 2, 3, 4, and 5 in Figure 8-1 collectively form cyl-
inder 0. The number of bytes per sector is generally invariant across the entire
platter.

In modern disk drives the number tracks per sector may vary in

zones

, where a

(a)

Time

V
ol

ta
ge

1 0 0 0 1 1 0 = ‘F’

(b)

Time
V

ol
ta

ge

1 0 0 0 1 1 0 = ‘F’

Figure 8-2 (a) Straight amplitude (NRZ) encoding of ASCII ‘F’; (b) Manchester encoding of ASCII

‘F’.

Sector

.

.

.

Inter-sector gap

Inter-track gap

Interleave factor 1:2

Track

Track
0

.

.

.

0

8

1

9

2

10

3
114

12

5

13

6

14

7
15

Figure 8-3 Organization of a disk platter with a 1:2 interleave factor.

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

297

zone is a group of tracks having the same number of sectors per track. Zones near
the center of the platter where bits are spaced closely together have fewer sectors,
while zones near the outside periphery of the platter, where bits are spaced far-
ther apart, have more sectors per track. This technique for increasing the capacity
of a disk drive is known as

zone-bit recording

.

Disk drive capacities and speeds

If the disk is assumed to have only a single zone, its storage capacity, C, can be
computed from the number of bytes per sector, N, the number of sectors per
track, S, the number of tracks per surface, T, and the number of platter surfaces
that have data encoded in them, P, with the formula:

A high-capacity disk drive may have N = 512 bytes, S = 1,000 sectors per track,
T = 5,000 tracks per platter, and P = 8 platters. The total capacity of this drive is

 or 19 GB.

Maximum data transfer speed is governed by three factors: the time to move the
head to the desired track, referred to as the head

seek time

, the time for the
desired sector to appear under the read/write head, known as the

rotational
latency

, and the time to transfer the sector from the disk platter once the sector is
positioned under the head, known as the

transfer time

. Transfers to and from a
disk are always carried out in complete sectors. Partial sectors are never read or
written.

Head seek time is the largest contributor to overall access time of a disk. Manu-
facturers usually specify an average seek time, which is roughly the time required
for the head to travel half the distance across the disk. The rationale for this defi-
nition is that there is no way to know,

a priori

, which track the data is on, or
where the head is positioned when the disk access request is made. Thus it is
assumed that the head will, on average, be required to travel over half the surface
before arriving at the correct track. On modern disk drives average seek time is
approximately 10 ms.

Once the head is positioned at the correct track, it is again impossible to know
ahead of time how long it will take for the desired sector to appear under the
head. Therefore the average rotational latency is taken to be 1/2 the time of one

C N S× T P××=

C 512 1000× 5000 8×× 230⁄=

298

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

complete revolution, which is on the order of 4-8 ms. The sector transfer time is
just the time for one complete revolution divided by the number of sectors per
track. If large amounts of data are to be transferred, then after a complete track is
transferred, the head must move to the next track. The parameter of interest here
is the track-to-track access time, which is approximately 2 ms (notice that the
time for the head to travel past multiple tracks is much less than 2 ms per track).
An important parameter related to the sector transfer time is the

burst rate

, the
rate at which data streams on or off the disk once the read/write operation has
started. The burst rate equals the disk speed in revolutions per second

×

 the
capacity per track. This is not necessarily the same as the transfer rate, because
there is a setup time needed to position the head and synchronize timing for each
sector.

The maximum transfer rate computed from the factors above may not be real-
ized in practice. The limiting factor may be the speed of the bus interconnecting
the disk drive and its interface, or it may be the time required by the CPU to
transfer the data between the disk and main memory. For example, disks that
operate with the

Small Computer Systems Interface

 (SCSI) standards have a
transfer rate between the disk and a host computer of from 5 to 40 MB/second,
which may be slower than the transfer rate between the head and the internal
buffer on the disk. Disk drives invariably contain internal buffers that help
match the speed of the disk with the speed of transfer from the disk unit to the
host computer.

Disk drives are delicate mechanisms.

The strength of a magnetic field drops off as the square of the distance from the
source of the field, and for that reason, it is important for the head of the disk to
travel as close to the surface as possible. The distance between the head and the
platter can be as small as 5 µm. The engineering and assembly of a disk do not
have to adhere to such a tight tolerance – the head assembly is aerodynamically
designed so that the spinning motion of the disk creates a cushion of air that
maintains a distance between the heads and the platters. Particles in the air con-
tained within the disk unit that are larger than 5 µm can come between the head
assembly and the platter, which results in a

head crash

.

Smoke particles from cigarette ash are 10 µm or larger, and so smoking should
not take place when disks are exposed to the environment. Disks are usually
assembled into sealed units in

clean rooms

, so that virtually no large particles are
introduced during assembly. Unfortunately, materials used in manufacturing

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

299

(such as glue) that are internal to the unit can deteriorate over time and can gen-
erate particles large enough to cause a head crash. For this reason, sealed disks
(formerly called

Winchester

 disks) contain filters that remove particles generated
within the unit and that prevent particulate matter from entering the drive from
the external environment.

Floppy disks

A

floppy disk

, or

diskette

, contains a flexible plastic platter coated with a mag-
netic material like iron oxide. Although only a single side is used on one surface
of a floppy disk in many systems, both sides of the disks are coated with the same
material in order to prevent warping. Access time is generally slower than a hard
disk because a flexible disk cannot spin as quickly as a hard disk. The rotational
speed of a typical floppy disk mechanism is only 300 RPM, and may be varied as
the head moves from track to track to optimize data transfer rates. Such slow
rotational speeds mean that access times of floppy drives are 250-300 ms,
roughly 10 times slower than hard drives. Capacities vary, but range up to 1.44
MB.

Floppies are inexpensive because they can be removed from the drive mechanism
and because of their small size. The head comes in physical contact with the
floppy disk but this does not result in a head crash. It does, however, place wear
on the head and on the media. For this reason, floppies only spin when they are
being accessed.

When floppies were first introduced, they were encased in flexible, thin plastic
enclosures, which gave rise to their name. The flexible platters are currently
encased in rigid plastic and are referred to as “diskettes.”

Several high-capacity floppy-like disk drives have made their appearance in
recent years. The Iomega Zip drive has a capacity of 100 MB, and access times
that are about twice those of hard drives, and the larger Iomega Jaz drive has a
capacity of 2GB, with similar access times.

Another floppy drive recently introduced by Imation Corp., the SuperDisk, has
floppy-like disks with 120MB capacity, and in addition can read and write ordi-
nary 1.44 MB floppy disks.

300

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

Disk file systems

A

file

 is a collection of sectors that are linked together to form a single logical
entity. A file that is stored on a disk can be organized in a number of ways. The
most efficient method is to store a file in consecutive sectors so that the seek time
and the rotational latency are minimized. A disk normally stores more than one
file, and it is generally difficult to predict the maximum file size. Fixed file sizes
are appropriate for some applications, though. For instance, satellite images may
all have the same size in any one sampling.

An alternative method for organizing files is to assign sectors to a file on demand,
as needed. With this method, files can grow to arbitrary sizes, but there may be
many head movements involved in reading or writing a file. After a disk system
has been in use for a period of time, the files on it may become

fragmented

, that
is, the sectors that make up the files are scattered over the disk surfaces. Several
vendors produce optimizers that will defragment a disk, reorganizing it so that
each file is again stored on contiguous sectors and tracks.

A related facet in disk organization is

interleaving

. If the CPU and interface cir-
cuitry between the disk unit and the CPU all keep pace with the internal rate of
the disk, then there may still be a hidden performance problem. After a sector is
read and buffered, it is transferred to the CPU. If the CPU then requests the next
contiguous sector, then it may be too late to read the sector without waiting for
another revolution. If the sectors are interleaved, for example if a file is stored on
alternate sectors, say 2, 4, 6,

etc.

, then the time required for the intermediate sec-
tors to pass under the head may be enough time to set up the next transfer. In
this scenario, two or more revolutions of the disk are required to read an entire
track, but this is less than the revolution per sector that would otherwise be
needed. If a single sector time is not long enough to set up the next read, than a
greater interleave factor can be used, such as 1:3 or 1:4. In Figure 8-3, an inter-
leave factor of 1:2 is used.

An operating system has the responsibility for allocating blocks (sectors) to a
growing file, and to read the blocks that make up a file, and so it needs to know
where to find the blocks. The

master control block

 (MCB) is a reserved section
of a disk that keeps track of the makeup of the rest of the disk. The MCB is nor-
mally stored in the same place on every disk for a particular type of computer
system, such as the innermost track. In this way, an operating system does not
have to guess at the size of a disk; it only needs to read the MCB in the inner-
most track.

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

301

Figure 8-4 shows one version of an MCB. Not all systems keep all of this infor-

mation in the MCB, but it has to be kept

somewhere

, and some of it may even be
kept in part of the file itself. There are four major components to the MCB. The
Preamble section specifies information relating to the physical layout of the disk,
such as the number of surfaces, number of sectors per surface,

etc

. The Files sec-
tion cross references file names with the list of sectors of which they are com-
posed, and file attributes such as the file creation date, last modification date, the
identification of the owner, and protections. Only the starting sector is needed
for a fixed file size disk, otherwise, a list of all of the sectors that make up a file is
maintained.

The Free blocks section lists the positions of blocks that are free to be used for
new or growing files. The Bad blocks section lists positions of blocks that are free
but produce

checksums

 (see Section 8.5) that indicate errors. The bad blocks are
thus unused.

No. surfaces on disk = 4
No. tracks/surface = 814
No. sectors/track = 32
No. bytes/sector = 512
Interleave factor = 1:3

Filename

xyz.p

Surface Track Sector

Starting sector, or sector list

Pr
ea

m
bl

e
Fi

le
s

Fr
ee

 b
lo

ck
s

B
ad

 b
lo

ck
s

1 10 5
1 12 7
2 23 4

ab.c 1 10 8
3 95 2
2 12 0

1 1 0
1 1 1
1 2 5

...

...

1 1 3
2 5 7

...

Creation
Date

Last
Modified

Owner Protec-
tions

11/14/93 11/14/93 16 RWX by
10:30:57 19:30:57 Owner

8/18/93 1/21/94 20 RX - All
16:03:12 14:45:03 W-Owner

R = Read
W = Write
X = Execute

Figure 8-4 Simplified example of an MCB.

302

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

As a file grows in size, the operating system reads the MCB to find a free block,
and then updates the MCB accordingly. Unfortunately, this generates a great deal
of head movement since the MCB and free blocks are rarely (if ever) on the same
track. A solution that is used in practice is to copy the MCB to main memory
and make updates there, and then periodically update the MCB on the disk,
which is known as

syncing

 the disk.

A problem with having two copies of the MCB, one on the disk and one in main
memory, is that if a computer is shut down before the main memory version of
the MCB is synched to the disk, then the integrity of the disk is destroyed. The
normal shutdown procedure for personal computers and other machines syncs
the disks, so it is important to shut down a computer this way rather than simply
shutting off the power. In the event that a disk is not properly synced, there is
usually enough circumstantial information for a disk recovery program to restore
the integrity of the disk, often with the help of a user. (Note: See problem 8.10 at
the end of the chapter for an alternative MCB organization that makes recovery
easier.)

8.1.2

MAGNETIC TAPE

A magnetic tape unit typically has a single read / write head, but may have sepa-
rate heads for reading and writing. A spool of plastic (Mylar) tape with a mag-
netic coating passes the head, which magnetizes the tape when writing or senses
stored data when reading. Magnetic tape is an inexpensive means for storing
large amounts of data, but access to any particular portion is slow because all of
the prior sections of the tape must pass the head before the target section can be
accessed.

Information is stored on a tape in two-dimensional fashion, as shown in Figure
8-5. Bits are stored across the width of the tape in

frames

 and along the length of
the tape in

records

. A file is made up of a collection of (typically contiguous)
records. A record is the smallest amount of data that can be read from or written
to a tape. The reason for this is physical rather than logical. A tape is normally
motionless. When we want to write a record to the tape, then a motor starts the
tape moving, which takes a finite amount of time. Once the tape is up to speed,
the record is written, and the motion of the tape is then stopped, which again
takes a finite amount of time. The starting and stopping times consume sections
of the tape, which are known as

inter-record gaps

.

A tape is suitable for storing large amounts of data, such as backups of disks or

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

303

scanned images, but is not suitable for random access reading and writing. There
are two reasons for this. First, the sequential access can require a great deal of
time if the head is not positioned near the target section of tape. The second rea-
son is caused when records are overwritten in the middle of the tape, which is not
generally an operation that is allowed in tape systems. Although individual
records are the same size, the inter-record gaps eventually creep into the records
(this is called

jitter

) because starting and stopping is not precise.

A

physical record

 may be subdivided into an integral number of

logical
records

. For example, a physical record that is 4096 bytes in length may be com-
posed of four logical records that are each 1024 bytes in length. Access to logical
records is managed by an operating system, so that the user has the perspective
that the logical record size relates directly to a physical record size, when in fact,
only physical records are read from or written to the tape. There are thus no
inter-record gaps between logical records.

Another organization is to use variable length records. A special mark is placed at
the beginning of each record so that there is no confusion as to where records
begin.

8.1.3

MAGNETIC DRUMS

Although they are nearly obsolete today, magnetic drum units have traditionally
been faster than magnetic disks. The reason for the speed advantage of drums is
that there is one stationary head per track, which means that there is no head
movement component in the access time. The rotation rate of a drum can be
much higher than a disk as a result of a narrow cylindrical shape, and rotational
delay is thus reduced.

File mark

Record

Inter-record
gap

Record Record

File

Frames

Figure 8-5 A portion of a magnetic tape (adapted from [Hamacher, 1990]).

304

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

The configuration of a drum is shown in Figure 8-6. The outer surface of the

drum is divided into a number of tracks. The top and bottom of the drum are
not used for storage, and the interior of the drum is not used for storage, so there
is less capacity per unit volume for a drum unit than there is for a disk unit.

The transfer time for a sector on a drum is determined by the rotational delay
and the length of a sector. Since there is no head movement, there is no seek time
to consider. Nowadays,

fixed head disks

 are configured in a similar manner to
drums with one head per track, but are considerably less expensive per stored bit
than drums since the surfaces of platters are used rather than the outside of a
drum.

8.1.4

OPTICAL DISKS

Several new technologies take advantage of optics to store and retrieve data. Both
the

Compact Disc

 (CD) and the newer

Digital Versatile Disc

 (DVD) employ
light to read data encoded on a reflective surface.

The Compact Disc

The CD was introduced in 1983 as a medium for playback of music. CDs have
the capacity to store 74 minutes of audio, in digital stereo (2-channel) format.

Fixed read/write
heads (1 per track)Tracks

Sector

Figure 8-6 A magnetic drum unit.

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

305

The audio is sampled at 2

×

 44,000 16-bit samples per second, or nearly 700 MB
capacity. Since the introduction of the CD in 1983, CD technology has
improved in terms of price, density, and reliability, which led to the development
of

CD ROMs

 (CD read only memories) for computers, which also have the
same 700 MB capacity. Their low cost, only a few cents each when produced in
volume, coupled with good reliability and high capacity, have made CD ROMs
the medium of choice for distributing commercial software, replacing floppy
disks.

CD ROMs are “read only” because they are stamped from a master disk similar
to the way that audio CDs are created. A CD ROM disk consists of aluminum
coated plastic, which reflects light differently for

lands

 or

pits

, which are smooth
or pitted areas, respectively, that are created in the stamping process. The master
is created with high accuracy using a high power laser. The pressed (stamped)
disks are less accurate, and so a complex error correction scheme is used which is
known as a

crossinterleaved Reed Solomon

 error correcting code. Errors are
also reduced by assigning 1’s to pit-land and land-pit transitions, with runs of 0’s
assigned to smooth areas, rather than assigning 0’s and 1’s to lands and pits, as in
Manchester encoding.

Unlike a magnetic disk in which all of the sectors on concentric tracks are lined
up like a sliced pie (where the disk rotation uses constant angular velocity), a
CD is arranged in a spiral format (using constant linear velocity) as shown in
Figure 8-7. The pits are laid down on this spiral with equal spacing from one end

of the disk to the other. The speed of rotation, approximately the same 30 RPM

Figure 8-7 Spiral storage format for a CD.

306 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

as the floppy disk, is adjusted so that the disk moves more slowly when the head
is at the edge than when it is at the center. Thus CD ROMs suffer from the same
long access time as floppy disks because of the high rotational latency. CD ROM
drives are available with rotational speeds up to 24×, or 24 times the rotational
speed of an audio CD, with a resulting decrease in average access time.

CD ROM technology is appropriate for distributing large amounts of data inex-
pensively when there are many copies to be made, because the cost of creating a
master and pressing the copies is distributed over the cost of each copy. If only a
few copies are made, then the cost of each disk is high because CDs cannot be
economically pressed in small quantities. CDs also cannot be written after they
are pressed. A newer technology that addresses these problem is the write once
read many (WORM) optical disk, in which a low intensity laser in the CD con-
troller writes onto the optical disk (but only once for each bit location). The
writing process is normally slower than the reading process, and the controller
and media are more expensive than for CD ROMs.

The Digital Versatile Disc

A newer version of optical disk storage is the Digital Versatile Disc, or DVD.
There are industry standards for DVD-Audio, DVD-Video, and DVD-ROM
and DVD-RAM data storage. When a single side of the DVD is used, its storage
capacity can be up to 4.7 GB. The DVD standards also include the capability of
storing data on both sides in two layers on each side, for a total capacity of 17
GB. The DVD technology is an evolutionary step up from the CD, rather than
being an entirely new technology, and in fact the DVD player is backwardly
compatible–it can be used to play CDs and CD ROMs as well as DVDs.

8.2 Input Devices
Disk units, tape units, and drum units are all input/output (I/O) devices, and
they share a common use for mass storage. In this section, we look at a few
devices that are used exclusively for input of data. We start with one of the most
prevalent devices – the keyboard.

8.2.1 KEYBOARDS

Keyboards are used for manual input to a computer. A keyboard layout using the
ECMA-23 Standard (2nd ed.) is shown in Figure 8-8. The “QWERTY” layout
(for the upper left row of letters D01 – D06) conforms to the traditional layout

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 307

used in typewriters. Frequently used letters are placed far apart so that the typist
is slowed and jams in mechanical typewriters are reduced. Although jams are not
a problem with electronic keyboards, the traditional layout prevails.

When a character is typed, a bit pattern is created that is transmitted to a host
computer. For 7-bit ASCII characters, only 128 bit patterns can be used, but
many keyboards that expand on the basic ECMA-23 standard use additional
modifier keys (shift, escape, and control) and so a seven-bit pattern is no longer
large enough. A number of alternatives are possible, but one method that has
gained acceptance is to provide one bit pattern for each modifier key and other
bit patterns for the remaining keys.

Other modifications to the ECMA-23 keyboard include the addition of function
keys (in row F, for example), and the addition of special keys such as tab, delete,
and carriage return. A modification that places frequently used keys together was
developed for the Dvorak keyboard as shown in Figure 8-9. Despite the perfor-

mance advantage of the Dvorak keyboard, it has not gained wide acceptance.

99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

F

E

D

C

B

A

Z

Q W E R T Y U I O P

A S D F G H J K L

Z X C V B N M

7 8 9

4 5 6

1 2 3

00 . SP

–

0

1
!

2
"

3
#

4 5
%

6
&

7
'

8
(

9
)

0 .
= ¬̂

¬

@
'

[
{

;
+

:
*

/
?

,
<

.
>

]
}

\
|

Figure 8-8 Keyboard layout for the ECMA-23 Standard (2nd ed.). Shift keys are frequently placed

in the B row.

P Y F G C R L

A O E U I D H T N S

Q J K X B M W V Z

?
/

}
{

–
-

"
'

,
,

.

.

:
;

Figure 8-9 The Dvorak keyboard layout.

308 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

8.2.2 BIT PADS

A digitizing tablet, or bit pad, is an input device that consists of a flat surface
and a stylus or puck as illustrated in Figure 8-10. The tablet has an embedded

two-dimensional mesh of wires that detects an induced current created by the
puck as it is moved about the tablet. The bit pad transmits X-Y (horizontal-verti-
cal) positions and the state of the buttons on the puck (or stylus) either continu-
ously, or for an event such as a key click or a movement, depending on the
control method. Bit pads are commonly used for entering data from maps, pho-
tographs, charts, or graphs.

8.2.3 MICE AND TRACKBALLS

A mouse is a hand-held input device that consists of a rubber ball on the bottom
and one or more buttons on the top as illustrated in the left side of Figure 8-11.
As the mouse is moved, the ball rotates proportional to the distance moved.
Potentiometers within the mouse sense the direction of motion and the distance
traveled, which are reported to the host along with the state of the buttons. Two
button events are usually distinguished: one for the key-down position and one
for the key-up position.

A trackball can be thought of as a mouse turned upside down. The trackball
unit is held stationary while the ball is manually rotated. The configuration of a
trackball is shown in the right side of Figure 8-11.

Puck

Cable to host computer

Coil

Buttons

Figure 8-10 A bit pad with a puck.

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 309

An optical mouse replaces the ball with a light emitting diode (LED) and uses
a special reflective mousepad that consists of alternating reflective and absorptive
horizontal and vertical stripes. Motion is sensed through transitions between
reflective and absorptive areas. The optical mouse does not accumulate dirt as
readily as the ball mouse, and can be used in a vertical position or even in a
weightless environment. The natural rotation of the wrist and elbow, however, do
not match the straight horizontal and vertical stripes of the optical mousepad,
and so some familiarity is required by the user in order to use the device effec-
tively.

8.2.4 LIGHTPENS AND TOUCH SCREENS

Two devices that are typically used for selecting objects are lightpens and touch
screens. A lightpen does not actually produce light, but senses light from a video
screen as illustrated in Figure 8-12. An electron beam excites a phosphor coating

To host

Mousepad (improves traction) Trackball

Mouse

Buttons

To host

Buttons

Figure 8-11 A three-button mouse (left) and a three-button trackball (right).

Figure 8-12 A user selecting an object with a lightpen.

310 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

on the back of the display surface. The phosphor glows and then dims as it
returns to its natural state. Each individual spot is refreshed at a rate of 30 – 60
Hz, so that a user perceives a continuous image.

When a dim spot is refreshed, it becomes brighter, and this change in intensity
signals the location of the beam at a particular time. If the lightpen is positioned
at a location where the phosphor is refreshed, then the position of the electron
beam locates the position of the pen. Since the lightpen detects intensity, it can
only distinguish among illuminated areas. Dark areas of the screen all appear the
same since there is no change in intensity over time.

A touch screen comes in two forms, photonic and electrical. An illustration of
the photonic version is shown in Figure 8-13. A matrix of beams covers the

screen in the horizontal and vertical dimensions. If the beams are interrupted (by
a finger for example) then the position is determined by the interrupted beams.

In an alternative version of the touch screen, the display is covered with a touch
sensitive surface. The user must make contact with the screen in order to register
a selection.

8.2.5 JOYSTICKS

A joystick indicates horizontal and vertical position by the distance a rod that
protrudes from the base is moved (see Figure 8-14). Joysticks are commonly used
in video games, and for indicating position in graphics systems. Potentiometers
within the base of the joystick translate X-Y position information into voltages,
which can then be encoded in binary for input to a digital system. In a
spring-loaded joystick, the rod returns to the center position when released. If

LEDs
(sources)

Detector

User breaks
beams

Figure 8-13 A user selecting an object on a touch screen.

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 311

the rod can be rotated, then an additional dimension can be indicated, such as
height.

8.3 Output Devices
There are many types of output devices. In the sections below, we explore two
common output devices: the laser printer and the video display.

8.3.1 LASER PRINTERS

A laser printer consists of a charged drum in which a laser discharges selected
areas according to a bit mapped representation of a page to be printed. As the
drum advances for each scan line, the charged areas pick up electrostatically sen-
sitive toner powder. The drum continues to advance, and the toner is transferred
to the paper, which is heated to fix the toner on the page. The drum is cleaned of
any residual toner and the process repeats for the next page. A schematic diagram
of the process is shown in Figure 8-15.

Since the toner is a form of plastic, rather than ink, it is not absorbed into the
page but is melted onto the surface. For this reason, a folded sheet of laser
printed paper will display cracks in the toner along the fold, and the toner is
sometimes unintentionally transferred to other materials if exposed to heat or
pressure (as from a stack of books).

Whereas older printers could print only ASCII characters, or occasionally crude
graphics, the laser printer is capable of printing arbitrary graphical information.
Several languages have been developed for communicating information from
computer to printer. One of the most common is the Adobe PostScript lan-
guage. PostScript is a stack-based language that is capable of describing objects as
diverse as ASCII characters, high level shapes such as circles and rectangles, and
low-level bit maps. It can be used to describe foreground and background colors,

Figure 8-14 A joystick with a selection button and a rotatable rod.

312 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

and fill colors with which to fill objects.

8.3.2 VIDEO DISPLAYS

A video display, or monitor, consists of a luminescent display device such as a
cathode ray tube (CRT) or a liquid crystal panel, and controlling circuitry. In a
CRT, vertical and horizontal deflection plates steer an electron beam that sweeps
the display screen in raster fashion (one line at a time, from left to right, starting
at the top).

A configuration for a CRT is shown in Figure 8-16. An electron gun generates a

stream of electrons that is imaged onto a phosphor coated screen at positions

Paper input

Paper output

The quick brown fox jumps

Heated rollers

Toner cartridge

Cleaner and
discharger

Stationary
laser source

Page
composing

circuitry

Page description
from host computer

Charged pattern

Rotating mirror

Figure 8-15 Schematic of a laser printer (adapted from [Tanenbaum, 1999]).

Horizontal control

Vertical control

Intensity control

Electron gun

Vertical
deflection plate

Vacuum

GridHorizontal
deflection plate

Phosphor
coated screen

Figure 8-16 A CRT with a single electron gun.

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 313

controlled by voltages on the vertical and horizontal deflection plates. Electrons
are negatively charged, and so a positive voltage on the grid accelerates electrons
toward the screen and a negative voltage repels electrons away from the screen.
The color produced on the screen is determined by the characteristics of the
phosphor. For a color CRT, there are usually three different phosphor types (red,
green, and blue) that are interleaved in a regular pattern, and three guns, which
produce three beams that are simultaneously deflected on the screen.

A simple display controller for a CRT is shown in Figure 8-17. The writing of

information on the screen is controlled by the “dot clock,” which generates a
continuous stream of alternating 1’s and 0’s at a rate that corresponds to the
update time for a single spot on the screen. A single spot is called a picture ele-
ment, or pixel. The display controller in Figure 8-17 is for a screen that is 640
pixels wide by 480 pixels high. A column counter is incremented from 0 to 639
for each row, then repeats, and a row counter is incremented from 0 to 479,
which then repeats. The row and column addresses index into the frame buffer,
or “display RAM” that holds the bit patterns corresponding to the image that is
to be displayed on the screen. The contents of the frame buffer are transferred to
the screen from 30 to 100 times per second. This technique of mapping a RAM
area to the screen is referred to as memory-mapped video. Each pixel on the
screen may be represented by from 1 to 12 or more bits in the frame buffer.

To horizontal deflection
plate control

To vertical deflection plate control

10 9

T
o

el
ec

tr
on

 g
un

(g

ri
d)

 c
on

tr
ol Red

Green

Blue
8

LUT loaded from computer

Screen
image

loaded by
computer

Clock Column
counter

(mod 640)

Row
counter

(mod 480)

Address

O
ut

pu
t

In
pu

t

O
ut

pu
t

A
dd

re
ss

8
Input

RAM
frame
buffer

RAM
LUT

8

8

One output
pulse per 640
columns

Figure 8-17 Display controller for a 640×480 color monitor (adapted from [Hamacher et al.,

1990]).

314 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

When there is only a single bit per pixel, the pixel can only be on or off, black or
white; multiple bits per pixel allow a pixel to have varying colors, or shades of
gray.

Each pixel in the display controller of Figure 8-17 is represented by eight bits in
the frame buffer, which means that one out of 28, or 256 different intensities can
be used for each pixel. In a simple configuration the eight bits can be partitioned
for the red, green, and blue (R, G, and B) inputs to the CRT as three bits for red,
three bits for green, and two bits for blue. An alternative is to pass the eight-bit
pixel value to a color lookup table (LUT) in which the eight-bit value is trans-
lated into 256 different 24-bit colors. Eight bits of the 24-bit output are then
used for each of the red, green, and blue guns. A total of 224 different colors can
be displayed, but only 28 of the 224 can be displayed at any one time since the
LUT has only 28 entries. The LUT can be reloaded as necessary to select differ-
ent subsets of the 224 colors. For example, in order to display a gray scale image
(no color), we must have R=G=B and so a ramp from 0 to 255 is stored for each
of the red, green, and blue guns.

The human eye is relatively slow when compared with the speed of an electronic
device, and cannot perceive a break in motion that happens at a rate of about 25
Hz or greater. A computer screen only needs to be updated 25 or 30 times a sec-
ond in order for an observer to perceive a continuous image. Whereas video
monitors for computer applications can have any scan rate that the designer of
the monitor and video interface card wish, in television applications the scan rate
must be standardized. In Europe, a rate of 25 Hz is used for standard television,
and a rate of 30 Hz is used in North America. The phosphor types used in the
screens do not have a long persistence, and so scan lines are updated alternately
in order to reduce flicker. The screen is thus updated at a 50 Hz rate in Europe
and at a 60 Hz rate in North America, but only alternating lines are updated on
each sweep. For high resolution graphics, the entire screen may be updated at a
50 Hz or 60 Hz rate, rather than just the alternating lines. Many observers
believe that the European choice of 50 Hz was a bad one, because many viewers
can detect the 50 Hz as a flicker in dim lighting or when viewed at the periphery
of vision.

On the other hand, the Europeans point to the United States NTSC video trans-
mission standard as being inferior to their PAL system, referring to the NTSC
system as standing for “Never The Same Color,” because of its poorer ability to
maintain consistent color from frame to frame.

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 315

The data rates between computer and video monitor can be quite high. Consider
that a 24-bit monitor with 1024 × 768 pixel resolution and a refresh rate of 60
Hz will requires a bandwidth (that is, the amount of information that can be
carried over a given period of time) of 3 bytes/pixel × (1024 × 768) pixels × 60
Hz, or roughly 140 MB per second. Fortunately, the hardware described above
maps the frame buffer onto the screen without CPU intervention, but it is still
up to the CPU to output pixels to the frame buffer as the image on the screen
changes.

8.4 Communication
“Communication” is the process of transferring information from a source to a
destination, and “telecommunications” is the process of communicating at a dis-
tance. Communication systems range from busses within an integrated circuit to
the public telephone system, and radio and television. Wide-area telecommuni-
cation systems have become very complex, with all combinations of voice, video,
and data being transferred by wire, optical fiber, radio, and microwaves. The
routes that communication takes may traverse cross-country, under water,
through local radio cells, and via satellite. Data that originates as analog voice sig-
nals may be converted to digital data streams for efficient routing over long dis-
tances, and then converted back to an analog signal, without the knowledge of
those communicating.

In this chapter we focus on the relatively short range communications between
entities located at distances ranging from millimeters to a kilometer or so. An
example of the former is the interactions between a CPU and main memory, and
an example of the latter is a local area network (LAN). The LAN is used to
interconnect computers located within a kilometer or so of one another. In
Chapter 10 we extend our discussion to wide area networks (WANs) as typified
by the Internet.

In the next sections we discuss communications from the viewpoints of commu-
nications at the CPU and motherboard level, and then branch out to the local
area network.

8.4.1 BUSSES

Unlike the long distance telecommunications network, in which there may be
many senders and receivers over a large geographical distance, a computer has
only a small number of devices that are geographically very local, within a few

316 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

millimeters to a few meters of each other. In a worst case scenario, all devices
need to simultaneously communicate with every other device, in which N2/2
links are needed for N devices. The number of links becomes prohibitively large
for even small values of N, but fortunately, as for long distance telecommunica-
tion, not all devices need to simultaneously communicate.

A bus is a common pathway that connects a number of devices. An example of a
bus can be found on the motherboard (the main circuit board that contains the
central processing unit) of a personal computer, as illustrated in Figure 8-18. A

typical motherboard contains integrated circuits (ICs) such as the CPU chip
and memory chips, board traces (wires) that connect the chips, and a number of
busses for chips or devices that need to communicate with each other. In the
illustration, an I/O bus is used for a number of cards that plug into the connec-
tors, perpendicular to the motherboard in this example configuration.

Bus Structure, Protocol, and Control

A bus consists of the physical parts, like connectors and wires, and a bus proto-
col. The wires can be partitioned into separate groups for control, address, data,
and power as illustrated in Figure 8-19. A single bus may have a few different
power lines, and the example shown in Figure 8-19 has lines for ground (GND)
at 0 V, +5 V, and –15 V.

Motherboard

I/O Bus

Board traces
(wires)

Connectors for plug-in cards

Integrated Circuits

Plug-in card

I/O bus connector

Memory

CPU

Figure 8-18 A motherboard of a personal computer (top view).

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 317

The devices share a common set of wires, and only one device may send data at
any one time. All devices simultaneously listen, but normally only one device
receives. Only one device can be a bus master, and the remaining devices are
then considered to be slaves. The master controls the bus, and can be either a
sender or a receiver.

An advantage of using a bus is to eliminate the need for connecting every device
with every other device, which avoids the wiring complexity that would quickly
dominate the cost of such a system. Disadvantages of using a bus include the
slowdown introduced by the master/slave configuration, the time involved in
implementing a protocol (see below), and the lack of scalability to large sizes due
to fan-out and timing constraints.

A bus can be classified as one of two types: synchronous or asynchronous. For a
synchronous bus, one of the devices that is connected to the bus contains a crys-
tal oscillator (a clock) that sends out a sequence of 1’s and 0’s at timed intervals as
illustrated in Figure 8-20. The illustration shows a train of pulses that repeat at

10 ns intervals, which corresponds to a clock rate of 100 MHz. Ideally, the clock
would be a perfect square wave (instantaneous rise and fall times) as shown in the
figure. In practice, the rise and fall times are approximated by a rounded, trape-
zoidal shape.

Bus Clocking

For a synchronous bus, which is discussed below, a clock signal is used to syn-

CPU DiskMemory

Control (C0 – C9)
Address (A0 – A31)
Data (D0 – D31)
Power (GND, +5V, –15V)

Figure 8-19 Simplified illustration of a bus.

Crystal
Oscillator

1 0 1 0 1 0 1 0

Logical 0 (0V)

Logical 1 (+5V)

10 ns

Figure 8-20 A 100 MHz bus clock.

318 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

chronize bus operations. This bus clock is generally derived from the master sys-
tem clock, but it may be slowed down with respect to the master clock, especially
in higher-speed CPUs. For example, one model of the Power Macintosh G3
computer has a system clock speed of 333 MHz, but a bus clock speed of 66
MHz, which is slower by a factor of 5. This is because memory access times are
so much longer than typical CPU clock speeds. Typical cache memory has an
access time of around 20 ns, compared to a 3 ns clock period for the processor
described above.

In addition to the bus clock running at a slower speed than the processor, several
bus clock cycles are usually required to effect a bus transaction, referred to as a
bus cycle. Typical bus cycles run from two to five bus clock periods in duration.

The Synchronous Bus

As an example of how communication takes place over a synchronous bus, con-
sider the timing diagram shown in Figure 8-21 which is for a synchronous read

of a word of memory by a CPU. At some point early in time interval T1, while
the clock is high, the CPU places the address of the location it wants to read onto
the address lines of the bus. At some later time during T1, after the voltages on
the address lines have become stable, or “settled,” the and lines are
asserted by the CPU. informs the memory that it is selected for the

Φ

Address

Data

MREQ

RD

T1 T2 T3
Leading edge

Trailing edge

Data valid

Time

Address valid

Figure 8-21 Timing diagram for a synchronous memory read (adapted from [Tanenbaum, 1999]).

MREQ RD
MREQ

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 319

transfer (as opposed to another device, like a disk). The line informs the
selected device to perform a read operation. The overbars on and
indicate that a 0 must be placed on these lines in order to assert them.

The read time of memory is typically slower than the bus speed, and so all of
time interval T2 is spent performing the read, as well as part of T3. The CPU
assumes a fixed read time of three bus clocks, and so the data is taken from the
bus by the CPU during the third cycle. The CPU then releases the bus by
de-asserting and in T3. The shaded areas of the data and address
portions of the timing diagram indicate that these signals are either invalid or
unimportant at those times. The open areas, such as for the data lines during T3,
indicate valid signals. Open and shaded areas are used with crossed lines at either
end to indicate that the levels of the individual lines may be different.

The Asynchronous Bus

If we replace the memory on a synchronous bus with a faster memory, then the
memory access time will not improve because the bus clock is unchanged. If we
increase the speed of the bus clock to match the faster speed of the memory, then
slower devices that use the bus clock may not work properly.

An asynchronous bus solves this problem, but is more complex, because there is
no bus clock. A master on an asynchronous bus puts everything that it needs on
the bus (address, data, control), and then asserts (master synchroniza-
tion). The slave then performs its job as quickly as it can, and then asserts

 (slave synchronization) when it is finished. The master then de-asserts
, which signals the slave to de-assert . In this way, a fast mas-

ter/slave combination responds more quickly than a slow master/slave combina-
tion.

As an example of how communication takes place over an asynchronous bus,
consider the timing diagram shown in Figure 8-22. In order for a CPU to read a
word from memory, it places an address on the bus, followed by asserting

 and . After these lines settle, the CPU asserts . This event
triggers the memory to perform a read operation, which results in even-
tually being asserted by the memory. This is indicated by the cause-and-effect
arrow between and shown in Figure 8-22. This method of syn-
chronization is referred to as a “full handshake.” In this particular implementa-
tion of a full handshake, asserting initiates the transfer, followed by the
slave asserting , followed by the CPU de-asserting , followed by

RD
MREQ RD

MREQ RD

MSYN

SSYN
MSYN SSYN

MREQ RD MSYN
SSYN

MSYN SSYN

MSYN
SSYN MSYN

320 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

the memory de-asserting . Notice the absence of a bus clock signal.

Asynchronous busses are more difficult to debug than synchronous busses when
there is a problem, and interfaces for asynchronous busses are more difficult to
make. For these reasons, synchronous busses are very common, particularly in
personal computers.

Bus Arbitration—Masters and Slaves

Suppose now that more than one device wants to be a bus master at the same
time. How is a decision made as to who will be the bus master? This is the bus
arbitration problem, and there are two basic schemes: centralized and decen-
tralized (distributed). Figure 8-23 illustrates three organizations for these two
schemes. In Figure 8-23a, a centralized arbitration scheme is used. Devices 0
through n are all attached to the same bus (not shown), and they also share a bus
request line that goes into an arbiter. When a device wants to be a bus master, it
asserts the bus request line. When the arbiter sees the bus request, it determines if
a bus grant can be issued (it may be the case that the current bus master will not
allow itself to be interrupted). If a bus grant can be issued, then the arbiter asserts
the bus grant line. The bus grant line is daisy chained from one device to the
next. The first device that sees the asserted bus grant and also wants to be the bus
master takes control of the bus and does not propagate the bus grant to higher
numbered devices. If a device does not want the bus, then it simply passes the

Address

MSYN

RD

Data

Time

Memory address to be read

MREQ

SSYN

Data valid

Figure 8-22 Timing diagram for asynchronous memory read (adapted from [Tanenbaum, 1999]).

SSYN

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 321

bus grant to the next device. In this way, devices that are electrically closer to the
arbiter have higher priorities than devices that are farther away.

Sometimes an absolute priority ordering is not appropriate, and a number of bus
request/bus grant lines are used as shown in Figure 8-23(b). Lower numbered
bus request lines have higher priorities than higher numbered bus request lines.
In order to raise the priority of a device that is far from the arbiter, it can be
assigned to a lower numbered bus request line. Priorities are assigned within a
group on the same bus request level by electrical proximity to the arbiter.

In a third approach, a decentralized bus arbitration scheme is used as illustrated
in Figure 8-23(c). Notice the lack of a central arbiter. A device that wants to
become a bus master first asserts the bus request line, and then it checks if the
bus is busy. If the busy line is not asserted, then the device sends a 0 to the next
higher numbered device on the daisy chain, asserts the busy line, and de-asserts
the bus request line. If the bus is busy, or if a device does not want the bus, then
it simply propagates the bus grant to the next device.

Arbitration needs to be a fast operation, and for that reason, a centralized scheme

Arbiter Bus grant

Bus request

0 1 2 n. . .

(a)

Arbiter

Bus grant level 0

Bus request level 0

0 1 2 n. . .

(b)

Bus grant

Bus request

0 1 2 n. . .

(c)
Busy
+5V

Bus grant level k

Bus request level k...

Figure 8-23 (a)Simple centralized bus arbitration; (b) centralized arbitration with priority levels;

(c) decentralized bus arbitration. (Adapted from [Tanenbaum, 1999]).

322 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

will only work well for a small number of devices (up to about eight). For a large
number of devices, a decentralized scheme is more appropriate.

Given a system that makes use of one of these arbitration schemes, imagine a sit-
uation in which n card slots are used, and then card m is removed, where m < n.
What happens? Since each bus request line is directly connected to all devices in
a group, and the bus grant line is passed through each device in a group, a bus
request from a device with an index greater than m will never see an asserted bus
grant line, which can result in a system crash. This can be a frustrating problem
to identify, because a system can run indefinitely with no problems, until the
higher numbered device is accessed.

When a card is removed, higher cards should be repositioned to fill in the miss-
ing slot, or a dummy card that continues the bus grant line should be inserted in
place of the removed card. Fast devices (like disk controllers) should be given
higher priority than slow devices (like terminals), and should thus be placed close
to the arbiter in a centralized scheme, or close to the beginning of the Bus grant
line in a decentralized scheme.

8.4.2 COMMUNICATION BETWEEN PROCESSORS AND MEMORIES

Computer systems have a wide range of communication tasks. The CPU must
communicate with memory, and with a wide range of I/O devices, ranging from
extremely slow devices such as keyboards, to high-speed devices like disk drives
and network interfaces. In fact, there may be multiple CPUs that communicate
with one another either directly or through a shared memory, in a typical config-
uration.

Three methods for managing input and output are programmed I/O (also
known as polling), interrupt driven I/O, and direct memory access (DMA).

Programmed I/O

Consider reading a block of data from a disk. In programmed I/O, the CPU
polls each device to see if it needs servicing. In a restaurant analogy, the host
would approach the patron and ask if the patron is ready.

The operations that take place for programmed I/O are shown in the flowchart
in Figure 8-24. The CPU first checks the status of the disk by reading a special

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 323

register that can be accessed in the memory space, or by issuing a special I/O
instruction if this is how the architecture implements I/O. If the disk is not ready
to be read or written, then the process loops back and checks the status continu-
ously until the disk is ready. This is referred to as a busy-wait. When the disk is
finally ready, then a transfer of data is made between the disk and the CPU.

After the transfer is completed, the CPU checks to see if there is another commu-
nication request for the disk. If there is, then the process repeats, otherwise the
CPU continues with another task.

Check status of disk

Disk ready?
No

Yes

Send data from
memory to disk (when
writing) or from disk

to memory (when
reading).

Done?
No

Yes

Continue

Enter

Figure 8-24 Programmed I/O flowchart for a disk transfer.

324 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

In programmed I/O the CPU wastes time polling devices. Another problem is
that high priority devices are not checked until the CPU is finished with its cur-
rent I/O task, which may have a low priority. Programmed I/O is simple to
implement, however, and so it has advantages in some applications.

Interrupt-driven I/O

With interrupt driven I/O, the CPU does not access a device until it needs ser-
vicing, and so it does not get caught up in busy-waits. In interrupt-driven I/O,
the device requests service through a special interrupt request line that goes
directly to the CPU. The restaurant analogy would have the patron politely tap-
ping silverware on a water glass, thus interrupting the waiter when service is
required.

A flowchart for interrupt driven I/O is shown in Figure 8-25. The CPU issues a
request to the disk for reading or for writing, and then immediately resumes exe-
cution of another process. At some later time, when the disk is ready, it inter-
rupts the CPU. The CPU then invokes an interrupt service routine (ISR) for
the disk, and returns to normal execution when the interrupt service routine
completes its task. The ISR is similar in structure to the procedure presented in
Chapter 4, except that interrupts occur asynchronously with respect to the pro-
cess being executed by the CPU: an interrupt can occur at any time during pro-
gram execution.

There are times when a process being executed by the CPU should not be inter-
rupted because some critical operation is taking place. For this reason, instruc-
tion sets include instructions to disable and enable interrupts under programmed
control. (The waiter can ignore the patron at times.) Whether or not interrupts
are accepted is generally determined by the state of the Interrupt Flag (IF) which
is part of the Processor Status Register. Furthermore, in most systems priorities
are assigned to the interrupts, either enforced by the processor or by a peripheral
interrupt controller (PIC). (The waiter may attend to the head table first.) At
the top priority level in many systems, there is a non-maskable interrupt (NMI)
which, as the name implies, cannot be disabled. (The waiter will in all cases pay
attention to the fire alarm!) The NMI is used for handling potentially cata-
strophic events such as power failures, and more ordinary but crucially uninter-
ruptible operations such as file system updates.

At the time when an interrupt occurs (which is sometimes loosely referred to as a
trap, even though traps usually have a different meaning, as explained in Chap-

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 325

ter 6), the Processor Status Register and the Program Counter (%psr and %pc
for the ARC) are automatically pushed onto the stack, and the Program Counter
is loaded with the address of the appropriate interrupt service routine. The pro-
cessor status register is pushed onto the stack because it contains the interrupt
flag (IF), and the processor must disable interrupts for at least the duration of the
first instruction of the ISR. (Why?) Execution of the interrupt routine then
begins. When the interrupt service routine finishes, execution of the interrupted
program then resumes.

The ARC jmpl instruction (see Chapter 5) will not work properly for resuming
execution of the interrupted routine, because in addition to restoring the pro-

Transfer data between
disk and memory.

Done?
No

Yes

Continue

Return from interrupt.
Normal processing

resumes.

Do other processing,
until disk issues an

interrupt.

Interrupt causes current
processing to stop.

Issue read or write
request to disk.

Enter

Figure 8-25 Interrupt driven I/O flowchart for a disk transfer.

326 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

gram counter contents, the processor status register must be restored. Instead,
the rett (return from trap) instruction is invoked, which reverses the interrupt
process and restores the %psr and %pc registers to their values prior to the inter-
rupt. In the ARC architecture, rett is an arithmetic format instruction with
op3 = 111001, and an unused rd field (all zeros).

Direct Memory Access (DMA)

Although interrupt driven I/O frees the CPU until the device requires service,
the CPU is still responsible for making the actual data transfer. Figure 8-26 high-

lights the problem. In order to transfer a block of data between the memory and
the disk using either programmed I/O or interrupt driven I/O, every word trav-
els over the bus twice: first to the CPU, then again over the bus to its destination.

A DMA device can transfer data directly to and from memory, rather than using
the CPU as an intermediary, and can thus improve the speed of communication
over the bus. In keeping with the restaurant analogy, the host serves everyone at
one table before serving anyone at another table. DMA services are usually pro-
vided by a DMA controller, which is itself a specialized processor whose specialty
is transferring data directly to or from I/O devices and memory. Most DMA con-
trollers can also be programmed to make memory-to-memory block moves. A
DMA device thus takes over the job of the CPU during a transfer. In setting up
the transfer, the CPU programs the DMA device with the starting address in
main memory, the starting address in the device, and the length of the block to
be transferred.

Figure 8-27 illustrates the DMA process for a disk transfer. The CPU sets up the
DMA device and then signals the device to start the transfer. While the transfer is
taking place, the CPU continues execution of another process. When the DMA
transfer is completed, the device informs the CPU through an interrupt. A sys-

CPU DiskMemory

Without DMA With DMA

Bus

Figure 8-26 DMA transfer from disk to memory bypasses the CPU.

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 327

tem that implements DMA thus also implements interrupts as well.

If the DMA device transfers a large block of data without relinquishing the bus,
the CPU may become starved for instructions or data, and thus its work is halted
until the DMA transfer has completed. In order to alleviate this problem, DMA
controllers usually have a “cycle-stealing” mode. In cycle-stealing DMA the con-
troller acquires the bus, transfers a single byte or word, and then relinquishes the
bus. This allows other devices, and in particular the CPU, to share the bus dur-
ing DMA transfers. In the restaurant analogy, a patron can request a check while
the host is serving another table.

8.4.3 I/O CHANNELS

The DMA concept is an efficient method of transferring blocks of data over a
bus, but there is a need for a more sophisticated approach for complex systems.
There are a number of reasons for not connecting I/O devices directly to the sys-
tem bus:

• The devices might have complex operating characteristics, and the CPU should

CPU executes
another process

Continue

DMA device begins
transfer independent of

CPU

DMA device
interrupts CPU
when finished

CPU sets up disk for
DMA transfer

Enter

Figure 8-27 DMA flowchart for a disk transfer.

328 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

be insulated from this complexity.

• Peripherals might be slow, and since the system bus is fast, overall performance
is degraded if direct access to the system bus is allowed by all devices.

• Peripherals sometimes use different data formats and word lengths than the
CPU (such as serial vs. parallel, byte vs. word, etc.)

I/O for complex systems can be handled through an I/O channel, or I/O mod-
ule, that interfaces peripheral devices to the system bus. An I/O channel is a high
level controller that can execute a computer program, which is its distinguishing
characteristic. This program might seek a head across a disk, or collect characters
from a number of keyboards into a block and transmit the block using DMA.

There are two types of channels, as illustrated in Figure 8-28. A selector channel

A
dd

re
ss

D
at

a

C
on

tr
ol

Po
w

er

System Bus

Selector
Channel

I/O
Controller

Devices

I/O
Controller

Multiplexor
Channel

I/O
Controller

Devices

I/O
Controller

Figure 8-28 A selector channel and a multiplexor channel.

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 329

controls several devices, but handles transfers for a single device at a time. A
selector channel is typically used for high speed devices like hard disks. A multi-
plexor channel handles transfers for several devices at a time. A multiplexor
channel comes in two forms: a byte multiplexor, which interleaves bytes from a
number of low speed devices into a single stream, or a block multiplexor, which
interleaves blocks from a number of high speed devices into a single stream.

For both types of channels, concurrent operations can take place among devices
and the rest of the system. For instance, a selector channel may perform a head
seek operation while a multiplexor channel performs a block transfer over the
system bus. Only a single block at a time can be transferred over the system bus,
however.

8.4.4 MODEMS

People communicate over telephone lines by forming audible sounds that are
converted to electrical signals, which are transmitted to a receiver where they are
converted back to audible sounds. This does not mean that people always need
to speak and hear in order to communicate over a telephone line: this audible
medium of communication can also be used to transmit non-audible informa-
tion that is converted to an audible form.

Figure 8-29 shows a configuration in which two computers communicate over a

telephone line through the use of modems (which is a contraction of modulator
/ demodulator). A modem transforms an electrical signal from a computer into
an audible form for transmission, and performs the reverse operation when
receiving.

Modem communication over a telephone line is normally performed in serial
fashion, a single bit at a time, in which the bits have an encoding that is appro-
priate for the transmission medium. There are a number of forms of modulation
used in communication, which are encodings of data into the medium. Figure

Modem Modem

Telephone Line

Figure 8-29 Communication over a telephone line with modems.

330 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

8-30 illustrates three common forms of modulation.

Amplitude modulation (AM) uses the strength of the signal to encode 1’s and
0’s. AM lends itself to simple implementations that are inexpensive to build.
However, since there is information in the amplitude of the signal, anything that
changes the amplitude affects the signal. For an AM radio, a number of situa-
tions affect the amplitude of the signal (such as driving under a bridge or near
electrical lines, lightning, etc.).

Frequency modulation (FM) is not nearly as sensitive to amplitude related
problems because information is encoded in the frequency of the signal rather
than in the amplitude. The FM signal on a radio is relatively static-free, and does
not diminish as the receiver passes under a bridge.

Phase modulation (PM) is most typically used in modems, where four phases
(90 degrees apart) double the data bandwidth by transmitting two bits at a time
(which are referred to as dibits). The use of phase offers a degree of freedom in
addition to frequency, and is appropriate when the number of available frequen-
cies is restricted.

In pulse code modulation (PCM) an analog signal is sampled and converted
into binary. Figure 8-31 shows the process of converting an analog signal into a
PCM binary sequence. The original signal is sampled at twice the rate of the
highest significant frequency, which produces values at discrete intervals. The

Digital Signal

AM

FM

PM

0 1 0 1 1 0

Figure 8-30 Three common forms of modulation.

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 331

samples are encoded in binary and catenated to produce the PCM sequence.

PCM is a digital approach, and has all of the advantages of digital information
systems. By using repeaters at regular intervals the signal can be perfectly
restored. By decreasing the distance between repeaters, the effective bandwidth of
a channel can be significantly increased. Analog signals, however, can at best be
guessed and can only be approximately restored. There is no good way to make
analog signals perfect in a noisy environment.

Shannon’s result about the data rate of a noisy channel applies here:

data rate = bandwidth × log(1 + S/N)

where S is the signal and N is the noise. Since a digital signal can be made to use
arbitrarily noisy channels (in which S/N is large) because of its noise immunity,
higher data rates can be achieved over the same channel. This is one of the driv-
ing forces in the move to digital technology in the telecommunications industry.
The transition to all-digital has also been driven by the rapid drop in the cost of
digital circuitry.

8.4.5 LOCAL AREA NETWORKS

A local area network (LAN) is a communication medium that interconnects
computers over a limited geographical distance of a few miles at most. A LAN
allows a set of closely grouped computers and other devices to share common
resources such as data, software applications, printers, and mass storage.

Amplitude

000

001

010

011

100

101

110

111

Time

PCM sequence = 011 110 011 001 100 111 101

Figure 8-31 Conversion of an analog signal to a PCM binary sequence.

332 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

A LAN consists of hardware, software, and protocols. The hardware may be in
the form of cables and interface circuitry. The software is typically embedded in
an operating system, and is responsible for connecting a user to the network. The
protocols are sets of rules that govern format, timing, sequencing, and error con-
trol. Protocols are important for ensuring that data is packaged for injection into
the network and is extracted from the network properly. The data to be transmit-
ted is decomposed into pieces, each of which is prepended with a header that
contains information about parameters such as the destination, the source, error
protection bits, and a time stamp. The data, which is often referred to as the pay-
load, is combined with the header to form a packet that is injected into the net-
work. A receiver goes through the reverse process of extracting the data from the
packet.

The process of communicating over a network is normally carried out in a hier-
archy of steps, each of which has its own protocol. The steps must be followed in
sequence for transmission, and in the reverse sequence when receiving. This leads
to the notion of a protocol stack which isolates the protocol being used within
the hierarchy.

The OSI Model

The Open System Interconnection (OSI) model is a set of protocols established
by the International Standards Organization (ISO) in an attempt to define and
standardize data communications. The OSI model has been largely displaced by
the Internet TCP/IP model (see Chapter 10) but still heavily influences network
communication, particularly for telecommunication companies.

In the OSI model the communication process is divided into seven layers: appli-
cation, presentation, session, transport, network, data link, and physical as
summarized in Figure 8-32. As an aid in remembering the layers, the mnemonic
is sometimes used: A Powered-down System Transmits No Data Packets.

The OSI model does not give a single definition of how data communications
actually take place. Instead, the OSI model serves as a reference for how the pro-
cess should be divided and what protocols should be used at each layer. The con-
cept is that equipment providers can select a protocol for each layer while
ensuring compatibility with equipment from other providers that may use differ-
ent protocols.

The highest level in the OSI model is the application layer, which provides an

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 333

interface for allowing applications to communicate with each other over the net-
work. It offers high level support for applications that interact over the network
such as database services for network database programs, message handling for
electronic mail (e-mail) programs, and file handling for file transfer programs.

The presentation layer ensures that information is presented to communication
applications in a common format. This is necessary because different systems
may use different internal data formats. For instance, some systems use a
big-endian internal format while others use a little-endian internal format. The
function of the presentation layer is to insulate the applications from these differ-
ences.

The session layer establishes and terminates communication sessions between
host processes. The session layer is responsible for maintaining the integrity of
communication even if the layers below it lose data. It also synchronizes the
exchange, and establishes reference points for continuing an interrupted commu-
nication.

The transport layer ensures reliable transmission from source to destination. It

1. Physical

2. Data Link

3. Network

4. Transport

5. Session

6. Presentation

7. Application

Figure 8-32 The seven layers of the OSI model.

334 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

allocates communication resources so that data is transferred both quickly and
cost effectively. The session layer makes requests to the transport layer, which pri-
oritizes the requests and makes trade-offs among speed, cost, and capacity. For
example, a transmission may be split into several packets which are transmitted
over a number of networks in order to obtain a faster communication time.
Packets may thus arrive at the destination out of order, and it is the responsibility
of the transport layer to ensure that the session layer receives data in the same
order it is sent. The transport layer provides error recovery from source to desti-
nation, and also provides flow control (that is, it ensures that the speeds of the
sender and receiver are matched).

The network layer routes data through intermediate systems and subnetworks.
Unlike the upper layers, the network layer is aware of the network topology,
which is the connectivity among the network components. The network layer
informs the transport layer of the status of potential and existing connections in
the network in terms of speed, reliability, and availability. The network layer is
typically implemented with routers, which connect different networks that use
the same transport protocol.

The data link layer manages the direct connections between components on a
network. This layer is divided into the logical link control (LLC) which is inde-
pendent of the network topology, and the media access control (MAC) which is
specific to the topology. In some networks the physical connections between
devices are not permanent, and it is the responsibility of the data link layer to
inform the physical layer when to make connections. This layer deals in units of
frames (single packets, or collections of packets that may be interleaved), which
contain addresses, data, and control information.

The physical layer ensures that raw data is transmitted from a source to a destina-
tion over the physical medium. It transmits and repeats signals across network
boundaries. The physical layer does not include the hardware itself, but includes
methods of accessing the hardware.

Topologies

There are three primary LAN organizations, as illustrated in Figure 8-33. The
bus topology is the simplest of the three. Components are connected to a bus
system by simply plugging them into the single cable that runs through the net-
work, or in the case of a wireless network, by simply emitting signals into a com-
mon medium. An advantage to this type of topology is that each component can

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 335

communicate directly with any other component on the bus, and that it is rela-
tively simple to add another component to the network. Control is distributed
among the components, and so there is no single network component that serves
as an intermediary, which reduces the initial cost of this type of network. Disad-
vantages of this topology include a limit on the length of the cable from the bus
to each network component (for a wireline network) and that a break in the
cable may be needed in order to add another component to the network, which
disrupts the rest of the network. An example of a bus-based network is Ethernet.

The ring topology uses a single cable, in which the ends are joined. Packets are
passed around the ring through each network component until they reach their
destinations. At the destinations, the packets are extracted from the network and
are not passed farther along the ring. If a packet makes its way back to the origi-
nating system, then the transmission is unsuccessful, and so the packet is stopped
and a new transmission can be attempted. An example of a ring-based LAN is
IBM’s Token Ring.

In a star topology, each component is connected to a central hub which serves as
an intermediary for all communication over the network. In a simple configura-
tion, the hub receives data from one component and forwards it to all of the
other components, leaving it to the individual components to determine whether
or not they are the intended target. In a more sophisticated configuration, the
hub receives data and forwards it to a specific network component.

An advantage of a star topology is that most of the network service, troubleshoot-
ing, and wiring changes take place at the central hub. A disadvantage is that a
problem with the hub affects the entire network. Another disadvantage is that
geometrically, the star topology requires more cable than a bus or a ring because a
separate cable connects each network component to the hub. An example of a

(b) (c)(a)

Figure 8-33 (a) bus; (b) ring; and (c) star network topologies.

336 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

star-based network is ARCnet (although it is actually a bus-based network).

Data Transmission

Communication within a computer is synchronized by a common clock, and so
the transmission of a 1 or a 0 is signalled by a high or low voltage that is sampled
at a time determined by the clock. This scheme is simple, but does not work well
over longer distances, as in a LAN. The problem is that there is no timing refer-
ence to signal the start or stop of a bit. When there is a long string of 1’s or 0’s,
timing with respect to the sending and receiving clocks may drift because the
clocks are not precisely synchronized. The distances over a LAN are too great to
maintain both a global clock and high speed at the same time. LANs thus typi-
cally use the Manchester encoding scheme (see Section 8.1.1), in which timing is
embedded in the data.

Manchester encoding is applied at the lowest level of transmission. At the next
level, a data stream is decomposed into packets and frames that are transmitted
over the network, not necessarily in order. The data link layer is responsible for
decomposing a data stream into packets, forming packets into frames, and inject-
ing frames into the network. When receiving frames, the data link layer extracts
the packets and assembles them into a format that the higher level network layers
can use. The size of a data packet is commonly on the order of a kilobyte, and
requires a few microseconds for transmission at typical speeds and distances.

Ethernet is one of the most prevalent bus-based networks. Ethernet uses carrier
sense multiple access with collision detection (CSMA/CD) for transmission.
Under CSMA/CD, when a network component wants to transmit data, it first
listens for a carrier. If there is a carrier present on the line, which is placed there
by a transmitting device, then it transmits nothing and listens again after a ran-
dom waiting period. The random waiting period is important in order to avoid a
deadlock in which components that are trying to access the bus perpetually lis-
ten and wait in synchrony.

If there is no traffic on the line, then transmission can begin by sending a carrier
on the line as well as the data. The source also listens for collisions, in which two
or more components simultaneously transmit. A collision is detected by the pres-
ence of more than one carrier. Collisions can occur in a fully operational network
as a result of the finite time it takes for a signal to travel the length of the bus.
The propagation of signals on the bus is bounded by the speed of light over the
length of the bus, which can be 500 m in a generic Ethernet installation. When a

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 337

collision occurs, the transmitting components wait for a random interval before
retransmitting.

Transmitted data moves in both directions over the bus. Every component sees
every packet of data, but only extracts those packets with corresponding destina-
tion addresses. After a packet is successfully delivered, the destination can gener-
ate an acknowledgment to the sender, typically at the transport layer. If the
sender does not receive an acknowledgment after a fixed period of time (which
must be greater than the round trip delay through the network), then it retrans-
mits the message.

Collisions should occur infrequently in practice, and so the overhead of recover-
ing from a collision is not very significant. A serious degradation in Ethernet per-
formance does not occur until traffic increases to about 35% of network capacity.

Bridges, Routers, and Gateways

As networks grow in size, they can be subdivided into smaller networks that are
interconnected. The smaller subnetworks operate almost entirely independently
of each other, and can use different protocols and topologies.

If the subnetworks all use the same topology and the same protocols, then it may
be the case that all that is needed to extend the network are repeaters. A repeater
amplifies the signals on the network, which become attenuated in proportion to
the distance traveled. The overall network is divided into subnetworks, in which
each subnetwork operates somewhat independently with respect to the others.
The subnetworks are not entirely independent because every subnetwork sees all
of the traffic that occurs on the other subnetworks. A network with simple
repeaters is not extensible to large sizes. Since noise is amplified as well as the sig-
nal, the noise will eventually dominate the signal if too many repeaters are used
in succession.

A bridge does more than simply amplify voltage levels. A bridge restores the
individual voltage levels to logical 1 or 0, which prevents noise from accumulat-
ing. Bridges have some level of intelligence, and can typically interpret the desti-
nation address of a packet and route it to the appropriate subnetwork. In this
way, network traffic can be reduced, since the alternative method would be to
blindly send each incoming packet to each subnetwork (as for a repeater based
network).

338 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

Although bridges have some level of intelligence in that they sense the incoming
bits and make routing decisions based on destination addresses, they are unaware
of protocols. A router operates at a higher level, in the network layer. Routers
typically connect logically separate networks that use the same transport proto-
col.

A gateway translates packets up through the application layer of the OSI model
(layers 4 through 7). Gateways connect dissimilar networks by performing proto-
col conversions, message format conversions, and other high level functions.

8.5 Communication Errors and Error Correcting Codes
In all computer architectures, and especially in situations involving communica-
tions between computers, there is a finite chance that the data is received in error,
due to noise in the communication channel. The data representations we have
considered up to this point make use of the binary symbols 1 and 0. In reality,
the binary symbols take on physical forms such as voltages or electric current.
The physical form is subject to noise that is introduced from the environment,
such as atmospheric phenomena, gamma rays, and power fluctuations, to name
just a few. The noise can cause errors, also known as faults, in which a 0 is turned
into a 1 or a 1 is turned into a 0.

Suppose that the ASCII character ‘b’ is transmitted from a sender to a receiver,
and during transmission, an error occurs, so that the least significant bit is
inverted. The correct bit pattern for ASCII ‘b’ is 1100010. The bit pattern that
the receiver sees is 1100011, which corresponds to the character ‘c.’ There is no
way for the receiver to know that an error occurred simply by looking at the
received character. The problem is that all of the possible 27 ASCII bit patterns
represent valid characters, and if any of the bit patterns is transformed into
another through an error, then the resulting bit pattern appears to be valid.

It is possible for the sender to transmit additional “check bits” along with the
data bits. The receiver can examine these check bits and under certain conditions
not only detect errors, but correct them as well. Two methods of computing
these additional bits are described below. We start by introducing some prelimi-
nary information and definitions.

8.5.1 BIT ERROR RATE DEFINED

There are many different ways that errors can be introduced into a computer sys-

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 339

tem, and those errors can take many different forms. For the moment, we will
assume that the probability that a given bit is received in error is independent of
the probability that other bits near it are received in error. In this case, we can
define the bit error rate (BER) as the probability that a given bit is erroneous.
Obviously this must be a very small number, and is usually less than 10-12 errors
per bit examined for many networks. That means, loosely speaking, that as bits
are examined, only one in every 1012 bits will be erroneous.

Inside the computer system typical BER’s may run 10-18 or less. As a rough esti-
mate, if the clock rate of the computer is 100 MHz, and 32 bits are manipulated
during each clock period, then the number of errors per second for that portion
of the computer will be 10-18 × 100 × 106 × 32 or 3.2 × 10-9 errors per second,
approximately one erroneous bit once every 10 years.

On the other hand, if one is receiving a bit stream from a serial communications
line at, say, 1 million bits per second, and the BER is 10-10, then a the number of
errors per second will be 1 × 106 × 10-10 or 10-4 errors per second, approxi-
mately 10 errors per day.

8.5.2 ERROR DETECTION AND CORRECTION

One of the simplest and oldest methods of error detection was used to detect
errors in transmitting and receiving characters in telegraphy. A parity bit, 1 or 0,
was added to each character to make the total number of 1’s in the character even
or odd, as agreed upon by sender and receiver. In our example of transmitting the
ASCII character ‘b,’ 1100010, assuming even parity, a 1 would be attached as a
parity bit to make the total number of 1’s even, resulting in the bit pattern
11000101 being transmitted. The receiver could then examine the bit pattern,
and if there was an even number of 1’s, the receiver could assume that the charac-
ter was received without error. (This method fails if there is significant probabil-
ity of two or more bits being received in error. In this case, other methods must
be used, as discussed later in this section.) The intuition behind this approach is
explored below.

Hamming Codes

If additional bits are added to the data then it is possible to not only detect
errors, but to correct them as well. Some of the most popular error-correcting
codes are based on the work of Richard Hamming of Bell Telephone Laborato-
ries (now operated by Lucent Technologies).

340 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

We can detect single-bit errors in the ASCII code by adding a redundant bit to
each codeword (character). The Hamming distance defines the logical distance
between two valid codewords, as measured by the number of digits that differ
between the codewords. If a single bit changes in an ASCII character, then the
resulting bit pattern represents a different ASCII character. The corresponding
Hamming distance for this code is 1. If we recode the ASCII table so that there is
a Hamming distance of 2 between valid codewords, then two bits must change
in order to convert one character into another. We can then detect a single-bit
error because the corrupted word will lie between valid codewords.

One way to recode ASCII for a Hamming distance of two is to assign a parity
bit, which takes on a value of 0 or 1 to make the total number of 1’s in a code-
word odd or even. If we use even parity, then the parity bit for the character ‘a’ is
1 since there are three 1’s in the bit pattern for ‘a’: 1100001 and assigning a parity
bit of 1 (to the left of the codeword here) makes the total number of 1’s in the
recoded ‘a’ even: 11100001. This is illustrated in Figure 8-34. Similarly, the par-

ity bit for ‘c’ is 0 which results in the recoded bit pattern: 01100011. If we use
odd parity instead, then the parity bits take on the opposite values: 0 for ‘a’ and 1
for ‘c,’ which results in the recoded bit patterns 01100001 and 11100011,
respectively.

The recoded ASCII table now has 28 = 256 entries, of which half of the entries

P

1

1

0

1

0

6

1

1

1

1

1

5

1

1

1

1

0

4

0

0

0

1

0

3

0

0

0

1

0

2

0

0

0

0

0

1

0

1

1

1

0

0

1

0

1

0

1

Even parity bit

Bit position

7-bit ASCII character code

a

b

c

z

A

Character

Figure 8-34 Even parity bits are assigned to a few ASCII characters.

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 341

(the ones with an odd number of 1’s) represent invalid codewords. If an invalid
codeword is received, then the receiver knows that an error occurred and can
request a retransmission.

A retransmission may not always be practical, and for these cases it would be
helpful to both detect and correct an error. The use of a parity bit will detect an
error, but will not locate the position of an error. If the bit pattern 11100011 is
received in a system that uses even parity, then the presence of an error is known
because the parity of the received word is odd. There is not enough information
from the parity bit alone to determine if the original pattern was ‘a’, ‘b’, or any of
five other characters in the ASCII table. In fact, the original character might even
be ‘c’ if the parity bit itself is in error.

In order to construct an error correcting code that is capable of detecting and
correcting single-bit errors, we must add more redundancy than a single parity
bit provides to the ASCII code by further extending the number of bits in each
codeword. For instance, consider the bit pattern for ‘a’: 1100001. If we wish to
detect and correct a single bit error in any position of the word, then we need to
assign seven additional bit patterns to ‘a’ in which exactly one bit changes in the
original ‘a’ codeword: 0100001, 1000001, 1110001, 1101001, 1100101,
1100011, and 1100000. We can do the same for ‘b’ and the remaining charac-
ters, but we must construct the code in such a way that no bit pattern is common
to more than one ASCII character, otherwise we will have no means to unambig-
uously determine the original bit pattern.

A problem with using redundancy in this way is that we assign eight bit patterns
to every character: one for the original bit pattern, and seven for the neighboring
error patterns. Since there are 27 characters in the ASCII code, and since we need
23 bit patterns for every character, then we can only recode 27/23 = 24 characters
if we use only the original seven bits in the representation.

In order to recode all of the characters, we must add additional redundant bits
(also referred to as check bits) to the codewords. Let us now determine how
many bits we need. If we start with a k-bit word that we would like to recode,
and we use r check bits, then the following relationship must hold:

(8.1)

The reasoning behind this relationship is that for each of the 2k original words,
there are k bit patterns in which a single bit is corrupted in the original word,

2k k r 1+ +()× 2k r+≤ k r 1+ + 2r≤≡

342 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

plus r bit patterns in which one of the check bits is in error, plus the original
uncorrupted bit pattern. Thus, our error correcting code will have a total of 2k ×
(k + r + 1) bit patterns. In order to support all of these bit patterns, there must be
enough bit patterns generated by k + r bits, thus 2k+r must be greater than or
equal to the number of bit patterns in the error correcting code. There are k = 7
bits in the ASCII code, and so we must now solve for r. If we try a few successive
values, starting at 1, we find that r = 4 is the smallest value that satisfies relation
8.1. The resulting codewords will thus have 7 + 4 = 11 bits.

We now consider how to recode the ASCII table into the 11-bit code. Our goal
is to assign the redundant bits to the original words in such a way that any sin-
gle-bit error can be identified. One way to make the assignment is shown in Fig-
ure 8-35. Each of the 11 bits in the recoded word are assigned a position in the

table indexed from 1 to 11, and the 4-bit binary representations of the integers 1
through 11 are shown next to each index. With this assignment, reading across
each of the 11 rows of four check bits, there is a unique positioning of the 1 bits
in each row, and so no two rows are the same. For example, the top row has a sin-
gle 1 in position C1, but no other row has only a single 1 in position C1 (other
rows have a 1 in position C1, but they also have 1’s in the other check bit posi-
tions.)

Now, reading down each of the four check bit columns, the positions of the 1
bits tell us which bits, listed in the rightmost ‘Bit position checked’ column, are
included in a group that must form even parity. For example, check bit C8 covers
a group of 4 bits in positions 8, 9, 10, and 11, that collectively must form even
parity. If this property is satisfied when the 11-bit word is transmitted, but an

C8

0
0
0
0
0
0
0
1
1
1
1

C4

0
0
0
1
1
1
1
0
0
0
0

C2

0
1
1
0
0
1
1
0
0
1
1

C1

1
0
1
0
1
0
1
0
1
0
1

1
2
3
4
5
6
7
8
9
10
11

Check bits Bit position
checked

Figure 8-35 Check bits for a single error correcting ASCII code.

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 343

error in transmission causes this group of bits to have odd parity at the receiver,
then the receiver will know that there must be an error in either position 8, 9, 10,
or 11. The exact position can be determined by observing the remaining check
bits, as we will see.

In more detail, each bit in the 11-bit encoded word, which includes the check
bits, is assigned to a unique combination of the four check bits C1, C2, C4, and
C8. The combinations are computed as the binary representation of the position
of the bit being checked, starting at position 1. C1 is thus in bit position 1, C2 is
in position 2, C4 is in position 4, etc. The check bits can appear anywhere in the
word, but normally appear in positions that correspond to powers of 2 in order
to simplify the process of locating an error. This particular code is known as a
single error correcting (SEC) code.

Since the positions of the 1’s in each of the check bit combinations is unique, we
can locate an error by simply observing which of the check bits are in error. Con-
sider the format shown in Figure 8-36 for the ASCII character ‘a’. The values of

the check bits are determined according to the table shown in Figure 8-35.
Check bit C1 = 0 creates even parity for the bit group {1, 3, 5, 7, 9, 11}. The
members in this group are taken from the positions that have 1’s in the C1 col-
umn in Figure 8-35. Check bit C2 = 1 creates even parity for the bit group {2, 3,
6, 7, 10, 11}. Similarly, check bit C4 = 0 creates even parity for the bit group {4,
5, 6, 7}. Finally, check bit C8 = 0 creates even parity for the bit group {8, 9, 10,
11}.

As an alternative to looking up members of a parity group in a table, in general,
bit n of the coded word is checked by those check bits in positions b1, b2, …, bj
such that b1 + b2 + … + bj = n. For example, bit 7 is checked by bits in positions
1, 2, and 4 because 1 + 2 + 4 = 7.

Now suppose that a receiver sees the bit pattern 10010111001. Assuming that
the SEC code for ASCII characters described above is used, what character was

Bit position
1 1 0 0 0 0 0 0 1 1 0

11 10 9 8 7 6 5 4 3 2 1
Check bits C2 C1C8 C4

ASCII ‘a’ = 1100001

Figure 8-36 Format for a single error correcting ASCII code.

344 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

sent? We start by computing the parity for each of the check bits as shown in Fig-
ure 8-37. As shown in the figure, check bits C1 and C4 have odd parity. In order

to locate the error, we simply add up the positions of the odd check bits. The
error then, is in position 1 + 4 = 5. The word that was sent is 10010101001. If
we strip away the check bits, then we end up with the bit pattern 1000100 which
corresponds to the ASCII character ‘D’.

One way to think about an SEC code is that valid codewords are spaced far
enough apart so that a single error places a corrupted codeword closer to one par-
ticular valid codeword than to any other valid codeword. For example, consider
an SEC code for a set of just two symbols: {000, 111}. The Hamming distance
relationships for all three-bit patterns are shown for this code in the cube in Fig-
ure 8-38. The cube has correspondingly higher dimensions for larger word sizes,

resulting in what is called a hypercube. The two valid codewords are shown on

Bit position
1 0 0 1 0 1 1 1 0 0 1

11 10 9 8 7 6 5 4 3 2 1
Check bits C2 C1C8 C4

Location of error

C1 checks: 1, 3, 5, 7, 9, 11 odd
C2 checks: 2, 3, 6, 7, 10, 11 even
C4 checks: 4, 5, 6, 7 odd
C8 checks: 8, 9, 10, 11 even

Parity

Figure 8-37 Parity computation for an ASCII character in an SEC code.

000 001

010 011

100 101

110 111

Valid
codeword

Valid
codeword

Three changed bits between
valid codewords results in a
Hamming distance of 3.

Error
codewords

Error
codewords

Figure 8-38 Hamming distance relationships among three-bit codewords. Valid codewords are 000

and 111. The remaining codewords represent errors.

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 345

opposing vertices. Any single bit error will locate an invalid codeword at a differ-
ent vertex on the cube. Every error codeword has a closest valid codeword, which
makes single error correction possible.

SECDED Encoding

If we now consider the case in which there are two errors, then we can see that
the SEC code works for double error detection (DED), but not for double
error correction (DEC). This is sometimes referred to as SECDED encoding.
Since valid codewords are spaced at a Hamming distance of 3, two errors will
locate an error codeword on the cube, and thus two errors can be detected. The
original codeword cannot be determined unambiguously, however, since vertices
that correspond to two errors from one codeword overlap vertices that corre-
spond to a single error from another codeword. Thus, every SEC code is also a
DED code, but every DED code is not necessarily a DEC code. In order to cor-
rect two errors, a Hamming distance of five must be maintained. In general, a
Hamming distance of p + 1 must be maintained in order to detect p errors, and a
Hamming distance of 2p + 1 must be maintained to correct p errors.

8.5.3 VERTICAL REDUNDANCY CHECKING

The SEC code described in the previous section is used for detecting and correct-
ing single bit errors in individual data words. Redundant bits are added to each
data word, and each resulting codeword is treated independently. The recoding
scheme is sometimes referred to as horizontal or longitudinal redundancy
checking (LRC) because the width of the codeword is extended for the redun-
dant bits.

An alternative approach is to use a vertical redundancy checking (VRC) code,
in which a checksum word is added at the end of a group of words that are trans-
mitted. In this case, parity is computed on a column by column basis, forming a
checksum word that is appended to the message. The checksum word is com-
puted and transmitted by the sender, and is recomputed and compared to the
transmitted checksum word by the receiver. If an error is detected, then the
receiver must request a retransmission since there is not enough redundancy to
identify the position of an error. The VRC and LRC codes can be combined to
improve error checking, as shown for the ASCII characters ‘A’ through ‘H’ in
Figure 8-39.

In some situations, errors are bursty, and may corrupt several contiguous bits

346 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

both horizontally and vertically. A more powerful scheme such as cyclic redun-
dancy checking (CRC) is more appropriate for this situation, which is a varia-
tion of VRC checking in which the bits are grouped in a special way, as described
in the next section.

8.5.4 CYCLIC REDUNDANCY CHECKING

Cyclic redundancy checking (CRC) is a more powerful error detection and cor-
rection scheme that operates in the presence of burst errors, which each begin
and end with a bit error, with zero or more intervening corrupted bits. The two
endpoint corrupted bits are included in the burst error. If the length of a burst
error is B, then there must be B or more uncorrupted bits between burst errors.

CRCs use polynomial codes, in which a frame to be transmitted is divided by a
polynomial, and the remainder is appended to the frame as a frame check
sequence (FCS), commonly known as the CRC digits. The frame is transmitted
(or stored) along with the CRC digits. After receiving the frame, the receiver
then goes through the same computation, using the same polynomial, and if the
remainders agree then there are no detectable errors. There can be undetectable
errors, and the goal in creating a CRC code is to select a polynomial that covers
the statistically likely errors for a given fault model.

The basic approach starts with a k-bit message to be transmitted, M(x), which is
appended with n 0’s in which n is the degree of the generator polynomial, G(x),
with k > n. This extended form of M(x) is divided by G(x) using modulo 2 arith-
metic (in which carries and borrows are discarded), and then the remainder, R(x),
which is no more than n bits wide, forms the CRC digits for M(x).

1
1
1
1
1
1
1
1
0

0
0
0
0
0
0
0
0
0

Code

0
0
1
0
1
1
0
0
1

P

0
0
0
0
0
0
0
0
0

Character

A
B
C
D
E
F
G
H

Checksum

0
0
0
0
0
0
0
1
1

0
0
0
1
1
1
1
0
0

0
1
1
0
0
1
1
0
0

1
0
1
0
1
0
1
0
0

Figure 8-39 Combined LRC and VRC checking. Checksum bits form even parity for each column.

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 347

As an example, consider a frame to be transmitted:

M(x) = 1 1 0 1 0 1 1 0 1 1

and a generator polynomial G(x) = x4 + x + 1. The degree of G(x) (the highest
exponent) is 4, and so we append 4 zeros to M(x) to form the dividend of the
computation.

The divisor is 10011, which corresponds to the coefficients in G(x) written as:

G(x) = 1 × x4 + 0 × x3 + 0 × x2 + 1 × x1 + 1 × x0.

Notice that G(x) has a degree of n = 4, and that there are n + 1 = 5 coefficients.
The CRC digits are then computed as shown in Figure 8-40. The divisor

(10011) is divided into the dividend, but the magnitudes of the divisor and divi-
dend do not play a role in determining whether the divisor “goes into” the divi-
dend at the location of a particular digit. All that matters is that the number of
bits in the divisor (which has no leading zeros) matches the same number of bits
in the dividend (which also must not have leading zeros at the position being
checked.) Note that there are no borrows in modulo-2 subtraction, and that a
bit-by-bit exclusive-OR (XOR) operation between the divisor and the dividend
achieves the same result.

1 1 0 1 0 1 1 0 1 1 0 0 0 01 0 0 1 1

1 1 0 0 0 0 1 0 1 0

1 0 0 1 1⊕

1 0 0 1 1
1 0 0 1 1⊕

1
1 0 0 1 1⊕

0 1 0 1 0
1 0 0 1 1⊕

1 1 1 0

0 1 1 0

0

G(x), of
degree n = 4

M(x)

n = 4 zeros

Bitwise exclusive OR
(XOR), is the same as
modulo-2 addition and
modulo-2 subtraction.

Quotient is discarded
for the calculation of
the original CRC.

R(x) is the
CRC for M(x)

Transmitted frame T(x) = 1 1 0 1 0 1 1 0 1 1 1 1 1 0

M(x) R(x)

Figure 8-40 Calculation of the CRC digits.

348 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

Now suppose that the transmitted frame T(x) = M(x) + R(x) gets corrupted dur-
ing transmission. The receiver needs to detect that this has happened. The
receiver divides the received frame by G(x), and all burst errors that do not
include G(x) as a factor will be caught because there will be a nonzero remainder
for these cases. That is, as long as the 1’s in 10011 do not coincide with the posi-
tions of errors in the received frame, all errors will be caught. In general, a poly-
nomial code of degree n will catch all burst errors of length ≤ n.

Common polynomials that give good error coverage include:

CRC-16 = x16 + x15 + x2 + 1

CRC-CCITT = x16 + x12 + x5 + 1

CRC-32 = x32 + x26 + x23 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 +
x2 + x + 1

A deeper analysis of CRC codes is beyond the scope of this book, and the reader
is referred to (Hamming, 1986) for further details.

EXAMPLE: ERROR CORRECTION

Consider how many check bits are needed for a double-error correcting ASCII
code. There are k = 7 bits for each ASCII character, and we need to add r check
bits to each codeword. For each of the 2k ASCII characters there are k + r possible
one-bit error patterns, there are possible two-bit error pat-
terns, and there is one bit pattern for the uncorrupted codeword. There are 2k+r
possible bit patterns, and so the following relation must hold:

Simplifying, using k = 7, yields: r2 + 15r + 58 ≤ 2r+1 for which r = 7 is the smallest
value that satisfies the relation.

k r+() k r 1–+()
2

Number of
original

codewords

Number of
one-bit
errors

Number of
two-bit
errors

Uncorrupted
codeword

2k × k + r +
k + r k + r – 1

2 + 1 ≤ 2k + r

Number of
possible bit

patterns

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 349

Since a Hamming distance of 2p + 1 must be maintained to correct p errors, the
Hamming distance for this DEC code must be at least 2 × 2 + 1 = 5. If we use the
same encoding for error detection instead, then we have p + 1 = 5, and since a
Hamming distance of p + 1 must be maintained to detect p errors, then p = 4
errors can be detected. �

EXAMPLE: TRANSFER TIME FOR A HARD DISK

Consider calculating the transfer time of a hard magnetic disk. For this example,
assume that a disk rotates once every 16 ms. The seek time to move the head
between adjacent tracks is 2 ms. There are 32 sectors per track that are stored in
linear order (non-interleaved), from sector 0 to sector 31. The head sees the sec-
tors in that order.

Assume the read/write head is positioned at the start of sector 1 on track 12.
There is a memory buffer that is large enough to hold an entire track. Data is
transferred between disk locations by reading the source data into memory, posi-
tioning the read/write head over the destination location, and writing the data to
the destination.

How long will it take to transfer sector 1 on track 12 to sector 1 on track 13?
How long will it take to transfer all of the sectors of track 12 to the correspond-
ing sectors on track 13? Note that sectors do not have to be written in the same
order they are read.

Solution:

The time to transfer a sector from one track to the next can be decomposed into
its parts: the sector read time, the head movement time, the rotational delay, and
the sector write time.

The time to read or write a sector is simply the time it takes for the sector to pass
under the head, which is (16 ms/track) × (1/32 tracks/sector) = .5 ms/sector. For
this example, the head movement time is only 2 ms because the head moves
between adjacent tracks. After reading sector 1 on track 12, which takes .5 ms,
an additional 15.5 ms of rotational delay is needed for the head to line up with
sector 1 again. The head movement time of 2 ms overlaps the 15.5 ms of rota-
tional delay, and so only the greater of the two times (15.5 ms) is used.

350 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

We sum the individual times and obtain: .5 ms + 15.5 ms + .5 ms = 16.5 ms to
transfer sector 1 on track 12 to sector 1 on track 13.

The time to transfer all of track 12 to track 13 is computed in a similar manner.
The memory buffer can hold an entire track, and so the time to read or write an
entire track is simply the rotational delay for a track, which is 16 ms. The head
movement time is 2 ms, which is also the time for four sectors to pass under the
head. Thus, after reading a track and moving the head, the head is now on track
13, at four sectors past the initial sector that was read on track 12.

Sectors can be written in a different order than they are read. Track 13 can thus
be written with a four sector offset with respect to how track 12 was read. The
time to write track 13 is 16 ms, and the time for the entire transfer then is: 16 ms
+ 2 ms + 16 ms = 34 ms. Notice that the rotational delay is zero for this example
because the head lands at the beginning of the first sector to be written. �

8.6 Case Study: Communication on the Intel Pentium Architecture
The Intel Pentium processor family is Intel’s current state-of-the art implementa-
tion of their venerable x86 family, which began with the Intel 8086, released in
1978. The Pentium is itself a processor family, with versions that emphasize high
speed, multiprocessor environments, graphics, low power, etc. In this section we
examine the common features that underlie the Pentium system bus.

System clock, bus clock, and bus speeds

Interestingly, the system clock speed is set as a multiple of the bus clock. The
value of the multiple is set by the processor whenever it is reset, according to the
values on several of its pins. The possible values of the multiple vary across family
members. For example, the Pentium Pro, a family member adapted for multiple
CPU applications, can have multipliers ranging from 2 to 3-1/2. We mention
again here that the reason for clocking the system bus at a slower rate than the
CPU is that CPU operations can take place faster than memory access opera-
tions. A common bus clock frequency in Pentium systems is 66 MHz.

Address, data, memory, and I/O capabilities

The system bus effectively has 32 address lines, and can thus address up to 4 GB
of main memory. Its data bus is 64 bits wide; thus the processor is capable of
transferring an 8-byte quadword in one bus cycle. (Intel x86 words are 16-bits

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 351

long.) We say “effectively” because in fact the Pentium processor decodes the
least significant three address lines, A2-A0, into eight “byte enable” lines,
BE0#-BE7#, prior to placing them on the system bus.1 The values on these eight
lines specify the byte, word, double word, or quad word that is to be transferred
from the base address specified by A31-A3.

Data words have soft-alignment

Data values have so-called soft alignment, meaning that words, double words,
and quad words should be aligned on even word, double word, and quad word
boundaries for maximum efficiency, but the processor can tolerate misaligned
data items. The penalty for accessing misaligned words may be two bus cycles,
which are required to access both halves of the datum.2

As a bow to the small address spaces of early family members, all Intel processors
have separate address spaces for memory and I/O accesses. The address space to
be selected is specified by the M/IO# bus line. A high value on this line selects
the 2 GB memory address space, and low specifies the I/O address space. Sepa-
rate opcodes, IN and OUT, are used to access this space. It is the responsibility of
all devices on the bus to sample the M/IO# line at the beginning of each bus
cycle to determine the address space to which the bus cycle is referring—memory
or I/O. Figure 8-41shows these address spaces graphically. I/O addresses in the
x86 family are limited to 16 bits, allowing up to 64K I/O locations. Figure 8-41
shows the two address spaces.

Bus cycles in the Pentium family

The Pentium processor has a total of 18 different bus cycles, to serve different
needs. These include the standard memory read and write bus cycles, the bus
hold cycle, used to allow other devices to become the bus master, an interrupt
acknowledge cycle, various “burst” cache access cycles, and a number of other
special purpose bus cycles. In this Case Study we examine the read and write bus
cycles, the “burst read” cycle, in which a burst of data can be transferred, and the
bus hold/hold acknowledge cycle, which is used by devices that wish to become

1. The “#” symbol is Intel’s notation for a bus line that is active low.

2. Many systems require so-called hard alignment. Misaligned words are not allowed, and
their detection causes a processor exception to be raised.

352 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

the bus master.

Memory read and write bus cycles

The “standard” read and write cycles are shown in Figure 8-42. By convention,

the states of the Intel bus are referred to as “T states,” where each T state is one
clock cycle. There are three T states shown in the figure, T1, T2, and Ti, where Ti
is the “idle” state, the state that occurs when the bus is not engaged in any spe-
cific activity, and when no requests to use the bus are pending. Recall that a “#”
following a signal name indicates that a signal is active low, in keeping with Intel
conventions.

Address
FFFFFFFF

00000000

Address
FFFF

0000

Memory
Space

I/O
Space

Figure 8-41 Intel memory and I/O address spaces.

T1 T2 Ti T1 T2 Ti T1

Read Write

TO CPU FROM CPU

READ CYCLE IDLE IDLEWRITE CYCLE

ADDR

ADS#

Valid ValidInvalid Invalid

W/R#

BRDY#

CACHE#

DATA

CLK

Figure 8-42 The standard Intel Pentium Read and Write bus cycles.

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 353

Both read and write cycles require a minimum of two bus clocks, T1 and T2:

• The CPU signals the start of all new bus cycles by asserting the Address Sta-
tus signal, ADS#. This signal both defines the start of a new bus cycle and
signals to memory that a valid address is available on the address bus,
ADDR. Note the transition of ADDR from invalid to valid as ADS# is as-
serted.

• The de-assertion of the cache load signal, CACHE#, indicates that the cycle
will be a composed of a single read or write, as opposed to a burst read or
write, covered later in this section.

• During a read cycle the CPU asserts read, W/R#, simultaneously with the
assertion of ADS#. This signals the memory module that it should latch the
address and read a value at that address.

• Upon a read, the memory module asserts the Burst Ready, BRDY#, signal
as it places the data, DATA, on the bus, indicating that there is valid data
on the data pins. The CPU uses BRDY# as a signal to latch the data values.

• Since CACHE# is deasserted, the assertion of a single BRDY# signifies the
end of the bus cycle.

• In the write cycle, the memory module asserts BRDY# when it is ready to
accept the data placed on the bus by the CPU. Thus BRDY# acts as a hand-
shake between memory and the CPU.

• If memory is too slow to accept or drive data within the limits of two clock
cycles, it can insert “wait” states by not asserting BRDY# until it is ready to
respond.

The burst Read bus cycle

Because of the critical need to supply the CPU with instructions and data from
memory that is inherently slower than the CPU, Intel designed the burst read
and write cycles. These cycles read and write four eight-byte quad words in a
burst, from consecutive addresses. Figure 8-43 shows the Pentium burst read
cycle.

The burst read cycle is initiated by the processor placing an address on the
address lines and asserting ADS# as before, but now, by asserting the CACHE#
line the processor signals the beginning of a burst read cycle. In response the
memory asserts BRDY# and places a sequence of four 8-byte quad words on the
data bus, one quad word per clock, keeping BRDY# asserted until the entire

354 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

transfer is complete.

There is an analogous cycle for burst writes. There is also a mechanism for cop-
ing with slower memory by slowing the burst transfer rate from one per clock to
one per two clocks.

Bus hold for request by bus master

There are two bus signals for use by devices requesting to become bus master:
hold (HOLD) and hold acknowledge (HLDA). Figure 8-44 shows how the
transactions work. The figure assumes that the processor is in the midst of a read
cycle when the HOLD request signal arrives. The processor completes the cur-
rent (read) cycle, and inserts two idle cycles, Ti. During the falling edge of the
second Ti cycle the processor floats all of its lines and asserts HLDA. It keeps
HLDA asserted for two clocks. At the end of the second clock cycle the device
asserting HLDA “owns” the bus, and it may begin a new bus operation at the fol-
lowing cycle, as shown at the far right end of the figure. In systems of any com-
plexity there will be a separate bus controller chip to mediate among the several
devices that may wish to become the bus master.

T1 T2 T2 T2 T2 Ti

Read

TO CPU TO CPU TO CPU TO CPU

READ READ READ READ

ADDR

ADS#

Valid Invalid

W/R#

BRDY#

CACHE#

DATA

CLK

Figure 8-43 The Intel Pentium burst read bus cycle.

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 355

Data transfer rates

Let us compute the data transfer rates for the read and burst read bus cycles. In
the first case, 8 bytes are transferred in two clock cycles. If the bus clock speed is
66 MHz, this is a maximum transfer rate of

or 264 million bytes per second. In burst mode that rate increases to four 8-byte
bursts in five clock cycles, for a transfer rate of

or 422 million bytes per second. (Intel literature uses 4 cycles rather than 5 as the
denominator, thus arriving at a burst rate of 528 million bytes per second. Take

T1 T2 Ti Ti Ti Ti T1

Read

TO CPU

READ CYCLE

BUS REQ.

NEW BUS
MASTER

ADDR

ADS#

Valid

W/R#

BRDY#

CACHE#

DATA

HOLD

HLDA

CLK

Figure 8-44 The Intel Pentium Hold-Hold Acknowledge bus cycle.

8
2
--- 66× 106×

32
5
------ 66 106××

356 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

your pick.)

At the 422 million byte rate, with a bus clock multiplier of 3-1/2, the data trans-
fer rate to the CPU is

or about 2 bytes per clock cycle. Thus under optimum, or ideal conditions, the
CPU is probably just barely kept supplied with bytes. In the event of a branch
instruction or other interruption in memory activity, the CPU will become
starved for instructions and data.

The Intel Pentium is typical of modern processors. It has a number of specialized
bus cycles that support multiprocessors, cache memory transfers, and other kinds
of special situations. Refer to the Intel literature (see below) for more details.

� SUMMARY

Mass storage devices come in a variety of forms. Examples of mass storage devices
are hard disks and magnetic tape units. Optical storage provides greater density
per unit area than magnetic storage, but is more expensive and does not offer the
same degree of user writability. An example of an optical storage device is a CD
ROM.

There is a wide range of other input/output devices. The few that we studied in
this chapter that are not mass storage devices can be grouped into input devices
and output devices. Examples of input devices are keyboards, bit pads, mice,
trackballs, lightpens, touch screens, and joysticks. Examples of output devices are
laser printers and video displays.

Input, output, and communication involve the transfer of information between
transmitters and receivers. The transmitters, receivers, and methods of communi-
cation are often mismatched in terms of speed and in how information is repre-
sented, and so an important consideration is how to match input and output
devices with a system using a particular method of communication.

A bus provides a fixed bandwidth that is shared among a number of devices.
When a bus is used within a computer, communication is handled via pro-
grammed I/O, interrupt driven I/O, or DMA. In complex systems, a higher level

422 106×
3.5 66 106××

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 357

organization is used, which is known as an I/O channel.

One method of interconnecting systems is through the use of modems, and another
method is through the use of LANs. A LAN operates over a limited geographical
distance, and is generally self-contained. LANs provide greater bandwidth per
channel than modems, but require a substantially greater investment in hardware
and maintenance.

With the proliferation of personal communication devices and the expansion of
telecommunications providers into LAN markets, the distinctions between modem
based communication networks and LANs grow more obscure. The various medi-
ums of communication among systems are frequently referred to collectively as
“communication networks,” without making distinctions among the specific forms
of communication.

Error detection and correction are possible through redundancy, in which there are
more bit patterns possible than the number of valid bit patterns. If the error bit
patterns do not have a single closest valid codeword, then error detection is possible
but error correction is not possible. If every error bit pattern is reachable from only
one valid bit pattern, then error correction is also possible.

� FURTHER READING
(Hamacher et al., 1990) provides explanations of communication devices and a
number of peripherals such as an alphanumeric CRT controller. (Tanenbaum,
1999) and (Stallings, 1996) also give readable explanations of peripheral devices.
The material on synchronous and asynchronous busses, and bus arbitration, is
influenced by a detailed presentation in (Tanenbaum, 1999). (Stallings, 1996)
covers I/O channels.

(Needleman, 1990) and (Schnaidt, 1990) give a thorough treatment of local area
networks according to the OSI model, and (Tanenbaum, 1996) is a good refer-
ence on communications in general.

(Tanenbaum, 1999) and (Stallings, 1993) give readable explanations of Ham-
ming encoding. (Hamming, 1986) and (Peterson and Weldon, 1972) give more
detailed treatments of error-correcting codes.

358 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

Intel data sheets and other literature, including the Pentium, Pentium II, and
Pentium Pro hardware and programmer’s manuals can be ordered from Intel Lit-
erature Sales, PO Box 7641, Mt. Prospect IL 60056-7641, or, in the U. S. and
Canada, by calling (800) 548-4725.

Hamacher, V. C., Z. G. Vranesic, and S. G. Zaky, Computer Organization, 3/e,
McGraw Hill, (1990).

Hamming, R. W., Coding and Information Theory, 2/e, Prentice-Hall, (1986).

Needleman, R., Understanding Networks, Simon and Schuster, New York,
(1990).

Peterson, W. Wesley and E. J. Weldon, Jr., Error-Correcting Codes, 2/e, The MIT
Press, (1972).

Schnaidt, P., LAN Tutorial, Miller Freeman Publications, California, (1990).

Stallings, W., Data and Computer Communications, 2/e, MacMillan Publishing,
New York, (1988).

Stallings, W., Computer Organization and Architecture: Designing for Performance,
4/e, Prentice Hall, Upper Saddle River, (1996).

Tanenbaum, A., Computer Networks, 3/e, Prentice Hall, Upper Saddle River,
(1996).

Tanenbaum, A., Structured Computer Organization, 4/e, Prentice Hall, Engle-
wood Cliffs, (1999).

� PROBLEMS
8.1 Show the Manchester encoding of the bit sequence: 10011101.

8.2 A disk that has 16 sectors per track uses an interleave factor of 1:4. What
is the smallest number of revolutions of the disk required to read all of the sec-
tors of a track in sequence.

8.3 A hard magnetic disk has two surfaces. The storage area on each surface

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 359

has an inner radius of 1 cm and an outer radius of 5 cm. Each track holds the
same number of bits, even though each track differs in size from every other.
The maximum storage density of the media is 10,000 bits/cm. The spacing
between corresponding points on adjacent tracks is .1 mm, which includes the
inter-track gap. Assume that the inter-sector gaps are negligible, and that a
track exists on each edge of the storage area.

(a) What is the maximum number of bits that can be stored on the disk?

(b) What is the data transfer rate from the disk to the head in bits per second
at a rotational speed of 3600 RPM?

8.4 A disk has 128 tracks of 32 sectors each, on each surface of eight platters.
The disk spins at 3600 rpm, and takes 15 ms to move between adjacent
tracks. What is the longest time needed to read an arbitrary sector located any-
where on the disk?

8.5 A 300 Mbyte (300 × 220 bytes) disk has 815 cylinders, with 19 heads, a
track-to-track speed of 7.5 m/s (that is, 7.5 meters per second), and a rotation
rate of 3600 RPM. The fact that there are 19 heads means that there are 10
platters, and only 19 surfaces are used for storing data. Each sector holds the
same amount of data, and each track has the same number of sectors. The
transfer time between the disk and the CPU is 300 Kbytes/sec. The
track-to-track spacing is .25 mm.

(a) Compute the time to read a track (not the time to transmit the track to a
host). Assume that interleaving is not used.

(b) What is the minimum time required to read the entire disk pack to a
CPU, given the best of all possible circumstances? Assume that the head of the
first surface to be read is positioned at the beginning of the first sector of the
first track, and that an entire cylinder is read before the arm is moved. Also
assume that the disk unit can buffer an entire cylinder, but no more. During
operation, the disk unit first fills its buffer, then it empties it to the CPU, and
only then does it read more of the disk.

8.6 A fixed head disk has one head per track. The heads do not move, and
thus, there is no head movement component in calculating the access time.

360 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

For this problem, calculate the time that it takes to copy one surface to
another surface. This is an internal operation to the disk, and does not involve
any communication with the host. There are 1000 cylinders, each track holds
10 sectors, and the rotation rate of the disk is 3000 RPM. The sectors all line
up with each other. That is, within a cylinder, sector 0 on each track lines up
with sector 0 on every other track, and within a surface, sector 0 in each track
begins on the same line drawn from the center of the surface to the edge.

An internal buffer holds a single sector. When a sector is read from one track,
it is held in the buffer until it is written onto another track. Only then can
another sector be read. It is not possible to simultaneously read and write the
buffer, and the buffer must be entirely loaded or entirely emptied – partial
reads or writes are not allowed. Calculate the minimum time required to copy
one surface to another, given the best starting conditions. The surfaces must
be direct images of each other. That is, sector i in the source surface must be
directly above or below sector i in the destination surface.

8.7 Compute the storage capacity of a 6250 byte per inch (BPI) tape that is
600 ft long and has a record size of 2048 bytes. The size of an inter-record gap
is .5 in.

8.8 A bit mapped display is 1024 pixels wide by 1024 pixels high. The refresh
rate is 60 Hz, which means that every pixel is rewritten to the screen 60 times
a second, but only one pixel is written at any time. What is the maximum
time allowed to write a single pixel?

8.9 How many bits need to be stored in the LUT in Figure 8-17? If the LUT
is removed, and the RAM is changed to provide the 24-bit R, G, and B out-
put directly, how many additional bits need to be stored in the RAM? Assume
that the initial size of the RAM is 210 × 29 = 219 words × 8 bits/word.

8.10 The MCB as presented in Section 8.2.1 keeps track of every sector on the
disk. An alternative organization, which significantly reduces the size of the
MCB, is to store blocks in chains. The idea is to store only the first block of a
file in the MCB, and then store a pointer to the succeeding block at the end of
the first block. Each succeeding block is linked in a similar manner.

(a) How does this approach affect the time to access the middle of a file?

CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION 361

(b) After a system crash, would a disk recovery be easier if only the first sector
of a file is stored in the MCB, and the remaining list of sectors is stored in a
header at the beginning of each file? How does this approach affect storage?

8.11 You are now the administrator for a computer system that is maintained
by Mega Equipment Corporation (MEC). As part of routine maintenance,
MEC realigns the heads on one of the disks, and now the disk cannot be read
or written without producing errors. What went wrong? Would this happen
with or without the use of a timing track?

8.12 Why must the CPU ensure that interrupts are disabled before handing
control over to the ISR?

8.13 What is the Hamming distance for the ASCII SEC code discussed in Sec-
tion 8.5.2?

8.14 Construct the SEC code for the ASCII character ‘Q’ using even parity.

8.15 For parts (a) through (d) below, use a SEC code with even parity.

a) How many check bits should be added to encode a six-bit word?

b) Construct the SEC code for the six-bit word: 1 0 1 1 0 0. When construct-
ing the code, number the bits from right to left starting with 1 as for the
method described in Section 8.5.2.

c) A receiver sees a two-bit SEC encoded word that looks like this: 1 1 1 0 0.
What is the initial two-bit pattern?

d) The 12-bit word: 1 0 1 1 1 0 0 1 1 0 0 1 complete with an SEC code (even
parity) is received. What 12-bit word was actually sent?

8.16 How many check bits are needed for a SEC code for an initial word size of
1024?

8.17 Construct a checksum word for EBCDIC characters ‘V’ through ‘Z’ using
vertical redundancy checking with even parity. DO NOT use longitudinal
redundancy checking. Show your work.

362 CHAPTER 8 INPUT, OUTPUT, AND COMMUNICATION

8.18 Compare the number of bits used for parity in the SEC code with the
simple parity VRC code, for 1024 eight-bit characters:

a) Compute the number of check bits generated using SEC only (horizon-
tally).

b) Compute the number of checksum bits using VRC only.

8.19 The SEC code discussed in Section 8.5.2 can be turned into a double
error detecting/SEC (DED/SEC) code by adding one more bit that creates
even parity over the SEC code (which includes the parity bit being added.)
Explain how double error detection works while also maintaining single error
correction with this approach.

8.20 Compute the CRC for a message to be transmitted M(x) = 101100110
and a generator polynomial G(x) = x3 + x2 + 1.

8.21 What is the longest burst error that CRC-32 is sure to catch?

CHAPTER 9 MODERN ARCHITECTURES

363

9.1 The Emergence of RISC Architectures

The 1960’s saw a rapid growth in the complexity of computers. New, sophisti-
cated instructions were made available at the assembly language level, and pro-
grammers were writing ever more complex programs. Although assembly
language instructions increased in complexity, the instructions were generally
more primitive than the high level constructs that programmers used. This

semantic gap

 as it is known, fueled an explosion of architectural complexity.

Unfortunately, as computer architects attempted to close the semantic gap, they
sometimes made it worse. The IBM 360 architecture has the

MVC

 (move charac-
ter) instruction that copies a string of up to 256 bytes between two arbitrary
locations. If the source and destination strings overlap, then the overlapped por-
tion is copied one byte at a time. The runtime analysis that determines the degree
of overlap adds a significant overhead to the execution time of the

MVC

 instruc-
tion. Measurements show that overlaps occur only a few percent of the time, and
that the average string size is only eight bytes. In general, faster execution results
when the

MVC

 instruction is entirely ignored. Although a greater number of
instructions may be executed without the

MVC

 instruction, on average, fewer
cycles are needed to implement the copy operation without using

MVC

 than by
using it.

Architectures with complex instruction sets that have highly specialized com-
mands (like

MVC

), are known as

complex instruction set computers

 (CISCs).
Despite the

MVC

 case and others like it, CISCs are not bad. In the 1960’s, the
speed of a computer’s memory was much slower than the speed of the CPU, and
the size of the memory was very small. It thus made sense to send a few very
powerful instructions from the memory to the CPU, rather than to send a great
number of simpler instructions.

MODERN
ARCHITECTURES

 9

364

CHAPTER 9 MODERN ARCHITECTURES

As technology advanced, the speed and density of memory improved at a faster
rate than the speed and complexity of the CPU. With this shift in performance,
it became more economical to increase the speed of the CPU by making it sim-
pler, at the expense of using more instructions to compensate for the reduced
complexity of the CPU. This style of architecture is known as a reduced instruc-
tion set computer (RISC).

RISC architectures have three primary characteristics that distinguish them from
CISC architectures:

(1) A small instruction set that consists of simple, fixed length, fixed format
instructions that execute in a single machine cycle;

(2)

Pipelined

 access to memory (see Section 9.4), and a large number of regis-
ters for arithmetic operations;

(3) Use of an optimizing compiler, in which execution speed is greatly influ-
enced by the ability of the compiler to manage resources, such as maintaining
a filled pipeline during branches.

In the next few sections, we will explore the motivation for RISC architectures,
and special characteristics that make RISC architectures effective.

9.2 Quantitative Analyses of Program Execution

During the 1970’s, when CISC architectures enjoyed high visibility, attention
turned to what computers actually spent their time doing. Up to that time, com-
puter designers added more instructions to their machines because it was a good
selling strategy to have more functionality than a competing processor. In many
CISC machines (such as the IBM 360 and the Motorola 68000), the instructions
are implemented in microcode (see Chapter 9 for a discussion on microcode). As
a result of implementing a large instruction set in microcode, instruction decod-
ing takes a long time and the microstore is large. Although a large, slow micros-
tore may seem like a bad idea, it could be a good idea if overall execution time is
reduced. As we will see, in general, adding complexity to the instructions

does not

improve execution time with present day technology.

Figure 9-1 summarizes the frequency of occurrence of instructions in a mix of
programs written in a variety of languages. Nearly half of all instructions are
assignment statements. Nearly a quarter of all instructions are

if

 conditionals.

CHAPTER 9 MODERN ARCHITECTURES

365

Interestingly, arithmetic and other “more powerful” operations account for only
7% of all instructions. Thus, if we want to improve the performance of a com-
puter, our efforts would be better spent optimizing instructions that account for
the greatest percentage of execution time rather than focusing on instructions
that are inherently complex but rarely occur.

Related metrics are shown in Figure 9-2. From the table, the number of terms in

an assignment statement is normally just a few. The most frequent case (80%),
has just a single term on the right side of the assignment operator, as in

X

←

Y

.
There are only a few local variables in each procedure, and only a few arguments
are normally passed to a procedure.

What we can conclude from these measurements is that the bulk of computer
programs are very simple at the instruction level, even though more complex

Statement Average Percent of Time

Assignment

If

Call

Loop

Goto

Other

47

23

15

6

3

7

Figure 9-1 Frequency of occurrence of instruction types for a variety of languages. The percentages

do not sum to 100 due to roundoff. (Adapted from [Tanenbaum, 1990].)

Percentage of
Number of Terms

in Assignments

0

1

2

3

4

≥ 5

–

80

15

3

2

0

Percentage of
Number of Locals

in Procedures

22

17

20

14

8

20

Percentage of Number
of Parameters in
Procedure Calls

41

19

15

9

7

8

Figure 9-2 Percentages showing complexity of assignments and procedure calls. (Adapted from

[Tanenbaum, 1990].)

366

CHAPTER 9 MODERN ARCHITECTURES

programs could potentially be created. This means that there may be little or no
payoff in increasing the complexity of the instructions.

A basic tenet of current computer architecture is to make the frequent case fast,
and this often means making it simple. Since the assignment statement happens
so frequently, we should concentrate on making it fast (and simple, as a conse-
quence). One way to simplify assignments is to force all communication with
memory into just two commands: LOAD and STORE. The LOAD/STORE
model is typical of RISC architectures. We saw the LOAD/STORE concept in
Chapter 4 with the

ld

 and

st

 instructions for the ARC.

By restricting memory accesses to LOAD/STORE instructions only, other
instructions can only access data that is stored in registers. There are two conse-
quences of this, both good and bad: (1) accesses to memory can be easily over-
lapped, since there are no side effects that would occur if different instruction
types could access memory (this is good); and (2) there is a need for a large num-
ber of registers (this seems bad, but read on).

A simpler instruction set results in a simpler and typically smaller CPU, which
frees up space on a circuit board (or a processor chip) to be used for something
else, like registers. Thus, the need for more registers is balanced to a degree by the
newly vacant circuit area, or

real estate

 as it is sometimes called. A key problem
lies in how to manage these registers, which is described in the next section.

9.3 Overlapping Register Windows

Procedure calls may be deeply nested in an ordinary program, but for a given
window of time, the nesting depth fluctuates within a narrow band. Figure 9-3
illustrates this behavior. For a nesting depth window size of five, the window
moves only 18 times for 100 procedure calls. Results produced by a group at UC
Berkeley (Tamir and Sequin, 1983) show that a window size of eight will shift on
less than 1% of the calls or returns.

The small window size for nested calls is important for improving performance.
For each procedure call, a stack frame is normally constructed in which parame-
ters, a return address, and local variables are placed. There is thus a great deal of
stack manipulation that takes place for procedure calls, but the complexity of the
manipulation is not all that great. That is, stack references are highly localized
within a small area.

CHAPTER 9 MODERN ARCHITECTURES

367

The RISC I architecture exploits this locality by keeping the active portion of the
stack in registers. Figure 9-4 shows the user’s view of register usage for the RISC

I. The user sees 32 registers in which each register is 32 bits wide. Registers
R0-R7 are used for global variables. Registers R8-R15 are used for incoming
parameters. Registers R16-R23 are used for local variables, and registers
R24-R31 are used for outgoing parameters. The eight registers within each group
are enough to satisfy the bulk of call/return activity, as evidenced by the fre-
quency counts in Figure 9-3.

Although the user sees 32 registers, there may be several hundred registers that
overlap. Figure 9-5 shows a model known as

overlapping register windows

. The
global registers are detached from the others, and are continuously available as

Nesting
Depth

Time in Units of Calls/Returns

Window
depth = 5

Figure 9-3 Call-return behavior as a function of nesting depth and time (Adapted from [Stallings,

19?? (2nd ed.)]).

Global Variables

Incoming Parameters

Local Variables

Outcoming Parameters

32 bits

R0

R7
R8

R15
R16

R23
R24

R31

...

...

...

...

%g
0
%g
7%i
0
%i
7%l
0
%l
7%o
0
%o

...

...

...

...

Figure 9-4 User’s view of RISC I registers.

368

CHAPTER 9 MODERN ARCHITECTURES

R0-R7. Registers R8-R31 make up the remaining 24 registers that the user sees,
but this group of registers slides deeper into the

register file

 (the entire set of reg-
isters) on each procedure call. Since the outgoing parameters for one procedure
are the incoming parameters to another, these sets of registers can overlap. Regis-
ters R8-R31 are referred to as a

window

. A

current window pointer

 (CWP)
points to the current window, and increases or decreases for calls and returns,
respectively.

In the statistically rare event when there are not enough registers for the level of
nesting, then main memory is used. However, main memory is used for the

low-
est

 numbered window, so that the new current window still uses registers. The
highest register location then wraps around to the lowest, forming a

circular
buffer

. As returns are made, registers that were written to memory are restored to
the register file. Thus, execution always takes place with registers and never
directly with main memory.

9.4 Pipelining the Datapath

There are four phases of operation in the fetch-execute cycle: instruction fetch,
decode, operand fetch, and execute. Each ARC instruction in our model there-
fore requires approximately four machine cycles to complete execution (this is
not true for most commercial SPARC implementations, which have fewer
phases.) We can view these four phases as taking place sequentially, as illustrated
in Figure 9-6.

Globals
R0

R7

R8

R15
R16

R23
R24

R31

...

...

...

...

Ins

Locals

Outs

Procedure
A

Globals
R0

R7

...

R8

R15
R16

R23
R24

R31

...

...

...

Ins

Locals

Outs

Procedure
B

CWP = 8

Overlap

CWP = 24

Figure 9-5 Overlapping register windows.

CHAPTER 9 MODERN ARCHITECTURES

369

Each of the four units performs a different operation in the fetch-execute cycle.
After the Instruction Fetch unit finishes its task, control is handed off to the
Decode unit. At this point, the Instruction Fetch unit can begin fetching the

next

instruction, which overlaps with the decoding of the previous instruction. When
the Instruction Fetch and Decode units complete their tasks, they hand off the
remaining tasks to the next units (Operand Fetch is the next unit for Decode).
The flow of control continues until all units are filled. This model of overlapped
operation is referred to as

pipelining

.

Although it takes four steps to execute an instruction in our ARC model, on
average, one instruction can be executed per cycle as long as the pipeline stays
filled. The pipeline does not stay filled, however, unless we are careful as to how
instructions are ordered. We know from Figure 9-1 that approximately one in
every four instructions is a branch. We cannot fetch the instruction that follows a
branch until the branch completes execution. Thus, as soon as the pipeline fills, a
branch is encountered, and then the pipeline has to be

flushed

 by filling it with
no-operations (NOPs). A similar situation arises with a Load or a Store instruc-
tion, which requires more than one cycle. The “wait” cycles are filled with NOPs.

Figure 9-7 illustrates the pipeline behavior during a memory reference and a
branch for the ARC instruction set. The

addcc

 instruction enters the pipeline
on time step (cycle) 1. On cycle 2, the

ld

 instruction enters the pipeline and

addcc

 moves to the Decode stage. The pipeline continues filling with the

srl

and

subcc

 instructions on cycles 3 and 4, respectively. On cycle 4, the

addcc

instruction is executed and leaves the pipeline. On cycle 5, the

ld

 instruction
reaches the Execute level, but does not finish execution because an additional
cycle is needed for the memory reference. The

ld

 instruction finishes execution
during cycle 6.

The

ld

 and

st

 instructions both require five cycles, but the remaining instruc-
tions require only four. Thus, an instruction that follows an

ld

 or

st

 should not
use the register that is being loaded or stored. A safe approach is to insert a NOP
after an

ld

 or an

st

 as shown in Figure 9-8a. The extra cycle (or cycles, depend-

Instruction
Fetch Decode Operand

Fetch Execute

Figure 9-6 Four-stage instruction pipeline.

370

CHAPTER 9 MODERN ARCHITECTURES

ing on the architecture) for a load is known as a

delayed load

, since the data
from the load is not immediately available on the next cycle. A

delayed branch

 is
similar, as shown for the

be

 instruction in cycles 5 through 8 of Figure 9-7.

The

nop

 instruction wastes a cycle as the processor waits for a Load or a Store to
complete, or as the processor waits for the pipeline to be flushed. If we look at
the code that surrounds a Load, Store, or Branch instruction, there is usually an
instruction nearby that can replace the

nop

. In Figure 9-8a, the

srl

 instruction
can be moved to the position of the

nop

 since its register usage does not conflict
with the surrounding code. After replacing the

nop

 line with the

srl

 line, the
code shown in Figure 9-8b is obtained. This is the code that is traced through the
pipeline in Figure 9-7.

An alternative approach is to simply guess which way the branch will go, and
then undo any damage if the wrong path is taken. Statistically, loops are executed
more often than not, and so it is usually a good guess to assume that a branch out

Instruction
Fetch

Decode

Operand
Fetch

Execute

1 2 3 4 5 6 7 8

addcc ld srl subcc be nop nop nop

addcc ld srl subcc be nop nop

addcc ld srl subcc be nop

addcc ld srl subcc be

ld
Memory

Reference

Time

Figure 9-7 Pipeline behavior during a memory reference and a branch.

(a)

addcc %r1, 10, %r1

ld %r1, %r2

nop

subcc %r2, %r4, %r4

be label

srl %r3, %r5

(b)

addcc %r1, 10, %r1

ld %r1, %r2

srl %r3, %r5

subcc %r2, %r4, %r4

be label

Figure 9-8 SPARC code, (a) with a nop inserted, and (b) with srl migrated to nop position.

CHAPTER 9 MODERN ARCHITECTURES

371

of a loop will not be taken. Thus, a processor can start processing the next
instruction in anticipation of the direction of the branch. If the branch goes the
wrong way, then the execution phase for the next instruction, and any subse-
quent instructions that enter the pipeline, can be stopped so that the pipeline can
be flushed. This approach works well for a number of architectures, particularly
those with slow cycle speeds or deep pipelines. For RISCs, however, the overhead
of determining when a branch goes the wrong way and then cleaning up any side
effects caused by wrong instructions entering the pipeline is generally too great.
The

nop

 instruction is normally used in RISC pipelines when something useful
cannot be used to replace it.

9.5 Multiple Instruction Issue Machines

[Placeholder for future section.]

9.6 VLIW Machines

[Placeholder for future section. Discussion of the Intel Merced architecture.]

EXAMPLE: PLACEHOLDER

[Placeholder for future section.]

9.7 Case Study: Inspecting Compiled Code
[Note from authors: This section is not finished.]

In this section, we analyze a C compiler produced SPARC assembly program. We
start with the C program shown in Figure 9-9 , in which the main routine passes
two integers to a subroutine, which returns the sum of the integers to the main
routine. The code produced by a Solaris Unix C compiler using the command
line:

gcc -S file.c

is shown in Figure 9-10.

A line by line explanation of the assembled code is given in Figure 9-10. There
are a number of new instructions and pseudo-ops introduced in this code:

372 CHAPTER 9 MODERN ARCHITECTURES

.seg/.section Unix executable programs have three segments for data, text
(the instructions), and the stack. The .seg pseudo-op instructs the assembler to
place the code that follows into one of these three segments. Some of the seg-
ments have different protections, which is why there is a data segment and also
a data1 segment. The data1 segment contains constants, and should be pro-
tected from writing. The data segment is both readable and writable and is
therefore not protected against reading or writing (but it is protected from being
executed, as is data). Newer versions of Unix allow more text and data areas to
be used for different read, write, and execute protections.

.proc [Placeholder for unwritten text. – Au]

%hi Same as .high22.

%lo Same as .low10.

add Same as addcc except that the condition codes are unaffected.

/* Example C program to be compiled with gcc
*/

main ()

{

 int a, b, c;

 a =
10;

}

int
add_two(a,b)int a,
b;{

 int
result;

 result = a +
b; return(result);

}

#include
<stdio.h>

 b =
4; c = add_two(a,
b);

 printf("c = %d\n",
c);

Figure 9-9 Source code for C program to be compiled with gcc.

CHAPTER 9 MODERN ARCHITECTURES 373

save Advances current window pointer and increments stack pointer to create
space for local variables.

mov Same as:
or %g0,register_or_immediate,destination_register. This dif-
fers from st because the destination is a register.

nop No-operation (the processor waits for one instruction cycle, while the
branch finishes).

.ascii/.asciz Reserves space for an ASCII string.

! Output produced by gcc compiler on Solaris (Sun UNIX)

.section ".rodata" ! Read-only data for routine main

 .align 8 ! Align read-only data for routine main on an

 ! 8-byte boundary

 .asciz "c = %d\n" ! This is the read-only data

 .proc 04

 !#PROLOGUE# 0

 save %sp, -128, %sp ! Create 128 byte stack frame. Advance

 ! CWP (Current Window Pointer)

 !#PROLOGUE# 1

 ! This is local variable a in main routine of C source program.

 st %o0, [%fp-20] ! Store %o0 five words into stack frame.

 mov 4, %o0 ! %o0 <- 4. This is local variable b in main.

.file add.c ! Identifies the source program

.section "text" ! Executable code starts here

 .align 4 ! Align executable code on a 4-byte (word) boundary

 .type main,#function

! Annotations added by author

.LLC0

 .global main

main: ! Beginning of executable code for routine main

 mov 10, %o0 ! %o0 <- 10. Note that %o0 is the same as %r24.

 st %o0, [%fp-24] ! Store %o0 six words into stack frame.

 ld [%fp-20], %o0 ! Load %o0 and %o1 with parameters to

 ld [%fp-24], %o1 ! be passed to routine add_two.

 call add_two, 0 ! Call routine add_two

 nop ! Pipeline flush needed after a transfer of control

 st %o0, [%fp-28] ! Store result 67 words into stack frame.

 ! This is local variable c in main.

 sethi %hi(.LLC0), %o1 ! This instruction and the next load

 or %o1, %lo(.LLC0), %o0 ! the 32-bit address .LLC0 into %o0

 ld [%fp-28], %o1 ! Load %o1 with parameter to pass to printf

Figure 9-10 gcc generated SPARC code (continued on next page).

374 CHAPTER 9 MODERN ARCHITECTURES

set Sets a register to a value. This is a macro that expands to the sethi, %hi,
and %lo constructs shown in #PROLOGUE# 1.

ret Return. Same as: jmpl %i7+8, %g0.

restore Decrements current window pointer.

b Same as ba.

.file Identifies the source file.

.align Forces the code that follows onto a boundary evenly divisible by its

 call printf, 0

 nop ! A nop is needed here because of the pipeline flush

 ! that follows a transfer of control.

.LL1

 ret ! Return to calling routine (Solaris for this case)

 restore ! The complement to save. Although it follows the

 ! return, it is still in the pipeline and gets executed.

.LLfe1

 .size main, .LLfe1-main ! Size of

 .align 4

 .global add_two

 .type add_two, #function

 .proc 04

add_two:

 !#PROLOGUE# 0

 save %sp, -120, %sp

 !#PROLOGUE# 1

 st %i0, [%fp+68] !Same as %o0 in calling routine (variable a)

 st %i1, [%fp+72] !Same as %o1 in calling routine (variable b)

 ld [%fp+68], %o0

 ld [%fp+72], %o1

 add %o0, %o1, %o0 ! Perform the addition

 st %o0, [%fp-20] ! Store result in stack frame

 ld [%fp-20], %i0 ! %i0 (result) is %o0 in called routine

 b .LL2

 nop

.LL2:

 ret

 restore

.LLfe2:

 .size add_two, .LLfe2-add_two

 .ident "GCC: (GNU) 2.5.8"

Figure 9-10 (cont’)

CHAPTER 9 MODERN ARCHITECTURES 375

argument.

.type Associates a label with its type.

.size Computes the size of a segment.

.ident Identifies the compiler version.

Notice that the compiler does not seem to be consistent with its choice of regis-
ters for parameter passing. Prior to the call to add_two, the compiler uses %o0
and %o1 (%r24 and %r25) for parameters passed to add_two. Then, %r25 is
used for the parameters passed to printf. Why did the compiler not start with
%r24 again, or choose the next available register (%o2)? This is the register
assignment problem, which has been the object of a great deal of study. We will
not go into details here1, as this is more appropriate for a course in compiler
design, but suffice it to say that any logically correct assignment of variables to
registers will work, but that some assignments are better than others in terms of
the number of registers used and the overall program execution time.

Why are the stack frames so large? We only need three words on the stack frame
for local variables a, b, and c in main. We might also need a word to store the
return address, although the compiler does not seem to generate code for that.
There are no parameters passed to main by the operating system, and so the
stack frame that main sees should only be four words (16 bytes) in size. Thus,
the line at the beginning of routine main:

save %sp, -128, %sp

should only be:

save %sp, -16, %sp.

What is all of the extra space for? There are a number of runtime situations that
may need stack space. For instance, if the nesting depth is greater than the num-

1. Here are a few details, for the curious: %r0 (%o0) is still in use (add_two is expecting
the address of LLC0 to show up in %r0), and %r1 is no longer needed at this point, so it can be
reassigned. But then, why is %r1 used in the sethi line? Would it have made sense to use %r0
instead of introducing another register into the computation? See problem 9.2 at the end of the
chapter for more on this topic.

376 CHAPTER 9 MODERN ARCHITECTURES

ber of windows, then the stack must be used for overflow. (See Figure D-2 in
[SPARC, 1992])

If a scalar is passed from one routine to another, then everything is fine. But if a
callee refers to the address of a passed scalar (or aggregate), then the scalar (or
aggregate) must be copied to the stack and be referenced from there for the life-
time of the pointer (or for the lifetime of the procedure, if the pointer lifetime is
not known).

Why does the return statement ret cause a return to the code that is 8 bytes past
the call, instead of 4 as we have been doing it? This is because there is a nop
that follows call (the so-called “delay-slot instruction”).

Notice that routine labels that appear in the source code are prepended with an
underscore in the assembly code, so that main, add_two, and printf in C
become _main, _add_two, and _printf in gcc generated SPARC code. This
means that if we want to write a C program that is linked to a gcc generated
SPARC program, that the C calls should be made to routines that begin with
underscores. For example, if add_two is compiled into SPARC code, and we
invoke it from a C main program in another file, then the C program should
make a call to _add_two, and not add_two, even though the routine started
out as add_two. Further, the C program needs to declare _add_two as exter-
nal.

If the compilation for add_two is continued down to an executable file, then
there is no need to treat the labels differently. The add_two routine will still be
labeled _add_two, but routine main will be compiled into code that expects to
see _add_two and so everything will work OK. This is not the case, however, if
a gcc program makes calls to a Fortran library.

Fortran is a commonly used language in the scientific community, and there are a
number of significant Fortran libraries that are used for linear algebra (LIN-
PACK), modeling and simulation (__), and parallel scientific applications (__).
As C programmers, we sometimes find ourselves wanting to write C programs
that make calls to Fortran routines. This is easy to do once we understand what is
happening.

There are two significant differences that need to be addressed:

(1) differences in routine labels;

CHAPTER 9 MODERN ARCHITECTURES 377

(2) differences in subroutine linkage.

In Fortran, the source code labels are prepended with two underscores in the
assembly code. A C program that makes a call to Fortran routine add_two
would then make a call to _ _add_two, which also must be declared as external
in the C source code (and declared as global in the Fortran program).

If all of the parameters that are passed to the Fortran routines are pointers, then
everything will work OK. If there are any scalars passed, then there will be trou-
ble because C uses call-by-value for scalars whereas Fortran uses call-by-reference.
We need to “trick” the C compiler into using call-by-reference by making it
explicit. Wherever a Fortran routine expects a scalar in its argument list, we use a
pointer to the scalar in the C code. As an example, a C/Fortran version of the
add_two code is shown below:

[Placeholder for unwritten C/Fortran figure.]

As a practical consideration, the gcc compiler will compile Fortran programs. It
knows what to do by observing the extension of the source file, which should be
.f for Fortran. [The rest of this section is unfinished. – Au(s)]

[Note to Au: Manipulation of %sp needs to be atomic. See page 191 of SPARC
Architecture manual, under first bullet.]

9.8 Case Study: Superscalar Assembly Language Programming on the
Intel Pentium II with MMX Technology
Discussion of the Intel Merced architecture.

EXAMPLE

A processor has a five stage pipeline. If a branch is taken, then four cycles are
needed to flush the pipeline. The branch penalty b is thus 4. The probability Pb
that a particular instruction is a branch is .25. The probability Pt that the branch
is taken is .5. We would like to compute the average number of cycles needed to
execute an instruction, and the execution efficiency.

378 CHAPTER 9 MODERN ARCHITECTURES

When the pipeline is filled and there are no branches, then the average number
of cycles per instruction (CPINo_Branch) is 1. The average number of cycles per
instruction when there are branches is then:

CPIAvg = (1 - Pb)(CPINo_Branch) + Pb[Pt(1 + b) + (1 - Pt)(CPINo_Branch)]

= 1 + bPbPt.

After making substitutions, we have:

CPIAvg = (1 - .25)(1) + .25[.5(1 + 4) + (1 - .5)(1)]

= 1.5 cycles.

The execution efficiency is the ratio of the cycles per instruction when there are
no branches to the cycles per instruction when there are branches. Thus we have:

Execution efficiency = (CPINo_Branch)/(CPIAvg) = 1/1.5 = 67%.

The processor runs at 67% of its potential speed as a result of branches, but this
is still much better than the five cycles per instruction that might be needed
without pipelining.

There are techniques for improving the efficiency. We know that loops are usu-
ally executed more than once, so we can guess that a branch out of the loop will
not be taken and be right most of the time. We can also run simulations on the
non-loop branches, and get a statistical sampling of which branches are likely to
be taken, and then guess the branches accordingly. As explained earlier, this
approach works best when the pipeline is deep or the clock rate is slow. �

� SUMMARY

In the RISC approach, the most frequently occuring instructions are optimized by
eliminating or reducing the complexity of other instructions and addressing modes
commonly found in CISC architectures. The performance of RISC architectures is
further enhanced by pipelining and increasing the number of registers available to
the CPU.

CHAPTER 9 MODERN ARCHITECTURES 379

� FURTHER READING
The three characteristics of RISC architectures originated at IBM’s T. J. Watson
Research Center, as summarized in (Ralston and Reilly, 1993, pp. 1165 - 1167).
(Hennessy and Patterson, 1990) is the seminal reference on much of the work
that led to the RISC concept, although the word “RISC” does not appear in the
title of their textbook. (Stallings, 1990) is a thorough reference on RISCs. (Tamir
and Sequin, 1983) show that a window size of eight will shift on less than 1% of
the calls or returns. (Tanenbaum, 1990) provides a readable introduction to the
RISC concept.

Hennessy, J. L. and D. A. Patterson, Computer Architecture: A Quantitative
Approach, Morgan Kaufmann Publishers, San Mateo, California, (1990).

Ralston, A. and E. D. Reilly, eds., Encyclopedia of Computer Science, 3/e, van
Nostrand Reinhold, (1993).

Stallings, W., Reduced Instruction Set Computers, 3/e, IEEE Computer Society
Press, Washington, D.C., (1991).

Tamir, Y., and C. Sequin, “Strategies for Managing the Register File in RISC,”
IEEE Trans. Comp., (Nov. 1983).

Tanenbaum, A., Structured Computer Organization, 3/e, Prentice Hall, Engle-
wood Cliffs, New Jersey, (1990).

� PROBLEMS
9.1 Increasing the number of cycles per instruction can sometimes improve

the execution efficiency of a pipeline. If the time per cycle for the pipeline
described in Section 5.6.3 is 20 ns, then CPIAvg is 1.5 × 20 ns = 30 ns. Com-
pute the execution efficiency for the same pipeline in which the pipeline depth
increases from 5 to 6 and the cycle time decreases from 20 ns to 10 ns.

9.2 The SPARC code below is taken from the gcc generated code in Figure
9-10. Can %r0 be used in all three lines, instead of “wasting” %r1 in the sec-
ond line?

...
st %o0, [%fp-28]

380 CHAPTER 9 MODERN ARCHITECTURES

sethi %hi(.LLC0), %o1
or %o1, %lo(.LLC0), %o1

...

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

403

In the earlier chapters, the fetch-execute cycle is described in the form: “fetch an
instruction, execute that instruction, fetch the next instruction,

etc.

” This gives
the impression of a straight-line linear progression of program execution. In fact,
the processor architectures of today have many advanced features that go beyond
this simple paradigm. These features include

pipelining

, in which several
instructions sharing the same hardware can simultaneously be in various phases
of execution,

superscalar execution

, in which several instructions are executed
simultaneously using different portions of the hardware, with possibly only some
of the results contributing to the overall computation,

very long instruction
word

 (VLIW) architectures, in which each instruction word specifies multiple
instructions (of smaller widths) that are executed simultaneously, and

parallel
processing

, in which multiple processors are coordinated to work on a single
problem.

In this chapter we cover issues that relate to these features. The discussion begins
with issues that led to the emergence of the reduced instruction set computer
(RISC) and examples of RISC features and characteristics. Following that, we
cover an advanced feature used specifically in SPARC architectures:

overlapping
register windows

. We then cover two important architectural features: supersca-
lar execution and VLIW architectures. We then move into the topic of parallel
processing, touching both on parallel architectures and program decomposition.
The chapter includes with case studies covering Intel’s Merced architecture, the
PowerPC 601, and an example of a pervasive parallel architecture that can be
found in a home videogame system.

10.1 Quantitative Analyses of Program Execution

Prior to the late 1970’s, computer architects exploited improvements in inte-
grated circuit technology by increasing the complexity of instructions and

TRENDS IN COMPUTER
ARCHITECTURE

 10

404

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

addressing modes, as the benefits of such improvements were thought to be obvi-
ous. It became an effective selling strategy to have more complex instructions and
more complex addressing modes than a competing processor. Increases in archi-
tectural complexity catered to the belief that a significant barrier to better
machine performance was the

semantic gap

—the gap between the meanings of
high-level language statements and the meanings of machine-level instructions.

Unfortunately, as computer architects attempted to close the semantic gap, they
sometimes made it worse. The IBM 360 architecture has the

MVC

 (move charac-
ter) instruction that copies a string of up to 256 bytes between two arbitrary
locations. If the source and destination strings overlap, then the overlapped por-
tion is copied one byte at a time. The runtime analysis that determines the degree
of overlap adds a significant overhead to the execution time of the

MVC

 instruc-
tion. Measurements show that overlaps occur only a few percent of the time, and
that the average string size is only eight bytes. In general, faster execution results
when the

MVC

 instruction is entirely ignored, and instead, its function is synthe-
sized with simpler instructions. Although a greater number of instructions may
be executed without the

MVC

 instruction, on average, fewer clock cycles are
needed to implement the copy operation without using

MVC

 than by using it.

Long-held views began to change in 1971, when Donald Knuth published a
landmark analysis of typical FORTRAN programs, showing that most of the
statements are simple assignments. Later research by John Hennessy at Stanford
University, and David Patterson at the University of California at Berkeley con-
firmed that most complex instructions and addressing modes went largely
unused by compilers. These researchers popularized the use of program analysis
and benchmark programs to evaluate the impact of architecture upon perfor-
mance.

Figure 10-1, taken from (Knuth, 1971), summarizes the frequency of occurrence
of instructions in a mix of programs written in a variety of languages. Nearly half
of all instructions are assignment statements. Interestingly, arithmetic and other
“more powerful” operations account for only 7% of all instructions. Thus, if we
want to improve the performance of a computer, our efforts would be better
spent optimizing instructions that account for the greatest percentage of execu-
tion time rather than focusing on instructions that are inherently complex but
rarely occur.

Related metrics are shown in Figure 10-2. From the figure, the number of terms
in an assignment statement is normally just a few. The most frequent case (80%),

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

405

is the simple variable assignment,

X

←

Y

. There are only a few local variables in
each procedure, and only a few arguments are normally passed to a procedure.

We can see from these measurements that the bulk of computer programs are
very simple at the instruction level, even though more complex programs could
potentially be created. This means that there may be little or no payoff in increas-
ing the complexity of the instructions.

Discouragingly, analyses of compiled code showed that compilers usually did not
take advantage of the complex instructions and addressing modes made available
by computer architects eager to close the semantic gap. One important reason for
this phenomenon is that it is difficult for a compiler to analyze the code in suffi-
cient detail to locate areas where the new instructions can be used effectively,
because of the great difference in meaning between most high-level language
constructs and the expression of those constructs in assembly language. This

Statement Average Percent of Time

Assignment

If

Call

Loop

Goto

Other

47

23

15

6

3

7

Figure 10-1 Frequency of occurrence of instruction types for a variety of languages. The percentages

do not sum to 100 due to roundoff. (Adapted from [Knuth, 1991].)

Percentage of
Number of Terms

in Assignments

0

1

2

3

4

≥ 5

–

80

15

3

2

0

Percentage of
Number of Locals

in Procedures

22

17

20

14

8

20

Percentage of Number
of Parameters in
Procedure Calls

41

19

15

9

7

8

Figure 10-2 Percentages showing complexity of assignments and procedure calls. (Adapted from

[Tanenbaum, 1999].)

406

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

observation, and the ever increasing speed and capacity of integrated circuit tech-
nology, converged to bring about an evolution from complex instruction set
computer (CISC) machines to RISC machines.

A basic tenet of current computer architecture is to make the frequent case fast,
and this often means making it simple. Since the assignment statement happens
so frequently, we should concentrate on making it fast (and simple, as a conse-
quence). One way to simplify assignments is to force all communication with
memory into just two commands: LOAD and STORE. The LOAD/STORE
model is typical of RISC architectures. We see the LOAD/STORE concept in
Chapter 4 with the

ld

 and

st

 instructions for the ARC.

By restricting memory accesses to LOAD/STORE instructions only, other
instructions can only access data that is stored in registers. There are two conse-
quences of this, both good and bad: (1) accesses to memory can be easily over-
lapped, since there are fewer side effects that would occur if different instruction
types could access memory (this is good); and (2) there is a need for a large num-
ber of registers (this seems bad, but read on).

A simpler instruction set results in a simpler and typically smaller CPU, which
frees up space on a microprocessor to be used for something else, like registers.
Thus, the need for more registers is balanced to a degree by the newly vacant cir-
cuit area, or chip

real estate

 as it is sometimes called. A key problem lies in how
to manage these registers, which is discussed in Section 10.4.

10.1.1

QUANTITATIVE PERFORMANCE ANALYSIS

When we estimate machine performance, the measure that is generally most
important is execution time,

T

. When considering the impact of some perfor-
mance improvement, the effect of the improvement is usually expressed in terms
of the

speedup

,

S

, taken as the ratio of the execution time without the improve-
ment (

T

wo

) to the execution time with the improvement (

T

w

):

For example, if adding a 1MB cache module to a computer system results in low-
ering the execution time of some benchmark program from 12 seconds to 8 sec-
onds, then the speedup would be 12/8, = 1.5, or 50%. An equation to calculate

S
Two

Tw
---------=

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

407

speedup as a direct percent can be represented as:

We can develop a more fine-grained equation for estimating

T

 if we have infor-
mation about the machine’s clock period,

τ

, the number of clock cycles per
instruction,

CPI

, and a count of the number of instructions executed by the pro-
gram during its execution,

IC

. In this case the total execution time for the pro-
gram is given by:

CPI and IC can be expressed either as an average over the instruction set and
total count, respectively, or summed over each kind and number of instructions
in the instruction set and program. Substituting the latter equation into the
former we get:

These equations and others derived from them, are useful in computing and esti-
mating the impact of changes in instructions and architecture upon perfor-
mance.

EXAMPLE: CALCULATING SPEEDUP FOR A NEW
INSTRUCTION SET

Suppose we wish to estimate the speedup obtained by replacing a CPU having an
average CPI of 5 with another CPU having an average CPI of 3.5, with the clock
period increased from 100 ns to 120 ns. The equation above becomes:

Thus, without actually running a benchmark program we can estimate the
impact of an architectural change upon performance.

�

10.2 From CISC to RISC

Historically, when memory cycle times were very long and when memory prices

S
Two Tw–

Tw
---------------------- 100×=

T IC CPI τ××=

S
ICwo CPIwo τwo×× ICw CPIw τw××–

ICw CPIw τw××
--- 100×=

S 5 100× 3.5 120×–
3.5 120×

--- 100× = 19%=

408

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

were high, fewer, complicated instructions held an advantage over more, simpler
instructions. There came a point, however, when memory became inexpensive
enough and memory hierarchies became fast and large enough, that computer
architects began reexamining this advantage. One technology that affected this
examination was

pipelining

—that is, keeping the execution unit more or less
the same, but allowing different instructions (which each require several clock
cycles to execute) to use different parts of the execution unit on each clock cycle.
For example, one instruction might be accessing operands in the register file
while another is using the ALU.

We will cover pipelining in more detail later in the chapter, but the important
point to make here is that computer architects learned that CISC instructions do
not fit pipelined architectures very well. For pipelining to work effectively, each
instruction needs to have similarities to other instructions, at least in terms of rel-
ative instruction complexity. The reason can be viewed in analogy to an assembly
line that produces different models of an automobile. For efficiency, each “sta-
tion” of the assembly line should do approximately the same amount and kind of
work. If the amount or kind of work done at each station is radically different for
different models, then periodically the assembly line will have to “stall” to
accommodate the requirements of the given model.

CISC instruction sets have the disadvantage that some instructions, such as regis-
ter-to-register moves, are inherently simple, whereas others, such as the

MVC

instruction and others like it are complex, and take many more clock cycles to
execute.

The main philosophical underpinnings of the RISC approach are:

• Prefetch instructions into an instruction queue in the CPU before they are
needed. This has the effect of hiding the latency associated with the instruc-
tion fetch.

• With instruction fetch times no longer a penalty, and with cheap memory
to hold a greater number of instructions, there is no real advantage to CISC
instructions. All instructions should be composed of sequences of RISC in-
structions, even though the number of instructions needed may increase
(typically by as much as 1/3 over a CISC approach).

• Moving operands between registers and memory is expensive, and should
be minimized.

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

409

• The RISC instruction set should be designed with pipelined architectures
in mind.

• There is no requirement that CISC instructions be maintained as integrat-
ed wholes; they can be decomposed into sequences of simpler RISC in-
structions.

The result is that RISC architectures have characteristics that distinguish them
from CISC architectures:

• All instructions are of fixed length, one machine word in size.

• All instructions perform simple operations that can be issued into the pipe-
line at a rate of one per clock cycle. Complex

operations

 are now composed
of simple

instructions

 by the compiler.

• All operands must be in registers before being operated upon. There is a
separate class of memory access instructions: LOAD and STORE. This is
referred to as a LOAD-STORE architecture.

• Addressing modes are limited to simple ones. Complex addressing calcula-
tions are built up using sequences of simple operations.

• There should be a large number of general registers for arithmetic opera-
tions so that temporary variables can be stored in registers rather than on a
stack in memory.

In the next few sections, we explore additional motivations for RISC architec-
tures, and special characteristics that make RISC architectures effective.

10.3 Pipelining the Datapath

The flow of instructions through a pipeline follows the steps normally taken
when an instruction is executed. In the discussion below we consider how three
classes of instructions: arithmetic, branch, and load-store, are executed, and then
we relate this to how the instructions are pipelined.

10.3.1

ARITHMETIC, BRANCH, AND LOAD-STORE INSTRUCTIONS

Consider the “normal” sequence of events when an

arithmetic instruction

 is
executed in a load-store machine:

410

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

1) Fetch the instruction from memory;

2) Decode the instruction (it is an arithmetic instruction, but the CPU has
to find that out through a decode operation);

3) Fetch the operands from the register file;

4) Apply the operands to the ALU;

5) Write the result back to the register file.

There are similar patterns for other instruction classes. For

branch instructions

the sequence is:

1) Fetch the instruction from memory;

2) Decode the instruction (it is a branch instruction);

3) Fetch the components of the address from the instruction or register file;

4) Apply the components of the address to the ALU (address arithmetic);

5) Copy the resulting effective address into the PC, thus accomplishing the
branch.

The sequence for

load and store instructions

 is:

1) Fetch the instruction from memory;

2) Decode the instruction (it is a load or store instruction);

3) Fetch the components of the address from the instruction or register file;

4) Apply the components of the address to the ALU (address arithmetic);

5) Apply the resulting effective address to memory along with a read (load)
or write (store) signal. If it is a write signal, the data item to be written
must also be retrieved from the register file.

The three sequences above show a high degree of similarity in what is done at
each stage: (1) fetch, (2) decode, (3) operand fetch, (4) ALU operation, (5) result
writeback.

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

411

These five phases are similar to the four phases discussed in chapters 4 and 6
except that we have refined the fourth phase, “execute,” into two subphases: ALU
operation and writeback, as illustrated in Figure 10-3. A result writeback is not

always needed, and one way to deal with this is to have two separate subphases
(ALU and writeback) with a bypass path for situations when a writeback is not
needed. For this discussion, we take a simpler approach, and force all instruc-
tions to go entirely through each phase, whether or not that is actually needed.

10.3.2

PIPELINING INSTRUCTIONS

In practice, each CPU designer approaches the design of the pipeline from a dif-
ferent perspective, depending upon the particular design goals and instruction
set. For example the original SPARC implementation had only four pipeline
stages, while some floating point pipelines may have a dozen or more stages.

Each of the execution units performs a different operation in the fetch-execute
cycle. After the Instruction Fetch unit finishes its task, the fetched instruction is
handed off to the Decode unit. At this point, the Instruction Fetch unit can
begin fetching the

next

 instruction, which overlaps with the decoding of the pre-
vious instruction. When the Instruction Fetch and Decode units complete their
tasks, they hand off the remaining tasks to the next units (Operand Fetch is the
next unit for Decode). The flow of control continues until all units are filled.

10.3.3

KEEPING THE PIPELINE FILLED

Notice an important point: although it takes multiple steps to execute an instruc-
tion in this model, on average, one instruction can be executed per cycle as long
as the pipeline stays filled. The pipeline does not stay filled, however, unless we
are careful as to how instructions are ordered. We know from Figure 10-1 that
approximately one in every four instructions is a branch. We cannot fetch the
instruction that follows a branch until the branch completes execution. Thus, as
soon as the pipeline fills, a branch is encountered, and then the pipeline has to be

Instruction
Fetch Decode Operand

Fetch
(ALU Op.

and
Writeback)

Execute

Figure 10-3 Four-stage instruction pipeline.

412

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

flushed

 by filling it with no-operations (NOPs). These NOPs are sometimes
referred to as

pipeline bubbles

. A similar situation arises with the LOAD and
STORE instructions. They generally require an additional clock cycle in which
to access memory, which has the effect of expanding the Execute phase from one
cycle to two cycles at times. The “wait” cycles are filled with NOPs.

Figure 10-4 illustrates the pipeline behavior during a memory reference and also

during a branch for the ARC instruction set. The

addcc

 instruction enters the
pipeline on time step (cycle) 1. On cycle 2, the

ld

 instruction, which references
memory, enters the pipeline and

addcc

 moves to the Decode stage. The pipeline
continues filling with the

srl

 and

subcc

 instructions on cycles 3 and 4, respec-
tively. On cycle 4, the addcc instruction is executed and leaves the pipeline. On
cycle 5, the ld instruction reaches the Execute level, but does not finish execu-
tion because an additional cycle is needed for memory references. The ld
instruction finishes execution during cycle 6.

Branch and Load Delay Slots

The ld and st instructions both require five cycles, but the remaining instruc-
tions require only four. Thus, an instruction that follows an ld or st should not
use the register that is being loaded or stored. A safe approach is to insert a NOP
after an ld or an st as shown in Figure 10-5a. The extra cycle (or cycles,
depending on the architecture) for a load is known as a delayed load, since the
data from the load is not immediately available on the next cycle. A delayed

Instruction
Fetch

Decode

Operand
Fetch

Execute

1 2 3 4 5 6 7 8

addcc ld srl subcc be nop nop nop

addcc ld srl subcc be nop nop

addcc ld srl subcc be nop

addcc ld srl subcc be

ld
Memory

Reference

Time

Figure 10-4 Pipeline behavior during a memory reference and a branch.

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE 413

branch is similar, as shown for the be instruction in cycles 5 through 8 of Figure
10-4. The position occupied by this NOP instruction is known as a load delay
slot or branch delay slot respectively.

It is often possible for the compiler to find a nearby instruction to fill the delay
slot. In Figure 10-5a, the srl instruction can be moved to the position of the
nop since its register usage does not conflict with the surrounding code and reor-
dering instructions this way does not impact the result. After replacing the nop
line with the srl line, the code shown in Figure 10-5b is obtained. This is the
code that is traced through the pipeline in Figure 10-4.

Speculative Execution of Instructions

An alternative approach to dealing with branch behavior in pipelines is to simply
guess which way the branch will go, and then undo any damage if the wrong
path is taken. Statistically, loops are executed more often than not, and so it is
usually a good guess to assume that a branch that exits a loop will not be taken.
Thus, a processor can start processing the next instruction in anticipation of the
direction of the branch. If the branch goes the wrong way, then the execution
phase for the next instruction, and any subsequent instructions that enter the
pipeline, can be stopped so that the pipeline can be flushed. This approach works
well for a number of architectures, particularly those with slow cycle speeds or
deep pipelines. For RISCs, however, the overhead of determining when a branch
goes the wrong way and then cleaning up any side effects caused by wrong
instructions entering the pipeline is generally too great. The nop instruction is
normally used in RISC pipelines when something useful cannot be used to
replace it.

(a)

addcc %r1, 10, %r1

ld %r1, %r2

nop

subcc %r2, %r4, %r4

be label

srl %r3, %r5

(b)

addcc %r1, 10, %r1

ld %r1, %r2

srl %r3, %r5

subcc %r2, %r4, %r4

be label

Figure 10-5 SPARC code, (a) with a nop inserted, and (b) with srl migrated to nop position.

414 CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

EXAMPLE: ANALYSIS OF PIPELINE EFFICIENCY

In this example, we analyze the efficiency of a pipeline.

A processor has a five stage pipeline. If a branch is taken, then four cycles are
needed to flush the pipeline. The branch penalty b is thus 4. The probability Pb
that a particular instruction is a branch is .25. The probability Pt that the branch
is taken is .5. We would like to compute the average number of cycles needed to
execute an instruction, and the execution efficiency.

When the pipeline is filled and there are no branches, then the average number
of cycles per instruction (CPINo_Branch) is 1. The average number of cycles per
instruction when there are branches is then:

CPIAvg = (1 - Pb)(CPINo_Branch) + Pb[Pt(1 + b) + (1 - Pt)(CPINo_Branch)]

= 1 + bPbPt.

After making substitutions, we have:

CPIAvg = (1 - .25)(1) + .25[.5(1 + 4) + (1 - .5)(1)]

= 1.5 cycles.

The execution efficiency is the ratio of the cycles per instruction when there are
no branches to the cycles per instruction when there are branches. Thus we have:

Execution efficiency = (CPINo_Branch)/(CPIAvg) = 1/1.5 = 67%.

The processor runs at 67% of its potential speed as a result of branches, but this
is still much better than the five cycles per instruction that might be needed
without pipelining.

There are techniques for improving the efficiency. As stated above, we know that
loops are usually executed more than once, so we can guess that a branch out of a
loop will not be taken and be right most of the time. We can also run simulations
on the non-loop branches, and get a statistical sampling of which branches are
likely to be taken, and then guess the branches accordingly. As explained above,

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE 415

this approach works best when the pipeline is deep or the clock rate is slow. �

10.4 Overlapping Register Windows
One modern architectural feature that has not been as widely adopted as other
features (such as pipelining) is overlapping register windows, which to date has
only been adopted by the SPARC family. This feature is based upon studies that
show typical programs spend much of their time dealing with procedure
call-and-return overhead, which involves passing parameters on a stack located in
main memory in traditional architectures. The SPARC architecture reduces
much of this overhead by employing multiple register sets that overlap. These
registers are used for passing parameters between procedures, instead of using a
stack in main memory.

Procedure calls may be deeply nested in an ordinary program, but for a given
window of time, the nesting depth fluctuates within a narrow band. Figure 10-6

illustrates this behavior. For a nesting depth window size of five, the window
moves only 18 times for 100 procedure calls. Results produced by a group at UC
Berkeley (Tamir and Sequin, 1983) show that a window size of eight will shift on
less than 1% of the calls or returns.

The small window size for nested calls is important for improving performance.
For each procedure call, a stack frame is normally constructed in which parame-
ters, a return address, and local variables are placed. There is thus a great deal of

Nesting
Depth

Time in Units of Calls/Returns

Window
depth = 5

Figure 10-6 Call-return behavior as a function of nesting depth and time (Adapted from [Stallings,

1996]).

416 CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

stack manipulation that takes place for procedure calls, but the complexity of the
manipulation is not all that great. That is, stack references are highly localized
within a small area.

The RISC I architecture exploits this locality by keeping the active portion of the
stack in registers. Figure 10-7 shows the user’s view of register usage for the RISC

I. The user sees 32 registers in which each register is 32 bits wide. Registers
R0-R7 are used for global variables. Registers R8-R15 are used for incoming
parameters. Registers R16-R23 are used for local variables, and registers
R24-R31 are used for outgoing parameters. The eight registers within each group
are enough to satisfy the bulk of call/return activity, as evidenced by the fre-
quency distribution in Figure 10-6.

Although the user sees 32 registers, there may be several hundred registers that
overlap. Figure 10-8 illustrates the concept of overlapping register windows. The
global registers are detached from the others, and are continuously available as
R0-R7. Registers R8-R31 make up the remaining 24 registers that the user sees,
but this group of registers slides deeper into the register file (the entire set of reg-
isters) on each procedure call. Since the outgoing parameters for one procedure
are the incoming parameters to another, these sets of registers can overlap. Regis-
ters R8-R31 are referred to as a window. A current window pointer (CWP)
points to the current window, and increases or decreases for calls and returns,
respectively.

In the statistically rare event when there are not enough registers for the level of
nesting, then main memory is used. However, main memory is used for the low-
est numbered window, so that the new current window still uses registers. The

%l0

%i0

Global Variables

Incoming Parameters

Local Variables

Outcoming Parameters

32 bits

R0

R7
R8

R15
R16

R23
R24

R31

...

...

...

...

%g0

%g7

%i7

%l7
%o0

%o7

...

...

...

...

Figure 10-7 User’s view of RISC I registers.

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE 417

highest register location then wraps around to the lowest, forming a circular
buffer. As returns are made, registers that were written to memory are restored to
the register file. Thus, execution always takes place with registers and never
directly with main memory.

EXAMPLE: COMPILED CODE FOR OVERLAPPING
REGISTER WINDOWS AND DELAYED BRANCHES

In this section, we analyze a C compiler-produced SPARC assembly program
that exploits features of the RISC concept. We start with the C program shown
in Figure 10-9, in which the main routine passes two integers to a subroutine,
which returns the sum of the integers to the main routine. The code produced by
a Solaris Unix C compiler using the command line:

gcc -S file.c

is shown in Figure 10-10.

An explanation of the more significant aspects of the assembled code is given in
Figure 10-10, which includes a number of features found only in RISC code.
There are a number of new instructions and pseudo-ops introduced in this code:

Globals
R0

R7

R8

R15
R16

R23
R24

R31

...

...

...

...

Ins

Locals

Outs

Procedure
A

Globals
R0

R7

...

R8

R15
R16

R23
R24

R31

...

...

...

Ins

Locals

Outs

Procedure
B

CWP = 8

Overlap

CWP = 24

Figure 10-8 Overlapping register windows.

418 CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

.seg/.section Unix executable programs have three segments for data, text
(the instructions), and the stack. The.seg pseudo-op instructs the assembler to
place the code that follows into one of these three segments. Some of the seg-
ments have different protections, which is why there is a data segment and also
a data1 segment. The data1 segment contains constants, and should be pro-
tected from writing. The data segment is both readable and writable and is
therefore not protected against reading or writing (but it is protected from being
executed, as is data). Newer versions of Unix allow more text and data areas to
be used for different read, write, and execute protections.

%hi Same as ARC pseudo-op .high22.

%lo Same as ARC pseudo-op .low10.

add Same as addcc except that the condition codes are unaffected.

save Advances current window pointer and increments stack pointer to create
space for local variables.

/* Example C program to be compiled with gcc */

main ()

{

 int a, b, c;

 a = 10;

}

int add_two(a,b)

int a, b;

{

 int result;

 result = a + b;

 return(result);

}

#include
<stdio.h>

 b = 4;

 c = add_two(a, b);

 printf("c = %d\n", c);

Figure 10-9 Source code for C program to be compiled with gcc.

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE 419

mov Same as:
or %g0,register_or_immediate,destination_register. This dif-
fers from st because the destination is a register.

nop No-operation (the processor waits for one instruction cycle, while the
branch finishes).

.ascii/.asciz Reserves space for an ASCII string.

set Sets a register to a value. This is a macro that expands to the sethi, %hi,
and %lo constructs shown in #PROLOGUE# 1.

! Output produced by gcc compiler on Solaris (Sun UNIX)

.section ".rodata" ! Read-only data for routine main

 .align 8 ! Align read-only data for routine main on an

 ! 8-byte boundary

 .asciz "c = %d\n" ! This is the read-only data

 .proc 04

 !#PROLOGUE# 0

 save %sp, -128, %sp ! Create 128 byte stack frame. Advance

 ! CWP (Current Window Pointer)

 !#PROLOGUE# 1

 ! This is local variable a in main routine of C source program.

 st %o0, [%fp-20] ! Store %o0 five words into stack frame.

 mov 4, %o0 ! %o0 <- 4. This is local variable b in main.

.file add.c ! Identifies the source program

.section "text" ! Executable code starts here

 .align 4 ! Align executable code on a 4-byte (word) boundary

 .type main,#function

! Annotations added by author

.LLC0

 .global main

main: ! Beginning of executable code for routine main

 mov 10, %o0 ! %o0 <- 10. Note that %o0 is the same as %r24.

 st %o0, [%fp-24] ! Store %o0 six words into stack frame.

 ld [%fp-20], %o0 ! Load %o0 and %o1 with parameters to

 ld [%fp-24], %o1 ! be passed to routine add_two.

 call add_two, 0 ! Call routine add_two

 nop ! Pipeline flush needed after a transfer of control

 st %o0, [%fp-28] ! Store result 67 words into stack frame.

 ! This is local variable c in main.

 sethi %hi(.LLC0), %o1 ! This instruction and the next load

 or %o1, %lo(.LLC0), %o0 ! the 32-bit address .LLC0 into %o0

 ld [%fp-28], %o1 ! Load %o1 with parameter to pass to printf

Figure 10-10 gcc generated SPARC code (continued on next page).

420 CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

ret Return. Same as: jmpl %i7+8, %g0. Notice that it seems like the return
should only go 4 bytes past the calling instruction, not 8 bytes as indicated
above. This is because the instruction that follows the call is a nop, inserted by
the compiler to protect the integrity of the pipeline.

restore Decrements current window pointer.

b Same as ba.

.file Identifies the source file.

.align Forces the code that follows onto a boundary evenly divisible by its

 call printf, 0

 nop ! A nop is needed here because of the pipeline flush

 ! that follows a transfer of control.

.LL1

 ret ! Return to calling routine (Solaris for this case)

 restore ! The complement to save. Although it follows the

 ! return, it is still in the pipeline and gets executed.

.LLfe1

 .size main, .LLfe1-main ! Size of

 .align 4

 .global add_two

 .type add_two, #function

 .proc 04

add_two:

 !#PROLOGUE# 0

 save %sp, -120, %sp

 !#PROLOGUE# 1

 st %i0, [%fp+68] !Same as %o0 in calling routine (variable a)

 st %i1, [%fp+72] !Same as %o1 in calling routine (variable b)

 ld [%fp+68], %o0

 ld [%fp+72], %o1

 add %o0, %o1, %o0 ! Perform the addition

 st %o0, [%fp-20] ! Store result in stack frame

 ld [%fp-20], %i0 ! %i0 (result) is %o0 in called routine

 b .LL2

 nop

.LL2:

 ret

 restore

.LLfe2:

 .size add_two, .LLfe2-add_two

 .ident "GCC: (GNU) 2.5.8"

Figure 10-10 (cont’)

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE 421

argument.

.type Associates a label with its type.

.size Computes the size of a segment.

.ident Identifies the compiler version.

We can see the positions of the delay slots, marked with nop instructions. (The
optimizing feature of the compiler has not been applied yet.) Despite the avail-
ability of overlapping register windows in the SPARC architecture, the unopti-
mized code makes no use of this feature: parameters to be passed to a routine are
copied to the stack, and the called routine then retrieves these parameters from
the stack. Again, the optimizing feature of the compiler has not yet been
invoked. (But read on).

Notice that the compiler does not seem to be consistent with its choice of regis-
ters for parameter passing. Prior to the call to add_two, the compiler uses %o0
and %o1 (%r0 and %r1) for parameters passed to add_two. Then, %r1 is used
for the parameters passed to printf. Why did the compiler not start with %r0
again, or choose the next available register (%o2)? This is the register assignment
problem, which has been the object of a great deal of study. We will not go into
details here1, as this is more appropriate for a course in compiler design, but suf-
fice it to say that any logically correct assignment of variables to registers will
work, but that some assignments are better than others in terms of the number of
registers used and the overall program execution time.

Why are the stack frames so large? We only need three words on the stack frame
for local variables a, b, and c in main. We might also need a word to store the
return address, although the compiler does not seem to generate code for that.
There are no parameters passed to main by the operating system, and so the
stack frame that main sees should only be four words (16 bytes) in size. Thus,
the line at the beginning of routine main:

1. Here are a few details, for the curious: %r0 (%o0) is still in use (add_two is expecting
the address of LLC0 to show up in %r0), and %r1 is no longer needed at this point, so it can be
reassigned. But then, why is %r1 used in the sethi line? Would it have made sense to use %r0
instead of introducing another register into the computation? See problem 10.2 at the end of the
chapter for more on this topic.

422 CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

save %sp, -128, %sp

should only be:

save %sp, -16, %sp.

What is all of the extra space for? There are a number of runtime situations that
may need stack space. For instance, if the nesting depth is greater than the num-
ber of windows, then the stack must be used for overflow. (See Figure D-2 in
[SPARC, 1992])

If a scalar is passed from one routine to another, then everything is fine. But if a
callee refers to the address of a passed scalar (or aggregate), then the scalar (or
aggregate) must be copied to the stack and be referenced from there for the life-
time of the pointer (or for the lifetime of the procedure, if the pointer lifetime is
not known).

Why does the return statement ret cause a return to the code that is 8 bytes past
the call, instead of 4 as we have been doing it? As mentioned above, this is
because there is a nop that follows call (the so-called “delay-slot instruction”).

Notice that routine labels that appear in the source code are prepended with an
underscore in the assembly code, so that main, add_two, and printf in C
become _main, _add_two, and _printf in gcc generated SPARC code. This
means that if we want to write a C program that is linked to a gcc generated
SPARC program, that the C calls should be made to routines that begin with
underscores. For example, if add_two is compiled into SPARC code, and we
invoke it from a C main program in another file, then the C program should
make a call to _add_two, and not add_two, even though the routine started
out as add_two. Further, the C program needs to declare _add_two as exter-
nal.

If the compilation for add_two is continued down to an executable file, then
there is no need to treat the labels differently. The add_two routine will still be
labeled _add_two, but routine main will be compiled into code that expects to
see _add_two and so everything will work OK. This is not the case, however, if
a gcc program makes calls to a Fortran library.

Fortran is a commonly used language in the scientific community, and there are a
number of significant Fortran libraries that are used for linear algebra, modeling

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE 423

and simulation, and parallel scientific applications. As programmers of language
XYZ (whatever language that may be), we sometimes find ourselves wanting to
write XYZ programs that make calls to Fortran routines. This is easy to do once
we understand what is happening.

There are two significant issues that need to be addressed:

(1) differences in routine labels;

(2) differences in subroutine linkage.

In Fortran, the source code labels are prepended with two underscores in the
assembly code. A C program (if C is language XYZ) that makes a call to Fortran
routine add_two would then make a call to _ _add_two, which also must be
declared as external in the C source code (and declared as global in the Fortran
program).

If all of the parameters that are passed to the Fortran routines are pointers, then
everything will work OK. If there are any scalars passed, then there will be trou-
ble because C (like Java) uses call-by-value for scalars whereas Fortran uses
call-by-reference. We need to “trick” the C compiler into using call-by-reference
by making it explicit. Wherever a Fortran routine expects a scalar in its argument
list, we use a pointer to the scalar in the C code.

As a practical consideration, the gcc compiler will compile Fortran programs. It
knows what to do by observing the extension of the source file, which should be
.f for Fortran.

Now, let us take a look at how an optimizing compiler improves the code. Figure
10-11 shows the optimized code using the compiler’s -O flag. Notice there is not
a single nop, ld, or st instruction. Wasted cycles devoted to nop instructions
have been reclaimed, and memory references devoted to stack manipulation have
been eliminated.

10.5 Multiple Instruction Issue (Superscalar) Machines – The Pow-
erPC 601
In the earlier pipelining discussion, we see how several instructions can be in var-
ious phases of execution at once. Here, we look at superscalar architecture,
where, with separate execution units, several instructions can be executed simul-

424 CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

taneously. In a superscalar architecture, there might be one or more separate
Integer Units (IUs), Floating Point Units (FPUs), and Branch Processing
Units (BPUs). This implies that instructions need to be scheduled into the vari-
ous execution units, and further, that instructions might be executed
out-of-order.

Out-of-order execution means that instructions need to be examined prior to
dispatching them to an execution unit, not only to determine which unit should
execute them, but also to determine whether executing them out of order would
result in an incorrect program, because of dependencies between the instruc-
tions. This in turn implies an Instruction Unit, IU, that can prefetch instruc-

! Output produced by -O optimiziation for gcc compiler

.file "add.c"

.section ".rodata"
 .align 8
.LLC0:
 .asciz "c = %d\n"
.section ".text"
 .align 4
 .global main
 .type main,#function
 .proc 04
main:
 !#PROLOGUE# 0
 save %sp,-112,%sp
 !#PROLOGUE# 1
 mov 10,%o0
 call add_two,0
 mov 4,%o1
 mov %o0,%o1
 sethi %hi(.LLC0),%o0
 call printf,0
 or %o0,%lo(.LLC0),%o0
 ret
 restore
.LLfe1:
 .size main,.LLfe1-main
 .align 4
 .global add_two
 .type add_two,#function
 .proc 04
add_two:
 !#PROLOGUE# 0
 !#PROLOGUE# 1
 retl
 add %o0,%o1,%o0
.LLfe2:
 .size add_two,.LLfe2-add_two
 .ident "GCC: (GNU) 2.7.2"

Figure 10-11 SPARC code generated with the -O optimization flag.

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE 425

tions into an instruction queue, determine the kinds of instructions and the
dependence relations among them, and schedule them into the various execution
units.

10.6 Case Study: The PowerPC™ 601 as a Superscalar Architecture
As an example of a modern superscalar architecture let us examine the Motorola
PowerPC™ 601. The 601 has actually been superseded by more powerful mem-
bers of the PowerPC family, but it will serve to illustrate the important features of
superscalar architectures without introducing unnecessary complexity into our
discussion.

10.6.1 INSTRUCTION SET ARCHITECTURE OF THE POWERPC 601

The 601 is a 32-bit general register RISC machine whose ISA includes:

• 32 32-bit general purpose integer registers (GPRs);

• 32 64-bit floating point registers (FPRs);

• 8 4-bit condition code registers;

• nearly 50 special-purpose 32-bit registers that are used to control various
aspects of memory management and the operating system;

• over 250 instructions (many of which are special-purpose).

10.6.2 HARDWARE ARCHITECTURE OF THE POWERPC 601

Figure 10-12, taken from the Motorola PowerPC 601 user’s manual, shows the
microarchitecture of the 601. The flow of instructions and data proceed via the
System Interface, shown at the bottom of the figure, into the 32KByte cache.
From there, instructions are fetched eight at a time into the Instruction Unit,
shown at the top of the fiture.The issue logic within the Instruction Unit exam-
ines the instructions in the queue for their kind and dependence, and issues them
into one of the three execution units: IU, BPU, or FPU.

The IU is shown as containing the GPR file and an integer exception register,
XER, which holds information about exceptions that arise within the IU. The
IU can execute most integer instructions in a single clock cycle, thus obviating

426 CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

REAL TIME CLOCK
 Upper Lower

CR

Instruction
Queue

BPU

CTR

LR

+

IU FPU

FPSCR

FPR
FILE

GPR
FILE

+ × ÷+ × ÷

Tag
Memory

32-KB
Instruction

and
Data

Cache

MMU

UTLB ITLB

BAT Array

MEMORY UNIT
Read

Queue
Write Queue

Snoop

SYSTEM INTERFACE

64-Bit Data Bus (2 Words)

32-Bit Data Bus (2 Words)

2 Words

4 Words

1 Word 2 Words

8 Words

8 Words

Fetched Instruction

Instruction Instruction

Data

Data

Data

Data

Address

Address

Physical Address

Address

Snoop
Address

Issue Logic

INSTRUCTION UNIT

Figure 10-12 The PowerPC 601 architecture (adapted from the Motorola PowerPC 601 user manual.)

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE 427

the need for any kind of pipelining of integer instructions.

The FPU contains the FPRs and the floating point status and control register
(FPSCR). The FPSCR contains information about floating point exceptions and
the type of result produced by the FPR. The FPU is pipelined, and most FP
instructions can be issued at a rate of one per clock.

As we mentioned above in the section on pipelining, branch instructions, espe-
cially conditional branch instructions, pose a bottleneck when trying to overlap
instruction execution. This is because the branch condition must first be ascer-
tained to be true, for example “branch on plus” must test the N flag to ascertain
that it is cleared. The branch address must then be computed, which often
involves address arithmetic. Only then can the PC be loaded with the branch
address.

The 601 attacks this problem in several ways. First, as mentioned above, there are
eight 4-bit condition code registers instead of the usual one. This allows up to
eight instructions to have separate condition code bits, and therefore not inter-
fere with each other’s ability to set condition codes. The BPU looks in the
instruction queue, and if it finds a conditional branch instruction it proceeds to
compute the branch target address ahead of time, and fetches instructions at the
branch target. If the branch is taken, this results in effectively a zero-cycle
branch, since the instruction at the branch target has already been fetched in
anticipation of the branch condition being satisfied. The BPU also has a link reg-
ister (LR) in which it can store subroutine return addresses, thus saving one GPR
as well as several other registers used for special purposes. Note that the BPU can
issue its addresses over a separate bus directly to the MME and Memory unit for
prefetching instructions.

The RTC unit shown in the figure is a Real Time Clock which has a calendar
range of 137 years, with an accuracy of 1 ns.

The MMU and Memory Unit assist in fetching both instructions and data. Note
the separate path for data items that goes from the cache directly to the GPR and
FPR register files.

The PowerPC 601, and its more powerful descendants are typical of the modern
general purpose microprocessor. Current microprocessor families are superscalar
in design, often having several of each kind of execution unit.

428 CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

10.7 VLIW Machines
There is an architecture that is in a sense competitive with superscalar architec-
tures, referred to as the VLIW (Very Long Instruction Word) architecture. In
VLIW machines, multiple operations are packed into a single instruction word
that may be 128 or more bits wide. The VLIW machine has multiple execution
units, similar to the superscalar machine. A typical VLIW CPU might have two
IUs, two FPUs, two load/store units, and a BPU. It is the responsibility of the
compiler to organize multiple operations into the instruction word. This relieves
the CPU of the need to examine instructions for dependencies, or to order or
reorder instructions. A disadvantage is that the compiler must out of necessity be
pessimistic in its estimates of dependencies. If it cannot find enough instructions
to fill the instruction word, it must fill the blank spots with NOP instructions.
Furthermore, VLIW architectural improvements require software to be recom-
piled to take advantage of them.

There have been a number of attempts to market VLIW machines, but mainly,
VLIW machines have fallen out of favor in recent years. Performance is the pri-
mary culprit, for the reasons above, among others.

10.8 Case Study: The Intel IA-64 (Merced) Architecture
This section discusses a microprocessor family in development by an alliance
between Intel and Hewlett-Packard, which is hoped will take the consortium
into the 21st century. We first look into the background that led to the decision
to develop a new architecture, and then we look at what is currently known
about the architecture. (The information in this section is taken from various
publications and Web sites, and has not been confirmed by Intel or
Hewlett-Packard.)

10.8.1 BACKGROUND—THE 80X86 CISC ARCHITECTURE

The current Intel 80x86 architecture, which runs on some 80% of desktop com-
puters in the late 1990’s, had its roots in the 8086 microprocessor, designed in
the late 1970’s. The architectural roots of the family go back to the original Intel
8080, designed in the early 1970’s. Being a persistent advocate of upward com-
patibility, Intel has been in a sense hobbled by a CISC architecture that is over 20
years old. Other vendors such as Motorola abandoned hardware compatibility
for modernization, relying upon emulators to ease the transition to a new ISA.

In any case, Intel and Hewlett-Packard decided several years ago that the x86

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE 429

architecture would soon reach the end of its useful life, and they began joint
research on a new architecture. Intel and Hewlett-Packard have been quoted as
saying that RISC architectures have “run out of gas,” so to speak, so their search
led in other directions. The result of their research led to the IA-64, which stands
for “Intel Architecture-64.” The first of the IA-64 family is known by the code
name Merced, after the Merced River, near San Jose, California.

10.8.2 THE MERCED: AN EPIC ARCHITECTURE

Although Intel has not released significant details of the Merced ISA, it refers to
its architecture as Explicitly Parallel Instruction Computing, or EPIC. Intel takes
pains to point out that it is not a VLIW or even an LIW machine, perhaps out of
sensitivity to the bad reputation that VLIW machines have received, however,
some industry analysts refer to it as “the VLIW-like EPIC architecture.”

Features

While exact details are not publicly known as of this writing, published sources
report that the Merced is expected to have the following characteristics:

• 128 64-bit GPRs and perhaps 128 80-bit FPRs;

• 64 1-bit predicate registers (explained later);

• Instruction words contain three instructions packed into one 128-bit par-
cel;

• Execution units, roughly equivalent to IU, FPU, and BPU, appear in mul-
tiples of three, and the IA-64 will be able to schedule instructions into these
multiples;

• It will be the burden of the compiler to schedule the instructions to take
advantage of the multiple execution units;

• Most of the instructions seem to be RISC-like, although it is rumored that
the processor will (still!) execute 80x86 binary codes, in a dedicated execu-
tion unit, known as the DXU;

• Speculative loads. The processor will be able to load values from memory
well in advance of when they are needed. Exceptions caused by the loads
are postponed until execution has proceeded to the place where the loads

430 CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

would normally have occurred

• Predication (not prediction), where both sides of a conditional branch in-
struction are executed and the results from the side not taken are discarded.

These latter two features are discussed in more detail later.

The Instruction Word

The 128-bit instruction word, shown in Figure 10-13, has three 40-bit instruc-

tions, and an 8-bit template. The template is placed by the compiler to tell the
CPU which instructions in and near that instruction word can execute in parallel
, thus the term “Explicit.” The CPU need not analyze the code at runtime to
expose instructions that can be executed in parallel because the compiler deter-
mines that ahead of time. Compilers for most VLIW machines must place NOP
instructions in slots where instructions cannot be executed in parallel. In the
IA-64 scheme, the presence of the template identifies those instructions in the
word that can and cannot be executed in parallel, so the compiler is free to sched-
ule instructions into all three slots, regardless of whether they can be executed in
parallel.

The 6-bit predicate field in each instruction represents a tag placed there by the
compiler to identify which leg of a conditional branch the instruction is part of,
and is used in branch predication.

Branch Predication

Rather than using branch prediction, the IA-64 architecture uses branch predica-
tion to remove penalties due to mis-predicted branches. When the compiler
encounters a conditional branch instruction that is a candidate for predication, it

Figure 10-13 The 128-bit IA-64 instruction word.

8 bit
Template

40 bit
Instruction

40 bit
Instruction

40 bit
Instruction

6 bit
Predicate

7 bit
GPR

7 bit
GPR

7 bit
GPR

13 bit
Op Code

128 bits

40 bits

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE 431

selects two unique labels and labels the instructions in each leg of the branch
instruction with one of the two labels, identifying which leg they belong to. Both
legs can then be executed in parallel. There are 64 one-bit predicate registers, one
corresponding to each of the 64 possible predicate identifiers.

When the actual branch outcome is known, the corresponding one-bit predicate
register is set if the branch outcome is TRUE, and the one-bit predicate register
corresponding to the FALSE label is cleared. Then the results from instructions
having the correct predicate label are kept, and results from instructions having
the incorrect (mis-predicted) label are discarded.

Speculative Loads

The architecture also employs speculative loads, that is, examining the instruc-
tion stream for upcoming load instructions and loading the value ahead of time,
speculating that the value will actually be needed and will not have been altered
by intervening operations. If successful, this eliminates the normal latency inher-
ent in memory accesses. The compiler examines the instruction stream for candi-
date load operations that it can “hoist” to a location earlier in the instruction
sequence. It inserts a check instruction at the point where the load instruction
was originally located. The data value is thus available in the CPU when the
check instruction is encountered.

The problem that is normally faced by speculative loads is that the load opera-
tion may generate an exception, for example because the address is invalid. How-
ever, the exception may not be genuine, because the load may be beyond a
branch instruction that is not taken, and thus would never actually be executed.
The IA-64 architecture postpones processing the exception until the check
instruction is encountered. If the branch is not taken then the check instruction
will not be executed, and thus the exception will not be processed.

All of this complexity places a heavy burden on the compiler, which must be
clever about how it schedules operations into the instruction words.

80x86 Compatibility

Intel was recently granted a patent for a method, presumably to be used with
IA-64, for supporting two instruction sets, one of which is the x86 instruction
set. It describes instructions to allow switching between the two execution

432 CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

modes, and for data sharing between them.

Estimated Performance

It has been estimated that the first Merced implementation will appear sometime
in the year 2000, and will have an 800 MHz clock speed. Goals are for it to have
performance several times that of current-generation processors when running in
EPIC mode, and that of a 500 MHz Pentium II in x86 mode. Intel has stated
that initially the IA-64 microprocessor will be reserved for use in high-perfor-
mance workstations and servers, and at an estimated initial price of $5000 each
this will undoubtedly be the case.

On the other hand, skeptics, who seem to abound when new technology is
announced, say that the technology is unlikely to meet expectations, and that the
IA-64 may never see the light of day. Time will tell.

10.9 Parallel Architecture
One method of improving the performance of a processor is to decrease the time
needed to execute instructions. This will work up to a limit of about 400 MHz
(Stone, 1991), at which point an effect known as ringing on busses prohibits
further speedup with conventional bus technology. This is not to say that higher
clock speeds are not possible, because indeed current microprocessors have clock
rates well above 400 MHz, but that “shared bus” approaches become impractical
at these speeds. As conventional architectural approaches to improving perfor-
mance wear thin, we need to consider alternative methods of improving perfor-
mance.

One alternative approach to increasing bus speed is to increase the number of
processors, and decompose and distribute a single program onto the processors.
This approach is known as parallel processing, in which a number of processors
work collectively, in parallel, on a common problem. We see an example of paral-
lel processing earlier in the chapter with pipelining. For that case, four processors
are connected in series (Figure 10-3), each performing a different task, like an
assembly line in a factory. The interleaved memory described in Chapter 7 is
another example of pipelining.

A parallel architecture can be characterized in terms of three parameters: (1) the
number of processing elements (PEs); (2) the interconnection network among
the PEs; and (3) the organization of the memory. In the four-stage instruction

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE 433

pipeline of Figure 10-3, there are four PEs. The interconnection network among
the PEs is a simple ring. The memory is an ordinary RAM that is external to the
pipeline.

Characterizing the architecture of a parallel processor is a relatively easy task, but
measuring the performance is not nearly so simple. Although we can easily mea-
sure the increased speed that a simple enhancement like a pipeline offers, the
overall speedup is data dependent: not all programs and data sets map well onto
a pipelined architecture. Other performance considerations of pipelined architec-
tures that are also data dependent are the cost of flushing a pipeline, the increased
area cost, the latency (input to output delay) of the pipeline, etc.

A few common measures of performance are parallel time, speedup, efficiency,
and throughput. The parallel time is simply the absolute time needed for a pro-
gram to execute on a parallel processor. The speedup is the ratio of the time for a
program to execute on a sequential (non-parallel, that is) processor to the time
for that same program to execute on a parallel processor. In a simple form, we
can represent speedup (S, now in the context of parallel processing) as:

Since a sequential algorithm and a parallel version of the same algorithm may be
programmed very differently for each machine, we need to qualify TSequential and
TParallel so that they apply to the best implementation for each machine.

There is more to the story. If we want to achieve a speedup of 100, it is not
enough to simply distribute a single program over 100 processors. The problem
is that not many computations are easily decomposed in a way that fully utilizes
the available PEs. If there are even a small number of sequential operations in a
parallel program, then the speedup can be significantly limited. This is summa-
rized by Amdahl’s law, in which speedup is expressed in terms of the number of
processors p and the fraction of operations that must be performed sequentially f:

For example, if f = 10% of the operations must be performed sequentially, then
speedup can be no greater than 10 regardless of how many processors are used:

S
TSequential

TParallel
-------------------------=

S 1

f 1 f–
p

------------+
----------------------=

434 CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

This brings us to measurements of efficiency. Efficiency is the ratio of speedup
to the number of processors used. For a speedup of 5.3 with 10 processors, the
efficiency is:

If we double the number of processors to 20, then the speedup increases to 6.9
but the efficiency reduces to 34%. Thus, parallelizing an algorithm can improve
performance to a limit that is determined by the amount of sequential opera-
tions. Efficiency is drastically reduced as speedup approaches its limit, and so it
does not make sense to simply use more processors in a computation in the hope
that a corresponding gain in performance will be achieved.

Throughput is a measure of how much computation is achieved over time, and
is of special concern for I/O bound and pipelined applications. For the case of a
four stage pipeline that remains filled, in which each pipeline stage completes its
task in 10 ns, the average time to complete an operation is 10 ns even though it
takes 40 ns to execute any one operation. The overall throughput for this situa-
tion is then:

 = 108 operations per second.

10.9.1 THE FLYNN TAXONOMY

Computer architectures can be classified in terms of their instruction streams
and their data streams, using a taxonomy developed by M. J. Flynn (Flynn,
1972). A conventional sequential processor fits into the single-instruction
stream, single data stream (SISD) category, as illustrated in Figure 10-14a.
Only a single instruction is executed at a time in a SISD processor, although
pipelining may allow several instructions to be in different phases of execution at
any given time.

S 1

0.1 0.9
10
-------+

--------------------- 5.3≅=

p 10 processors=

S 1

0.1 0.9
∞

-------+
--------------------- 10= =

p ∞ processors=

5.3
10
------- .53, or 53%=

0.1operation
ns

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE 435

In a single instruction stream, multiple data stream (SIMD) processor, several
identical processors perform the same sequence of operations on different data
sets, as illustrated in Figure 10-14b. A SIMD system can be thought of as a room
filled with mail sorters, all sorting different pieces of mail into the same set of
bins.

In a multiple instruction stream, multiple data stream (MIMD) processor,

(a)

Uniprocessor

Instruction
Stream

Data
Stream

Data Out

Interconnection Network

(b)

Controller

PEn PE2 PE1 PE0. . .

Data
Outn

Data
Out2

Data
Out1

Data
Out0

Data
Streamn

Data
Stream2

Data
Stream1

Data
Stream0

Instruction Stream

Uniprocessor

Interconnection Network

Data
Outn

Instruction
Streamn

Data
Streamn

Uniprocessor

Data
Out1

Instruction
Stream1

Data
Stream1

Uniprocessor

Data
Out0

Instruction
Stream0

Data
Stream0

(c)

Vector
Unit0

Data
In

Instruction
Stream0

. . .

Vector
Unit1

Instruction
Stream1

Vector
Unitn

Instruction
Streamn

. . . Data
Out

(d)

Figure 10-14 Classification of architectures according to the Flynn taxonomy: (a) SISD; (b) SIMD;

(c) MIMD; (d) MISD.

436 CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

several processors perform different operations on different data sets, but are all
coordinated to execute a single parallel program, as illustrated in Figure 10-14c.
An example of a MIMD processor is the Sega home video entertainment system,
which has four processors for (1) sound synthesis (a Yamaha synthesis processor);
(2) sound filtering (a Texas Instruments programmable sound generator); (3)
program execution (a 68000); and (4) background processing (a Z80). We will
see more of the Sega Genesis in a Case Study at the end of the chapter.

In a multiple instruction stream, single data stream (MISD) processor, a sin-
gle data stream is operated on by several functional units, as illustrated in Figure
10-14d. The data stream is typically a vector of several related streams. This con-
figuration is known as a systolic array, which we see in Chapter 3 in the form of
an array multiplier.

10.9.2 INTERCONNECTION NETWORKS

When a computation is distributed over a number of PEs, the PEs need to com-
municate with each other through an interconnection network. There is a host
of topologies for interconnection networks, each with their own characteristics in
terms of crosspoint complexity (an asymptotic measure of area), diameter (the
length of the worst case path through the network), and blocking (whether or
not a new connection can be established in the presence of other connections). A
few representative topologies and control strategies for configuring networks are
described below.

One of the most powerful network topologies is the crossbar, in which every PE
is directly connected to every other PE. An abstract view of a crossbar is illus-
trated in Figure 10-15a, in which four PEs are interconnected. In a closeup view
illustrated in Figure 10-16, the crossbar contains crosspoint switches, which are
configurable devices that either connect or disconnect the lines that go through
it. In general, for N PEs, the crosspoint complexity (the number of crosspoint
switches) is N2. In Figure 10-15a, N = 4 (not 8) because the output ports of the
PEs on the left and the input ports of the PEs on the right belong to the same
PEs. The crosspoint complexity is thus 42 = 16. The network diameter is 1 since
every PE can directly communicate with every other PE, with no intervening
PEs. The number of crosspoint switches that are traversed is not normally con-
sidered in evaluating the network diameter. The crossbar is strictly nonblock-
ing, which means that there is always an available path between every input and
output regardless of the configuration of existing paths.

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE 437

At the other extreme of complexity is the bus topology, which is illustrated in
Figure 10-15b. With the bus topology, a fixed amount of bus bandwidth is
shared among the PEs. The crosspoint complexity is N for N PEs, and the net-
work diameter is 1, so the bus grows more gracefully than the crossbar. There can

(a) (c)(b)

(d) (e) (f)

(g) (h)

Figure 10-15 Network topologies: (a) crossbar; (b) bus; (c) ring; (d) mesh; (e) star; (f) tree; (g) per-

fect shuffle; (h) hypercube.

Source 0

Source 1

Source 2

Source 3

D
es

tin
at

io
n

0

D
es

tin
at

io
n

1

D
es

tin
at

io
n

2

D
es

tin
at

io
n

3

Control

Crosspoint

Figure 10-16 Internal organization of a crossbar.

438 CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

only be one source at a time, and there is normally only one receiver, so blocking
is a frequent situation for a bus.

In a ring topology, there are N crosspoints for N PEs as shown in Figure 10-15c.
As for the crossbar, each crosspoint is contained within a PE. The network diam-
eter is N/2, but the collective bandwidth is N times greater than for the case of
the bus. This is because adjacent PEs can communicate directly with each other
over their common link without affecting the rest of the network.

In the mesh topology, there are N crosspoints for N PEs, but the diameter is only
 as shown in Figure 10-15d. All PEs can simultaneously communicate in

just steps, as discussed in (Leighton, 1992) using an off-line routing algo-
rithm (in which the crosspoint settings are determined external to the PEs).

In the star topology, there is a central hub through which all PEs communicate as
shown in Figure 10-15e. Since all of the connection complexity is centralized,
the star can only grow to sizes that are bounded by the technology, which is nor-
mally less than for decentralized topologies like the mesh. The crosspoint com-
plexity within the hub varies according to the implementation, which can be
anything from a bus to a crossbar.

In the tree topology, there are N crosspoints for N PEs, and the diameter is
2log2N – 1 as shown in Figure 10-15f. The tree is effective for applications in
which there is a great deal of distributing and collecting of data.

In the perfect shuffle topology, there are N crosspoints for N PEs as shown in
Figure 10-15g. The diameter is log2N since it takes log2N passes through the net-
work to connect any PE with any other in the worst case. The perfect shuffle
name comes from the property that if a deck of 2N cards, in which N is an inte-
ger, is cut in half and interleaved N times, then the original configuration of the
deck is restored. All N PEs can simultaneously communicate in 3log2N – 1
passes through the network as presented in (Wu and Feng, 1981).

Finally, the hypercube has N crosspoints for N PEs, with a diameter of log2N-1,
as shown in Figure 10-15h. The smaller number of crosspoints with respect to
the perfect shuffle topology is balanced by a greater connection complexity in the
PEs.

Let us now consider the behavior of blocking in interconnection networks. Fig-
ure 10-17a shows a configuration in which four processors are interconnected

2 N
3 N

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE 439

with a two-stage perfect shuffle network in which each crosspoint either passes
both inputs straight through to the outputs, or exchanges the inputs to the out-
puts. A path is enabled from processor 0 to processor 3, and another path is
enabled from processor 3 to processor 0. Neither processor 1 nor processor 2
needs to communicate, but they participate in some arbitrary connections as a
side effect of the crosspoint settings that are already specified.

Suppose that we want to add another connection, from processor 1 to processor
1. There is no way to adjust the unused crosspoints to accommodate this new
connection because all of the crosspoints are already set, and the needed connec-
tion does not occur as a side effect of the current settings. Thus, connection 1 →
1 is now blocked.

If we are allowed to disturb the settings of the crosspoints that are currently in

0

1

2

3

0

1

2

3

(a)

0

1

2

3

0

1

2

3

(b)

Crosspoints

Unused

Figure 10-17 (a) Crosspoint settings for connections 0 → 3 and 3 → 0; (b) adjusted settings to ac-

commodate connection 1 → 1.

440 CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

use, then we can accommodate all three connections, as illustrated in Figure
10-17b. An interconnection network that operates in this manner is referred to
as a rearrangeably nonblocking network.

The three-stage Clos network is strictly nonblocking. That is, there is no need
to disturb the existing settings of the crosspoints in order to add another connec-
tion. An example of a three stage Clos network is shown in Figure 10-18 for four

PEs. In the input stage, each crosspoint is actually a crossbar that can make any
connection of the two inputs to the three outputs. The crosspoints in the middle
stage and the output stage are also small crossbars. The number of inputs to each
input crosspoint and the number of outputs from each output crosspoint is
selected according to the desired complexity of the crosspoints, and the desired
complexity of the middle stage.

The middle stage has three crosspoints in this example, and in general, there are
(n – 1) + (p – 1) + 1 = n + p – 1 crosspoints in the middle stage, in which n is the
number of inputs to each input crosspoint and p is the number of outputs from
each output crosspoint. This is how the three-stage Clos network maintains a
strictly nonblocking property. There are n – 1 ways that an input can be blocked

0

1

3

0

1

3

Input Stage Output Stage

Middle Stage

2 2

Figure 10-18 A three-stage Clos network for four PEs.

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE 441

at the output of an input stage crosspoint as a result of existing connections. Sim-
ilarly, there are p – 1 ways that existing connections can block a desired connec-
tion into an output crosspoint. In order to ensure that every desired connection
can be made between available input and output ports, there must be one more
path available.

For this case, n = 2 and p = 2, and so we need n + p – 1 = 2 + 2 – 1 = 3 paths
from every input crosspoint to every output crosspoint. Architecturally, this rela-
tionship is satisfied with three crosspoints in the middle stage that each connect
every input crosspoint to every output crosspoint.

EXAMPLE: STRICTLY NONBLOCKING NETWORK

For this example, we want to design a strictly nonblocking (three-stage Clos)
network for 12 channels (12 inputs and 12 outputs to the network) while main-
taining a low maximum complexity of any crosspoint in the network.

There are a number of ways that we can organize the network. For the input
stage, we can have two input nodes with 6 inputs per node, or 6 input nodes
with two inputs per node, to list just two possibilities. We have similar choices
for the output stage. Let us start by looking at a configuration that has two
nodes in the input stage, and two nodes in the output stage, with 6 inputs for
each node in the input stage and 6 outputs for each node in the output stage. For
this case, n = p = 6, which means that n + p - 1 = 11 nodes are needed in the mid-
dle stage, as shown in Figure 10-19. The maximum complexity of any node for
this case is 6 × 11 = 66, for each of the input and output nodes.

Now let us try using 6 input nodes and 6 output nodes, with two inputs for each
input node and two outputs for each output node. For this case, n = p = 2, which
means that n + p - 1 = 3 nodes are needed in the middle stage, as shown in Figure
10-20. The maximum node complexity for this case is 6 × 6 = 36 for each of the
middle stage nodes, which is better than the maximum node complexity of 66
for the previous case.

Similarly, networks for n = p = 4 and n = p = 3 are shown in Figure 10-21 and Fig-
ure 10-22, respectively. The maximum node complexity for each of these net-
works is 4 × 7 = 28 and 4 × 4 = 16, respectively. Among the four configurations
studied here, n = p = 3 gives the lowest maximum node complexity.�

442 CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

10.9.3 MAPPING AN ALGORITHM ONTO A PARALLEL ARCHITECTURE

The process of mapping an algorithm onto a parallel architecture begins with a
dependency analysis in which data dependencies among the operations in a
program are identified. Consider the C code shown in Figure 10-23. In an ordi-
nary SISD processor, the four numbered statements require four time steps to

6 x 11

6 x 11

Input Stage

11 x 6

11 x 6

Output Stage

Middle Stage

2 x 2

2 x 2

2 x 2

2 x 2

2 x 2

2 x 2

2 x 2

2 x 2

2 x 2

2 x 2

2 x 2

Figure 10-19 A 12-channel three-stage Clos network with n = p = 6.

Input Stage Output Stage

Middle Stage
2 x 3

2 x 3

2 x 3

2 x 3

2 x 3

2 x 3

6 x 6

6 x 6

6 x 6

3 x 2

3 x 2

3 x 2

3 x 2

3 x 2

3 x 2

Figure 10-20 A 12-channel three-stage Clos network with n = p = 2.

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE 443

complete, as illustrated in the control sequence of Figure 10-24a. The depen-
dency graph shown in Figure 10-24b exposes the natural parallelism in the con-
trol sequence. The dependency graph is created by assigning each operation in
the original program to a node in the graph, and then drawing a directed arc
from each node that produces a result to the node(s) that needs it.

The control sequence requires four time steps to complete, but the dependency
graph shows that the program can be completed in just three time steps, since
operations 0 and 1 do not depend on each other and can be executed simulta-

4 x 7

Input Stage Output StageMiddle Stage

3 x 3

3 x 3

3 x 3

3 x 3

3 x 3

3 x 3

3 x 3

4 x 7

4 x 7

7 x 4

7 x 4

7 x 4

Figure 10-21 A 12-channel three-stage Clos network with n = p = 4.

Input Stage Output Stage
Middle Stage

3 x 5 4 x 4

4 x 4

4 x 4

4 x 4

4 x 4

3 x 5

3 x 5

3 x 5

5 x 3

5 x 3

5 x 3

5 x 3

Figure 10-22 A 12-channel three-stage Clos network with n = p = 3.

444 CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

neously (as long as there are two processors available.) The resulting speedup of

may not be very great, but for other programs, the opportunity for speedup can

func(x, y) /* Compute (x2 + y2) × y2 */
int x, y;

{

int temp0, temp1, temp2, temp3;

temp0 = x * x;

temp1 = y * y;

temp2 = temp1 + temp2;

temp3 = temp1 * temp2;

return(temp3);

}

0
1
2
3

Operation
numbers

Figure 10-23 A C function computes (x2 + y2) × y2.

0
*

1

0
*

1
*

2
+

3

14
*

2
+

3
*

*

Arrows
represent
flow of
control

*

Arrows
represent

flow of data

x y

x2

y2

x2 + y2

(x2 + y2)×y2

(x2 + y2)×y2

x2 + y2

x2 y2 y2

(a)

(b)

Figure 10-24 (a) Control sequence for C program; (b) dependency graph for C program.

TSequential

TParallel
------------------------- 4

3
--- 1.3= =

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE 445

be substantial as we will see.

Consider a matrix multiplication problem Ax = b in which A is a 4×4 matrix and
x and b are both 4×1 matrices, as illustrated in Figure 10-25a. Our goal is to

solve for the bi, using the equations shown in Figure 10-25b. Every operation is
assigned a number, starting from 0 and ending at 27. There are 28 operations,
assuming that no operations can receive more than two operands. A program
running on a SISD processor that computes the bi requires 28 time steps to com-
plete, if we make a simplifying assumption that additions and multiplications
take the same amount of time.

A dependency graph for this problem is shown in Figure 10-26. The worst case
path from any input to any output traverses three nodes, and so the entire pro-
cess can be completed in three time steps, resulting in a speedup of

Now that we know the structure of the data dependencies, we can plan a map-
ping of the nodes of the dependency graph to PEs in a parallel processor. Figure

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

x0

x1

x2

x3

=

b0

b1

b2

b3

b0 = a00x0 + a01x1 + a02x2 + a03x3

0 1 2 34 6 5

b1 = a10x0 + a11x1 + a12x2 + a13x3

7 8 9 1011 13 12

b2 = a20x0 + a21x1 + a22x2 + a23x3

14 15 16 1718 20 19

b3 = a30x0 + a31x1 + a32x2 + a33x3

21 22 23 2425 27 26

(a)

(b)

Figure 10-25 (a) Problem setup for Ax = b; (b) equations for computing the bi.

TSequential

TParallel
------------------------- 28

3
------ 9.3= =

446 CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

10-27a shows a mapping in which each node of the dependency graph for b0 is

assigned to a unique PE. The time required to complete each addition is 10 ns,

0
*

1
*

2
*

3
*

4
+

6
+

5
+

7
*

8
*

9
*

10
*

11
+

13
+

12
+

14
*

15
*

16
*

17
*

18
+

20
+

19
+

21
*

22
*

23
*

24
*

25
+

27
+

26
+

Figure 10-26 Dependency graph for matrix multiplication.

0
*

1
*

2
*

3
*

4
+

6
+

5
+

+ = 10 ns

* = 100 ns

Communication = 1000 ns

Fine Grain: PT = 2120 ns

100ns 100ns 100ns 100ns

10ns 10ns

10ns

0
*

1
*

2
*

3
*

4
+

6
+

5
+

100ns 100ns 100ns 100ns

10ns

10ns

10ns

1000ns 1000ns 1000ns

1000ns 1000ns

1000ns

Course Grain: PT = 430 ns

0ns 0ns 0ns

0ns 0ns

0ns

(a) (b)

Processor

Process

Figure 10-27 Mapping tasks to PEs: (a) one PE per operation; (b) one PE per bi.

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE 447

the time to complete each multiplication is 100 ns, and the time to communi-
cate between PEs is 1000 ns. These numbers are for a fictitious processor, but the
methods extend to real parallel processors.

As we can see from the parallel time of 2120 ns to execute the program using the
mapping shown in Figure 10-27a, the time spent in communication dominates
performance. This is worse than a SISD approach, since the 16 multiplications
and the 12 additions would require 16 × 100 ns + 12 × 10 ns = 1720 ns. There is
no processor-to-processor communication cost within a SISD processor, and so
only the computation time is considered.

An alternative mapping is shown in Figure 10-27b in which all of the operations
needed to compute b0 are clustered onto the same PE. We have thus increased
the granularity of the computation, which is a measure of the number of opera-
tions assigned to each PE. A single PE is a sequential, SISD processor, and so
none of the operations within a cluster can be executed in parallel, but the com-
munication time among the operations is reduced to 0. As shown in the diagram,
the parallel time for b0 is now 430 ns which is much better than either the previ-
ous parallel mapping or a straight SISD mapping. Since there are no dependen-
cies among the bi, they can all be computed in parallel, using one processor per
bi. The actual speedup is now:

Communication is always a bottleneck in parallel processing, and so it is impor-
tant that we maintain a proper balance. We should not be led astray into think-
ing that adding processors to a problem will speed it up, when in fact, adding
processors can increase execution time as a result of communication time. In
general, we want to maintain a ratio in which:

10.9.4 FINE-GRAIN PARALLELISM – THE CONNECTION MACHINE CM-1

The Connection Machine (CM-1) is a massively parallel SIMD processor
designed and built by Thinking Machines Corporation during the 1980’s. The
architecture is noted for high connectivity between a large number of small pro-
cessors. The CM-1 consists of a large number of one-bit processors arranged at
the vertices of an n-space hypercube. Each processor communicates with other

TSequential

TParallel
------------------------- 1720

430
------------ 4= =

TCommunication

TComputation
------------------------------------ 1≤

448 CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

processors via routers that send and receive messages along each dimension of the
hypercube.

A block diagram of the CM-1 is shown in Figure 10-28. The host computer is a

conventional SISD machine such as a Symbolics computer (which was popular
at the time) that runs a program written in a high level language such as LISP or
C. Parallelizeable parts of a high level program are farmed out to 2n processors
(216 processors is the size of a full CM-1) via a memory bus (for data) and a
microcontroller (for instructions) and the results are collected via the memory
bus. A separate high bandwidth datapath is provided for input and output
directly to and from the hypercube.

The CM-1 makes use of a 12-space hypercube between the routers that send and
receive data packets. The overall CM-1 prototype uses a 16-space hypercube, and
so the difference between the 12-space router hypercube and the 16-space PE
hypercube is made up by a crossbar that serves the 16 PEs attached to each
router. For the purpose of example, a four-space hypercube is shown in Figure
10-29 for the router network. Each vertex of the hypercube is a router with an
attached group of 16 PEs, each of which has a unique binary address. The router
hypercube shown in Figure 10-29 thus serves 256 PEs. Routers that are directly
connected to other routers can be found by inverting any one of the four most

… … …

… … …

… … …

… … …

… … … …

… …

… … … …

… … … …

… … … …Connection Machine

65536 cells
x 4096 bits/cells

32M bytes memory

I/O
500 M bits/sec

Host
Memory bus

Micro-
controller

Figure 10-28 Block diagram of the CM-1 (Adapted from [Hillis, 1985]).

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE 449

significant bits in the address.

Each PE is made up of a 16-bit flag register, a three-input, two-output ALU, and
a 4096-bit random access memory, as shown in Figure 10-30. During operation,

an external controller (the microcontroller of Figure 10-28) selects two bits from
memory via the A address and B address lines. Only one value can be read from
memory at a time, so the A value is buffered while the B value is fetched. The
controller selects a flag to read, and feeds the flag and the A and B values into an

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

Router Address (The router
address forms the four most
significant bits of each of the16
PEs that the router serves.)

Figure 10-29 A four-space hypercube for the router network.

12 12

A address B address 16

Truth table

4 4

Read
flag

Write
flag

4K Memory

Flags

Buffer

ALU

To Hypercube

Router

Figure 10-30 Block diagram of a CM-1 processing element

450 CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

ALU whose function it also selects. The result of the computation produces a
new value for the A addressed location and one of the flags.

The ALU takes three one-bit data inputs, two from the memory and one from
the flag register, and 16 control inputs from the microcontroller and produces
two one-bit data outputs for the memory and flag registers. The ALU generates
all 23 = 8 combinations (minterms) of the input variables for each of the two
outputs. Eight of the 16 control lines select the minterms that are needed in the
sum-of-products form of each output.

PE’s communicate with other PE’s through routers. Each router services commu-
nication between a PE and the network by receiving packets from the network
intended for the attached PEs, injecting packets into the network, buffering
when necessary, and forwarding messages that use the router as an intermediary
to get to their destinations.

The CM-1 is a landmark machine for the massive parallelism made available by
the architecture. For scalable problems like finite element analysis (such as
modeling heat flow through the use of partial differential equations), the avail-
able parallelism can be fully exploited. There is usually a need for floating point
manipulation for this case, and so floating point processors augment the PEs in
the next generation CM-2. A natural way to model heat flow is through a mesh
interconnect, which is implemented as a hardwired bypass to the message-pass-
ing routing mechanism through the North-East-West-South (NEWS) grid. Thus
we can reduce the cost of PE-to-PE communication for this application.

Not all problems scale so well, and there is a general trend moving away from
fine grain parallel processing. This is largely due to the difficulty of keeping the
PEs busy doing useful work, while also keeping the time spent in computation
greater than the time spent in communication. In the next section, we look at a
coarse grain architecture: The CM-5.

10.9.5 COURSE-GRAIN PARALLELISM: THE CM-5

The CM-5 (Thinking Machines Corporation) combines properties of both
SIMD and MIMD architectures, and thereby provides greater flexibility for
mapping a parallel algorithm onto the architecture. The CM-5 is illustrated in
Figure 10-31. There are three types of processors for data processing, control,
and I/O. These processors are connected primarily by the Data Network and the
Control Network, and to a lesser extent by the Diagnostic Network.

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE 451

The processing nodes are assigned to control processors, which form partitions,
as illustrated in Figure 10-32. A partition contains a control processor, a number

of processing nodes, and dedicated portions of the Control and Data Networks.
Note that there are both user partitions (where the data processing takes place)
and I/O partitions.

The Data Network uses a fat-tree topology, as illustrated in Figure 10-33. The
general idea is that the bandwidth from child nodes to parent nodes increases as

Data Network

Diagnostic Network

NI

PN

NI

PN

NI

PN

NI

CP

NI

CP

NI

I/O

NI

I/O

. . .

. . .

. . .Processing Nodes

I/O Interfaces

Network
Interfaces

Data
Processor
Control

I/O
Control

Control Processors

C
ontrol N

etw
ork

Figure 10-31 The CM-5 architecture.

Data Network

CP PN
I/O

CP PN PN PN PNCP PN

Control Network

Figure 10-32 Partitions on the CM-5.

452 CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

the network approaches the root, to account for the increased traffic as data trav-
els from the leaves toward the root.

The Control Network uses a simple binary tree topology in which the system
components are at the leaves. A control processor occupies one leaf in a partition,
and the processing nodes are placed in the remaining nodes, although not neces-
sarily filling all possible node positions in a subtree.

The Diagnostic Network is a separate binary tree in which one or more diagnos-
tic processors are at the root. At the leaves are physical components, such as cir-
cuit boards and backplanes, rather than logical components such as processing
nodes.

Each control processor is a self-contained system that is comparable in complex-
ity to a workstation. A control processor contains a RISC microprocessor that
serves as a CPU, a local memory, I/O that contains disks and Ethernet connec-
tions, and a CM-5 interface.

Each processing node is much smaller, and contains a SPARC-based micropro-
cessor, a memory controller for 8, 16, or 32 Mbytes of local memory, and a net-
work interface to the Control and Data Networks. In a full implementation of a
CM-5, there can be up to 16,384 processing nodes, each performing 64-bit
floating point and integer operations, operating at a clock rate of 32 MHz.

Overall, the CM-5 provides a true mix of SIMD and MIMD styles of processing,
and offers greater applicability than the stricter SIMD style of the CM-1 and

Figure 10-33 An example of a fat tree.

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE 453

CM-2 predecessors.

10.10Case Study: Parallel Processing in the Sega Genesis
Home video game systems are examples of (nearly) full-featured computer archi-
tectures. They have all of the basic features of modern computer architectures,
and several advanced features. One notably lacking feature is permanent storage
(like a hard disk) for saving information, although newer models even have that
to a degree. One notably advanced feature, which we explore here, is the use of
multiple processors in a MIMD configuration.

Three of the most prominent home video game platforms are manufactured by
Sony, Nintendo, and Sega. For the purpose of this discussion, we will study the
Sega Genesis, which exploits parallel processing for real-time performance.

10.10.1THE SEGA GENESIS ARCHITECTURE

Figure 10-34 illustrates the external view of the Sega Genesis home video game

system. The Sega Genesis consists of a motherboard, which contains electronic
components such as the processor, memory, and interconnects, and also a few
hand-held controllers and an interface to a television set.

In terms of the conventional von Neumann model of a digital computer, the
Sega Genesis has all of the basic parts: input (the controllers), output (the televi-
sion set), arithmetic logic unit (inside of the processor), control unit (also inside
the processor), and memory (which includes the internal memory and the
plug-in game cartridges).

Figure 10-34 External view of the Sega Genesis home video game system.

454 CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

The system bus model captures the logical connectivity of the Sega architecture
as well as some of the physical organization. Figure 10-35 illustrates the system

bus model view of the Sega Genesis. The Genesis contains two general-purpose
microprocessors, the Motorola 68000 and the Zilog Z80. These processors are
older, low cost processors that handle the general program execution. Video
game systems must be able to generate a wide variety of sound effects, a process
that is computationally intensive. In order to maintain game speed and quality
during sound generation the Genesis off-loads sound effect computations to two
special purpose chips, the Texas Instruments programmable sound generator (TI
PSG) and the Yamaha sound synthesis chip. There are also I/O interfaces for the
video system and the hand-held controls.

The 68000 processor runs the main program and controls the rest of the
machine. The 68000 accomplishes this by transferring data and instructions to
the other components via the system bus. One of the components that the
68000 processor controls is the architecturally similar, but smaller Z80 processor,
which can be loaded with a program that executes while the 68000 returns to
execute its own program, using an arbitration mechanism that allows both pro-
cessors to share the bus (but only one at a time.)

The TI PSG has 3 square wave tones and 1 white noise tone. Each tone/noise
can have its own frequency and volume.

The Yamaha synthesis chip is based on FM synthesis. There are 6 voices with 4
operators each. The chip is similar to those used in the Yamaha DX27 and

68000
Processor

Figure 10-35 System bus model view of the Sega Genesis.

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE 455

DX100 synthesizers. By setting up registers within the chips, a rich variety of
sounds can be created.

The plug-in game cartridges contain the programs, and there is additional runt-
ime memory available in a separate unit (labeled “Main memory” in Figure
10-35.) Additional components are provided for video output, sound output,
and hand-held controllers.

10.10.2SEGA GENESIS OPERATION

When the Sega Genesis is initially powered on, a RESET signal is enabled, which
allows all of the electrical voltage levels to stabilize and initializes a number of
runtime variables. The RESET signal is then automatically disabled, and the
68000 begins reading and executing instructions from the game cartridge.

During operation, the instructions in the game cartridge instruct the 68000 to
load a program into the Z80 processor, and to start the Z80 program execution
while the 68000 returns to its own program. The Z80 program controls the
sound chips, while the 68000 carries out graphical operations, probes the
hand-held controllers for activity, and runs the overall game program.

10.10.3SEGA GENESIS PROGRAMMING

[Note from Authors: This section is adapted from a contribution by David Ashley,
dash@xdr.com.]

The Sega Genesis uses plug-in cartridges to store the game software. Blank car-
tridges can be purchased from third party vendors, which can then be pro-
grammed using an inexpensive PROM burner card that be plugged into the card
cage of a desktop computer. Games can be written in high level languages and
compiled into assembly language, or more commonly, programmed in assembly
language directly (even today, assembly language is still heavily used for game
programming). A suite of development tools translates the source code into
object code that can then be burned directly into the cartridges (once per car-
tridge.) As an alternative to burning cartridges during development, the cartridge
can be replaced with a reprogrammable development card.

The Genesis contains two general-purpose microprocessors, the Motorola 68000
and the Zilog Z80. The 68000 runs at 8 MHz and has 64 KB of memory

456 CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

devoted to it. The ROM cartridge appears at memory location 0. The 68000
off-loads sound effect computations to the TI PSG and the Yamaha sound syn-
thesis chip.

The Genesis graphics hardware consists of 2 scrollable planes. Each plane is made
up of tiles. Each tile is an 8×8 pixel square with 4 bits per pixel. Each pixel can
thus have 16 colors. Each tile can use 1 of 4 color tables, so on the screen there
can be 64 colors at once, but only 16 different colors can be in any specific tile.
Tiles require 32 bytes. There is 64 KB of graphics memory, which allows for
2048 unique tiles if memory is used for nothing else.

Each plane can be scrolled independently in various ways. Planes consist of tables
of words, in which each word describes a tile. A word contains 11 bits for identi-
fying the tile, 2 bits for “flip x” and “flip y,” 2 bits for the selection of the color
table, and 1 bit for a depth selector. Sprites are also composed of tiles. A sprite
can be up to 4 tiles wide by four tiles high. Since the size of each tile is 8×8, this
means sprites can be anywhere from 8×8 pixels to 32×32 pixels in size. There can
be 80 sprites on the screen at one time. On a single scan line there can be 10
32-pixel wide sprites or 20 16-pixel wide sprites. Each sprite can only have 16
colors taken from the 4 different color tables. Colors are allocated 3 bits for each
gun, and so 512 colors are possible. (Color 0=transparent.)

There is a memory copier program that is resident in hardware that performs fast
copies from the 68000 RAM into the graphics RAM. The Z80 also has 8KB of
RAM. The Z80 can access the graphics chip or the sound chips, but usually these
chips are controlled by the 68000.

The process of creating a game cartridge involves (1) writing the game program,
(2) translating the program into object code (compiling, assembling, and linking
the code into an executable object module; some parts of the program may be
written in a high level language, and other parts, directly in assembly language),
(3) testing the program on a reprogrammable development card (if a reprogram-
mable development card is available), and (4) burning the program into a blank
game cartridge.

See Further Reading below for more information on programming the Sega
Genesis.

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE 457

� SUMMARY

In the RISC approach, the most frequently occurring instructions are optimized by
eliminating or reducing the complexity of other instructions and addressing modes
commonly found in CISC architectures. The performance of RISC architectures is
further enhanced by pipelining and increasing the number of registers available to
the CPU. Superscalar and VLIW architectures are examples of newer perfor-
mance enhancements that extend, rather than replace, the RISC approach.

Parallel architectures can be classified as MISD, SIMD, or MIMD. The MISD
approach is used for systolic array processing, and is the least general architecture
of the three. In a SIMD architecture, all PEs carry out the same operations on dif-
ferent data sets, in an “army of ants” approach to parallel processing. The MIMD
approach can be characterized as “herd of elephants,” because there are a small
number of powerful processors, each with their own data and instruction streams.

The current trend is moving away from the fine grain parallelism that is exempli-
fied by the MISD and SIMD approaches, and toward the MIMD approach. This
trend is due to the high time cost of communicating among PEs, and the economy
of using networks of workstations over tightly coupled parallel processors. The goal
of the MIMD approach is to better balance the time spent in computation with
the time spent in communication.

� FURTHER READING
Three primary characteristics of RISC architectures enumerated in Section 10.2
originated at IBM’s T. J. Watson Research Center, as summarized in (Ralston and
Reilly, 1993, pp. 1165 - 1167). (Hennessy and Patterson, 1995) is a classic refer-
ence on much of the work that led to the RISC concept, although the word
“RISC” does not appear in the title of their textbook. (Stallings, 1991) is a thor-
ough reference on RISCs. (Tamir and Sequin, 1983) show that a window size of
eight will shift on less than 1% of the calls or returns. (Tanenbaum, 1999) pro-
vides a readable introduction to the RISC concept. (Dulong, 1998) describes the
IA-64. The PowerPC 601 architecture is described in (Motorola).

(Quinn, 1987) and (Hwang, 1993) overview the field of parallel processing in
terms of architectures and algorithms. (Flynn, 1972) covers the Flynn taxonomy
of architectures. (Yang and Gerasoulis, 1991) argue for maintaining a ratio of
communication time to computation time of less than 1. (Hillis, 1985) and (Hil-
lis, 1993) describe the architectures of the CM-1 and CM-5, respectively. (Hui,
1990) covers interconnection networks, and (Leighton, 1992) covers routing

458 CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

algorithms for a few types of interconnection networks. (Wu and Feng, 1981)
cover routing on a shuffle-exchange network.

Additional information can be found on programming the Sega Genesis at
http://hiwaay.net/~jfrohwei/sega/genesis.html.

Dulong, C., “The IA-64 Architecture at Work,” IEEE Computer, vol. 31, pp.
24-32, (July 1998).

Flynn, M. J., “Some Computer Organizations and Their Effectiveness,” IEEE
Transactions on Computers, vol. 30, no. 7, pp. 948-960, (1972).

Hennessy, J. L. and D. A. Patterson, Computer Architecture: A Quantitative
Approach, 2/e, Morgan Kaufmann Publishers, San Mateo, (1995).

Hillis, W. D., The Connection Machine, The MIT Press, (1985).

Hillis, W. D. and L. W. Tucker, “The CM-5 Connection Machine: A Scalable
Supercomputer,” Communications of the ACM, vol. 36, no. 11, pp. 31-40, (Nov.,
1993).

Hui, J. Y., Switching and Traffic Theory for Integrated Broadband Networks, Klu-
wer Academic Publishers, (1990).

Hwang, K., Advanced Computer Architecture: Parallelism, Scalability, Programma-
bility, McGraw-Hill, (1993).

Knuth, D. E., An Empirical Study of FORTRAN Programs, Software—Practice
and Experience, 1, 105-133, 1971.

Leighton, F. T., Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
Hypercubes, Morgan Kaufmann, (1992).

Motorola Inc., PowerPC 601 RISC Microprocessor User’s Manual, Motorola Liter-
ature Distribution, P. O. Box 20912, Phoenix, AZ, 85036.

Quinn, M. J., Designing Efficient Algorithms for Parallel Computers,
McGraw-Hill, (1987).

CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE 459

Ralston, A. and E. D. Reilly, eds., Encyclopedia of Computer Science, 3/e, van
Nostrand Reinhold, (1993).

SPARC International, Inc., The SPARC Architecture Manual: Version 8, Prentice
Hall, Englewood Cliffs, New Jersey, (1992).

Stone, H. S. and J. Cocke, “Computer Architecture in the 1990s,” IEEE Com-
puter, vol. 24, no. 9, pp. 30-38, (Sept., 1991).

Stallings, W., Computer Organization and Architecture: Designing for Performance,
4/e, Prentice Hall, Upper Saddle River, (1996).

Stallings, W., Reduced Instruction Set Computers, 3/e, IEEE Computer Society
Press, Washington, D.C., (1991).

Tamir, Y., and C. Sequin, “Strategies for Managing the Register File in RISC,”
IEEE Trans. Comp., (Nov. 1983).

Tanenbaum, A., Structured Computer Organization, 4/e, Prentice Hall, Upper
Saddle River, New Jersey, (1999).

Yang, T. and A. Gerasoulis, “A Fast Static Scheduling Algorithm for DAGs on an
Unbounded Number of Processors,” Proceedings of Supercomputing ’91, Albu-
querque, New Mexico, (Nov. 1991).

Wu, C.-L. and T.-Y. Feng, “The Universality of the Shuffle-Exchange Network,”
IEEE Transactions on Computers, vol. C-30, no. 5, pp. 324-, (1981).

� PROBLEMS
10.1 Increasing the number of cycles per instruction can sometimes improve

the execution efficiency of a pipeline. If the time per cycle for the pipeline
described in Section 10.3 is 20 ns, then CPIAvg is 1.5 × 20 ns = 30 ns. Com-
pute the execution efficiency for the same pipeline in which the pipeline depth
increases from 5 to 6 and the cycle time decreases from 20 ns to 10 ns.

10.2 The SPARC code below is taken from the gcc generated code in Figure
10-10. Can %r0 be used in all three lines, instead of “wasting” %r1 in the
second line?

460 CHAPTER 10 TRENDS IN COMPUTER ARCHITECTURE

...
st %o0, [%fp-28]
sethi %hi(.LLC0), %o1
or %o1, %lo(.LLC0), %o1

...

10.3 Calculate the speedup that can be expected if a 200 MHz Pentium chip is
replaced with a 300 MHz Pentium chip, if all other parameters remain
unchanged.

10.4 What is the speedup that can be expected if the instruction set of a certain
machine is changed so that the branch instruction takes 1 clock cycle instead
of 3 clock cycles, if branch instructions account for 20% of all instructions
executed by a certain program? Assume that other instructions average 3 clock
cycles per instruction, and that nothing else is altered by the change.

10.5 Create a dependency graph for the following expression:

f(x, y) = x2 + 2xy + y2

10.6 Given 100 processors for a computation with 5% of the code that cannot
be parallelized, compute speedup and efficiency.

10.7 What is the diameter of a 16-space hypercube?

10.8 For the EXAMPLE at the end of Section 10.9.2, compute the total cross-
point complexity over all three stages.

461

APPENDIX A: DIGITAL
LOGIC

A.1 Introduction

In this appendix, we take a look at a few basic principles of digital logic that we
can apply in the design of a digital computer. We start by studying

combina-
tional logic

in which logical decisions are made based only on combinations of
the inputs. We then look at

sequential logic

in which decisions are made based
on combinations of the current inputs as well as the past history of inputs. With
an understanding of these underlying principles, we can design digital logic cir-
cuits from which an entire computer can be constructed. We begin with the fun-
damental building block of a digital computer, the

combinational logic unit
(CLU)

.

A.2 Combinational Logic

A combinational logic unit

translates a set of inputs into a set of outputs accord-
ing to one or more mapping functions. The outputs of a CLU are strictly func-
tions of the inputs, and the outputs are updated immediately after the inputs
change. A basic model of a CLU is shown in Figure A-1. A set of inputs

i

0

 –

i

n

 is

presented to the CLU, which produces a set of outputs according to mapping
functions

f

0

 –

f

m

. There is no feedback from the outputs back to the inputs in a
combinational logic circuit (we will study circuits with feedback in Section

Combinational
logic unit

. . .

i0
i1

in

. . .

f0
f1

fm

(i0, i1)
(i1, i3, i4)

(i9, in)

Figure A-1 External view of a combinational logic unit.

 A

462

A.11.)

Inputs and outputs for a CLU normally have two distinct values: high and low.
When signals (values) are taken from a finite set, the circuits that use them are
referred to as being

digital

. A digital electronic circuit receives inputs and pro-
duces outputs in which 0 volts (0 V) is typically considered to be a low value and
+5 V is considered to be a high value. This convention is not used everywhere:
high speed circuits tend to use lower voltages; some computer circuits work in
the

analog

 domain, in which a continuum of values is allowed; and digital opti-
cal circuits might use phase or polarization in which high or low values are no
longer meaningful. An application in which analog circuitry is appropriate is in
flight simulation, since the analog circuits more closely approximate the mechan-
ics of an aircraft than do digital circuits.

Although the vast majority of digital computers are binary,

multi-valued

 circuits
also exist. A wire that is capable of carrying more than two values can be more
efficient at transmitting information than a wire that carries only two values. A
digital multi-valued circuit is different from an analog circuit in that a multi-val-
ued circuit deals with signals that take on one of a finite number of values,
whereas an analog signal can take on a continuum of values. The use of
multi-valued circuits is theoretically valuable, but in practice it is difficult to cre-
ate reliable circuitry that distinguishes between more than two values. For this
reason, multi-valued logic is currently in limited use

In this text, we are primarily concerned with digital binary circuits, in which
exactly two values are allowed for any input or output. Thus, we will consider
only binary signals.

A.3 Truth Tables

In 1854 George Boole published his seminal work on an algebra for representing
logic. Boole was interested in capturing the mathematics of thought, and devel-
oped a representation for factual information such as “The door is open.” or
“The door is not open.” Boole’s algebra was further developed by Shannon into
the form we use today. In Boolean algebra, we assume the existence of a basic
postulate, that a binary variable takes on a single value of 0 or 1. This value cor-
responds to the 0 and +5 voltages mentioned in the previous section. The assign-
ment can also be done in reverse order for 1 and 0, respectively. For purposes of
understanding the behavior of digital circuits, we can abstract away the physical
correspondence to voltages and consider only the symbolic values 0 and 1.

463

A key contribution of Boole is the development of the

truth table

, which cap-
tures logical relationships in a tabular form. Consider a room with two 3-way
switches

A

 and

B

 that control a light

Z

. Either switch can be up or down, or both
switches can be up or down. When exactly one switch is up, the light is on.
When both switches are up or down, the light is off. A truth table can be con-
structed that enumerates all possible settings of the switches as shown in Figure

A-2. In the table, a switch is assigned the value 0 if it is down, otherwise it is
assigned the value 1. The light is on when

Z

 = 1.

In a truth table, all possible input combinations of binary variables are enumer-
ated and a corresponding output value of 0 or 1 is assigned for each input combi-
nation. For the truth table shown in Figure A-2, the output function

Z

 depends
upon input variables

A

 and

B

. For each combination of input variables there are
two values that can be assigned to

Z

: 0 or 1. We can choose a different assign-
ment for Figure A-2, in which the light is on only when both switches are up or
both switches are down, in which case the truth table shown in Figure A-3 enu-

merates all possible states of the light for each switch setting. The wiring pattern
would also need to be changed to correspond. For two input variables, there are
2

2

 = 4 input combinations, and 2

4

 = 16 possible assignments of outputs to input

0
0

1

1

0
1

0

1

A B

0
1

1

0

Z

Inputs Output

Switch A Switch B

“Hot”

GND

Light Z

Figure A-2 A truth table relates the states of 3-way switches A and B to light Z.

0
0
1
1

0
1
0
1

A B

1
0
0
1

Z

Inputs Output

Figure A-3 Alternate assignments of outputs to switch settings.

464

combinations. In general, since there are 2

n

 input combinations for

n

 inputs,
there are possible assignments of output values to input combinations.

A.4 Logic Gates

If we enumerate all possible assignments of switch settings for two input vari-
ables, then we will obtain the 16 assignments shown in Figure A-4. We refer to

these functions as

Boolean logic functions

. A number of assignments have spe-
cial names. The

AND

 function is true (produces a 1) only when

A

 and

B

 are 1,
whereas the

OR

 function is true when either

A

 or

B

 is 1, or when both

A

 and

B

are 1. A function is false when its output is 0, and so the False function is always
0, whereas the True function is always 1. The plus signs ‘+’ in the Boolean expres-
sions denote logical

OR

, and do not imply arithmetic addition. The juxtaposi-
tion of two variables, as in

AB

, denotes logical

AND

 among the variables.

The

A

 and

B

 functions simply repeat the

A

 and

B

 inputs, respectively, whereas
the and functions

complement

A

 and

B

, by producing a 0 where the
uncomplemented function is a 1 and by producing a 1 where the uncomple-
mented function is a 0. In general, a bar over a term denotes the complement
operation, and so the

NAND

 and

NOR

 functions are complements to

AND

 and

OR

, respectively. The

XOR

 function is true when either of its inputs, but not

2 2
n〈 〉

0

0

1

1

0

1

0

1

0

0

0

0

0

0

0

1

0

0

1

0

0

0

1

1

0

1

0

0

0

1

0

1

0

1

1

0

0

1

1

1

A B False AND A B XOR OR

0

0

1

1

0

1

0

1

1

0

0

0

1

0

0

1

1

0

1

0

1

0

1

1

1

1

0

0

1

1

0

1

1

1

1

0

1

1

1

1

A B NOR XNOR A + B NAND True

AB AB

B A A + B

Inputs Outputs

Inputs Outputs

Figure A-4 Truth tables showing all possible functions of two binary variables.

A B

465

both, is true. The

XNOR

 function is the complement to

XOR

. The remaining
functions are interpreted similarly.

A

logic gate

 is a physical device that implements a simple Boolean function. The
functions that are listed in Figure A-4 have representations as logic gate symbols,
a few of which are shown in Figure A-5 and Figure A-6. For each of the func-

tions,

A

 and

B

 are binary inputs and

F

 is the output.

In Figure A-5, the AND and OR gates behave as previously described. The out-
put of the AND gate is true when both of its inputs are true, and is false other-
wise. The output of the OR gate is true when either or both of its inputs are true,
and is false otherwise. The buffer simply copies its input to its output. Although
the buffer has no logical significance, it serves an important practical role as an
amplifier, allowing a number of logic gates to be driven by a single signal. The
NOT gate (also called an

inverter

) produces a 1 at its output for a 0 at its input,
and produces a 0 at its output for a 1 at its input. Again, the inverted output sig-
nal is referred to as the complement of the input. The circle at the output of the

A

B
F = A B

A
0
0
1
1

B
0
1
0
1

F
0
0
0
1

AND

A
0
0
1
1

B
0
1
0
1

F
0
1
1
1

OR

A

B
F = A + B

A
0
1

F
0
1

Buffer

A
0
1

F
1
0

NOT (Inverter)

A F = A A F = A

Figure A-5 Logic gate symbols for AND, OR, buffer, and NOT Boolean functions.

466

NOT gate denotes the complement operation.

In Figure A-6, the NAND and NOR gates produce complementary outputs to
the AND and OR gates, respectively. The exclusive-OR (XOR) gate produces a 1
when either of its inputs, but not both, is 1. In general, XOR produces a 1 at its
output whenever the number of 1’s at its inputs is odd. This generalization is
important in understanding how an XOR gate with more than two inputs
behaves. The exclusive-NOR (XNOR) gate produces a complementary output
to the XOR gate.

The logic symbols shown in Figure A-5 and Figure A-6 are only the basic forms,
and there are a number of variations that are often used. For example, there can
be more inputs, as for the three-input AND gate shown in Figure Figure A-7a.
The circles at the outputs of the NOT, NOR, and XNOR gates denote the com-
plement operation, and can be placed at the inputs of logic gates to indicate that

A

B

A
0
0
1
1

B
0
1
0
1

F
1
1
1
0

NAND

A
0
0
1
1

B
0
1
0
1

F
1
0
0
0

NOR

A

B
F = A B F = A + B

A
0
0
1
1

B
0
1
0
1

F
0
1
1
0

Exclusive-OR (XOR)

A

B
F = A ⊕ B

A
0
0
1
1

B
0
1
0
1

F
1
0
0
1

Exclusive-NOR (XNOR)

A

B
F = A ⊕ B.

Figure A-6 Logic gate symbols for NAND, NOR, XOR, and XNOR Boolean functions.

467

the inputs are inverted upon entering the gate, as shown in Figure A-7b.
Depending on the technology used, some logic gates produce complementary
outputs. The corresponding logic symbol for a complementary logic gate indi-
cates both outputs as illustrated in Figure A-7c.

Physically, logic gates are not magical, although it may seem that they are when a
device like an inverter can produce a logical 1 (+5 V) at its output when a logical
0 (0 V) is provided at the input. The next section covers the underlying mecha-
nism that makes electronic logic gates work.

A.4.1

ELECTRONIC IMPLEMENTATION OF LOGIC GATES

Electrically, logic gates have power terminals that are not normally shown. Figure

A-8a illustrates an inverter in which the +5 V and 0 V (GND) terminals are
made visible. The +5 V signal is commonly referred to as V

CC

 for “voltage collec-
tor-collector.” In a physical circuit, all of the V

CC

 and GND terminals are con-

A
B
C

F = ABC

(a) (b)

A

B
F = A + B

(c)

A + B

A + BA

B

Figure A-7 Variations of the basic logic gate symbols for (a) three inputs; (b) a negated output; and

(c) complementary outputs.

A A

GND = 0 V

VCC = +5 V

(a)

VCC

Base
Collector
Emitter

(b)

VCC

Vin

(c)

Vout

A

A

RL

(d)

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0
0.20 0.4 0.6 0.8 1 1.2 1.4 1.6 21.8

VI–Input Voltage–V

V
O

–
O

u
tp

u
t

V
o

lta
g

e
–

V

OUTPUT VOLTAGE vs. INPUT VOLTAGE

VCC = 5 V

RL = 400 Ω

Figure A-8 (a) Power terminals for an inverter made visible; (b) schematic symbol for a tran-

sistor; (c) transistor circuit for an inverter; (d) static transfer function for an inverter.

468

nected to the corresponding terminals of a power supply.

Logic gates are composed of electrical devices called

transistors

, which have a
fundamental switching property that allows them to control a strong electrical
signal with a weak signal. This supports the process of amplification, which is
crucial for cascading logic gates. Without amplification, we would only be able
to send a signal through a few logic gates before the signal deteriorates to the
point that it is overcome by noise, which exists at every point in an electrical cir-
cuit to some degree.

The schematic symbol for a transistor is shown in Figure A-8b. When there is no
positive voltage on the base, then a current will not flow from V

CC

 to GND.
Thus, for an inverter, a logical 0 (0 V) on the base will produce a logical 1 (+5 V)
at the collector terminal as illustrated in Figure A-8c. If, however, a positive volt-
age is applied to V

in

, then a current will flow from V

CC

 to GND, which prevents
V

out

 from producing enough signal for the inverter output to be a logical 1. In
effect, when +5 V is applied to V

in

, a logical 0 appears at V

out

. The input-output
relationship of a logic gate follows a nonlinear curve as shown in Figure A-8d for
transistor-transistor logic (TTL). The nonlinearity is an important gain property
that makes cascadable operation possible.

A useful paradigm is to think of current flowing through wires as water flowing
through pipes. If we open a connection on a pipe from V

CC

 to GND, then the
water flowing to V

out

 will be reduced to a great extent, although some water will
still make it out. By choosing an appropriate value for the resistor R

L

, the flow
can be restricted in order to minimize this effect.

Since there will always be some current that flows even when we have a logical 0
at V

out

, we need to assign logical 0 and 1 to voltages using safe margins. If we
assign logical 0 to 0 V and logical 1 to +5 V, then our circuits may not work
properly if .1 V appears at the output of an inverter instead of 0 V, which can
happen in practice. For this reason, we design circuits in which assignments of
logical 0 and 1 are made using

thresholds

. In Figure A-9a, logical 0 is assigned to
the voltage range [0 V to 0.4 V] and logical 1 is assigned to the voltage range [2.4
V to +5 V]. The ranges shown in Figure A-9a are for the output of a logic gate.
There may be some attenuation (a reduction in voltage) introduced in the con-
nection between the output of one logic gate and the input to another, and for
that reason, the thresholds are relaxed by 0.4 V at the input to a logic gate as
shown in Figure A-9b. These ranges can differ depending on the logic family.
The output ranges only make sense, however, if the gate inputs settle into the

469

logical 0 or 1 ranges at the input. For this reason, inputs to a logic gate should
never be left “floating” – disconnected from a gate output, VCC, or GND.

Figure A-10 shows transistor circuits for two-input NAND and NOR gates. For

the NAND case, both of the V1 and V2 inputs must be in the logical 1 region in
order to produce a voltage in the logical 0 region at Vout. For the NOR case, if
either or both of the V1 and V2 inputs are in the logical 1 region, then a voltage
in the logical 0 region will be produced at Vout.

(a)

0 V

+5 V

Logical 1

0.4 V

2.4 V

Logical 0

(b)

0 V

+5 V

Logical 1

Forbidden Range
0.8 V

2.0 V

Logical 0

Forbidden Range

Figure A-9 Assignments of logical 0 and 1 to voltage ranges (a) at the output of a logic gates, and

(b) at the input to a logic gate.

VCC

V1

(a)

Vout

A

AB

V2

B
V1

A
V2

B

VCC

Vout
A + B

(b)

Figure A-10 Transistor circuits for (a) a two-input NAND gate and (b) a two-input NOR gate.

470

A.4.2 TRI-STATE BUFFERS

A tri-state buffer behaves in a similar manner to the ordinary buffer that was
introduced earlier in this appendix, except that a control input is available to dis-
able the buffer. Depending on the value of the control input, the output is either
0, 1, or disabled, thus providing three output states. In Figure A-11, when the

control input C is 1, the tri-state buffer behaves like an ordinary buffer. When C
is 0, then the output is electrically disconnected and no output is produced. The
φ’s in the corresponding truth table entries mark the disabled (disconnected)
states. The reader should note that the disabled state, φ, represents neither a 0
nor a 1, but rather the absence of a signal. In electrical circuit terms, the output is
said to be in high impedance. The inverted control tri-state buffer is similar to
the tri-state buffer, except that the control input C is complemented as indicated
by the bubble at the control input.

An electrically disconnected output is different than an output that produces a 0,
in that an electrically disconnected output behaves as if no output connection
exists whereas a logical 0 at the output is still electrically connected to the circuit.
The tri-state buffer allows the outputs from a number of logic gates to drive a
common line without risking electrical shorts, provided that only one buffer is
enabled at a time. The use of tri-state buffers is important in implementing reg-
isters, which are described later in this appendix.

A.5 Properties of Boolean Algebra
Table A.1 summarizes a few basic properties of Boolean algebra that can be
applied to Boolean logic expressions. The postulates (known as “Huntington’s

C
0
0
1
1

A
0
1
0
1

F
ø
ø
0
1

Tri-state buffer

C
0
0
1
1

A
0
1
0
1

F
0
1
ø
ø

Tri-state buffer, inverted control

A F = A C

C

A

C

F = A C

F = ø F = ø
or or

Figure A-11 Tri-state buffers.

471

postulates”) are basic axioms of Boolean algebra and therefore need no proofs.
The theorems can be proven from the postulates. Each relationship shown in the
table has both an AND and an OR form as a result of the principle of duality.
The dual form is obtained by changing ANDs to ORs, and changing ORs to
ANDs.

The commutative property states that the order that two variables appear in an
AND or OR function is not significant. By the principle of duality, the commu-
tative property has an AND form (AB = BA) and an OR form (A + B = B + A).
The distributive property shows how a variable is distributed over an expression
with which it is ANDed. By the principle of duality, the dual form of the distrib-
utive property is obtained as shown.

The identity property states that a variable that is ANDed with 1 or is ORed
with 0 produces the original variable. The complement property states that a
variable that is ANDed with its complement is logically false (produces a 0, since
at least one input is 0), and a variable that is ORed with its complement is logi-
cally true (produces a 1, since at least one input is 1).

The zero and one theorems state that a variable that is ANDed with 0 produces
a 0, and a variable that is ORed with 1 produces a 1. The idempotence theorem

A B = B A

A (B + C) = A B + A C

1 A = A

A A = 0

0 A = 0

A A = A

A (B C) = (A B) C

A + B = B + A

A + B C = (A + B) (A + C)

0 + A = A

1 + A = 1

A + A = 1

A + A = A

A + (B + C) = (A + B) + C

Commutative

Distributive

Identity

Complement

Associative

A B = A + B A + B = A B DeMorgan’s Theorem

PropertyRelationship Dual

Zero and one theorems

Idempotence

A = A Involution

Consensus Theorem(A + B)(A+C)(B +C)

= (A + B)(A +C)

AB+ AC + BC

= AB + AC

A (A + B) = A A + A B = A Absorption Theorem

T
he

or
em

s
P

os
tu

la
te

s

Table A.1 Basic properties of Boolean algebra.

472

states that a variable that is ANDed or ORed with itself produces the original
variable. For instance, if the inputs to an AND gate have the same value or the
inputs to an OR gate have the same value, then the output for each gate is the
same as the input. The associative theorem states that the order of ANDing or
ORing is logically of no consequence. The involution theorem states that the
complement of a complement leaves the original variable (or expression)
unchanged.

DeMorgan’s theorem, the consensus theorem, and the absorption theorem
may not be obvious, and so we prove DeMorgan’s theorem for the two-variable
case using perfect induction (enumerating all cases), and leave the proofs of the
consensus theorem and the absorption theorem as exercises (see problems A.24
and A.25.) Figure A-12 shows a truth table for each expression that appears in

either form of DeMorgan’s theorem. The expressions that appear on the left and
right sides of each form of DeMorgan’s theorem produce equivalent outputs,
which proves the theorem for two variables.

Not all of the logic gates discussed so far are necessary in order to achieve com-
putational completeness, meaning that any digital logic circuit can be created
from these gates. Three sets of logic gates that are computationally complete are:
{AND, OR, NOT}, {NAND}, and {NOR} (there are others as well).

As an example of how a computationally complete set of logic gates can imple-
ment other logic gates that are not part of the set, consider implementing the OR
function with the {NAND} set. DeMorgan’s theorem can be used to map an OR
gate onto a NAND gate, as shown in Figure A-13. The original OR function (A
+ B) is complemented twice, which leaves the function unchanged by the involu-
tion property. DeMorgan’s theorem then changes OR to AND, and distributes
the innermost overbar over the terms A and B. The inverted inputs can also be
implemented with NAND gates by the property of idempotence, as shown in
Figure A-14. The OR function is thus implemented with NANDs. Functional

0
0
1
1

0
1
0
1

A B

1
1
1
0

1
1
1
0

1
0
0
0

1
0
0
0

= =A B A + B A + B A B

Figure A-12 DeMorgan’s theorem is proven for the two-variable case.

473

equivalence among logic gates is important for practical considerations, because
one type of logic gate may have better operating characteristics than another for a
given technology.

A.6 The Sum-of-Products Form, and Logic Diagrams
Suppose now that we need to implement a more complex function than just a
simple logic gate, such as the three-input majority function described by the
truth table shown in Figure A-15. The majority function is true whenever more

than half of its inputs are true, and can be thought of as a balance that tips to the
left or right depending on whether there are more 0’s or 1’s at the input. This is a
common operation used in fault recovery, in which the outputs of identical cir-
cuits operating on the same data are compared, and the greatest number of simi-
lar values determine the output (also referred to as “voting” or “odd one out”).

A

B
F = A + B

A + B = A + B = A BDeMorgan’s theorem:

A

B
F = A B

Figure A-13 DeMorgan’s theorem is used in mapping an OR gate onto a NAND gate.

A

B
 A + B

A

B

 A + B

Figure A-14 Inverted inputs to a NAND gate implemented with NAND gates.

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B C

0
0
0
0
1
1
1
1

A

0
0
0
1
0
1
1
1

F

0
1
2
3
4
5
6
7

A balance tips to the left or
right depending on whether
there are more 0’s or 1’s.

0-side 1-side

1

00

Minterm
Index

Figure A-15 Truth table for the majority function.

474

Since no single logic gate discussed up to this point implements the majority
function directly, we transform the function into a two-level AND-OR equation,
and then implement the function with an arrangement of logic gates from the set
{AND, OR, NOT} (for instance). The two levels come about because exactly
one level of ANDed variables is followed by exactly one OR level. The Boolean
equation that describes the majority function is true whenever F is true in the
truth table. Thus, F is true when A=0, B=1, and C=1, or when A=1, B=0, and
C=1, and so on for the remaining cases.

One way to represent logic equations is to use the sum-of-products (SOP)
form, in which a collection of ANDed variables are ORed together. The Boolean
logic equation that describes the majority function is shown in SOP form in
Equation A.1. Again, the ‘+’ signs denote logical OR and do not imply arith-
metic addition.

(A.1)

By inspecting the equation, we can determine that four three-input AND gates
will implement the four product terms , , , and , and
then the outputs of these four AND gates can be connected to the inputs of a
four-input OR gate as shown in Figure A-16. This circuit performs the majority

F ABC ABC ABC ABC+ + +=

ABC ABC ABC ABC

F

A B C

A B C

A B C

A B C

A B C

Figure A-16 A two-level AND-OR circuit implements the majority function. Inverters at the inputs

are not included in the two-level count.

475

function, which we can verify by enumerating all eight input combinations and
observing the output for each case.

The circuit diagram shows a commonly used notation that indicates the presence
or absence of a connection, which is summarized in Figure A-17. Two lines that

pass through each other do not connect unless a darkened circle is placed at the
intersection point. Two lines that meet in a are connected as indicated by the
six highlighted intersections, and so darkened circles do not need to be placed
over those intersection points.

When a product term contains exactly one instance of every variable, either in
true or complemented form, it is called a minterm. A minterm has a value of 1
for exactly one of the entries in the truth table. That is, a minimum number of
terms (one) will make the function true. As an alternative, the function is some-
times written as the logical sum over the true entries. Equation A.1 can be rewrit-
ten as shown in Equation A.2, in which the indices correspond to the minterm
indices shown at the left in Figure A-15.

(A.2)

This notation is appropriate for the canonical form of a Boolean equation,
which contains only minterms. Equations A.1 and A.2 are both said to be in
“canonical sum-of-products form.”

A.7 The Product-of-Sums Form
As a dual to the sum-of-products form, a Boolean equation can be represented in
the product-of-sums (POS) form. An equation that is in POS form contains a
collection of ORed variables that are ANDed together. One method of obtaining
the POS form is to start with the complement of the SOP form, and then apply

No connection

No connection

Connection

Connection

Figure A-17 Four notations used at circuit intersections.

F 3 5 6 7, , ,〈 〉∑=

476

DeMorgan’s theorem. For example, referring again to the truth table for the
majority function shown in Figure A-15, the complement is obtained by select-
ing input terms that produce 0’s at the output, as shown in Equation A.3:

(A.3)

Complementing both sides yields equation A.4:

(A.4)

Applying DeMorgan’s theorem in the form at the
outermost level produces equation A.5:

(A.5)

Applying DeMorgan’s theorem in the form to the
parenthesized terms produces equation A.6:

(A.6)

Equation A.6 is in POS form, and contains four maxterms, in which every vari-
able appears exactly once in either true or complemented form. A maxterm, such
as , has a value of 0 for only one entry in the truth table. That is,
it is true for the maximum number of truth table entries without reducing to the
trivial function of always being true. An equation that consists of only maxterms
in POS form is said to be in “canonical product-of-sums form.” An OR-AND
circuit that implements Equation A.6 is shown in Figure A-18. The OR-AND
form is logically equivalent to the AND-OR form shown in Figure A-16.

One motivation for using the POS form over the SOP form is that it may result
in a smaller Boolean equation. A smaller Boolean equation may result in a sim-
pler circuit, although this does not always hold true since there are a number of
considerations that do not directly depend on the size of the Boolean equation,
such as the complexity of the wiring topology.

The gate count is a measure of circuit complexity that is obtained by counting
all of the logic gates. The gate input count is another measure of circuit com-
plexity that is obtained by counting the number of inputs to all of the logic gates.
For the circuits shown in Figure A-16 and Figure A-18, a gate count of eight and

F ABC ABC ABC ABC+ + +=

F ABC ABC ABC ABC+ + +=

W X Y Z+ + + WXYZ=

F ABC() ABC() ABC() ABC()=

WXYZ W X Y Z+ + +=

F A B C+ +() A B C+ +() A B C+ +() A B C+ +()=

A B C+ +()

477

a gate input count of 19 are obtained for both the SOP and POS forms. For this
case, there is no difference in circuit complexity between the SOP and POS
forms, but for other cases the differences can be significant. There is a variety of
methods for reducing the complexity of digital circuits, a few of which are pre-
sented in Appendix B.

A.8 Positive vs. Negative Logic
Up to this point we have assumed that high and low voltage levels correspond to
logical 1 and 0, or TRUE and FALSE, respectively, which is known as active
high or positive logic. We can make the reverse assignment instead: low voltage
for logical 1 and high voltage for logical 0, which is known as active low or neg-
ative logic. The use of negative logic is sometimes preferred to positive logic for
applications in which the logic inhibits an event rather than enabling an event.

Figure A-19 illustrates the behavior of AND-OR and NAND-NOR gate pairs
for both positive and negative logic. The positive logic AND gate behaves as a
negative logic OR gate. The physical logic gate is the same regardless of the posi-
tive or negative sense of the logic – only the interpretation of the signals is
changed.

F

A B C

A + B + C

A + B + C

A + B + C

A + B + C

Figure A-18 A two-level OR-AND circuit that implements the majority function. Inverters are not

included in the two-level count.

478

The mixing of positive and negative logic in the same system should be avoided
to prevent confusion, but sometimes, it cannot be avoided. For these cases, a
technique known as “bubble matching” helps keep the proper logic sense correct.
The idea is to assume that all logic is asserted high (positive logic) and to place a
bubble (denoting logical inversion) at the inputs or outputs of any negative logic
circuits. Note that these bubbles are the same in function as the bubbles that
appear at the complemented outputs of logic gates such as NOR and NAND.
That is, the signal that leaves a bubble is the complement of the signal that enters
it.

Consider the circuit shown in Figure A-20a, in which the outputs of two positive

A

B
F = A B

A
0
0
1
1

B
0
1
0
1

F
0
0
0
1

A
1
1
0
0

B
1
0
1
0

F
1
1
1
0

A

B
F = A + B

A
0
0
1
1

B
0
1
0
1

F
1
1
1
0

A
1
1
0
0

B
1
0
1
0

F
0
0
0
1

A

B
F = A B

A

B
F = A + B

Positive Logic Levels Negative Logic Levels

A
low
low
high
high

B
low
high
low
high

F
low
low
low
high

Voltage Levels

Physical
AND gate

A

B
F

Positive Logic Levels Negative Logic Levels

A
low
low
high
high

B
low
high
low
high

F
high
high
high
low

Voltage Levels

Physical
NAND gate

A

B
F

Figure A-19 Positive and negative logic assignments for AND-OR and NAND-NOR

duals.

x0 Positive
Logicx1

x0

x1

Negative
Logic

Positive logic

(a) (b)

Positive logic

Negative logic

Negative logic

x0 Negative
Logicx1

x0

x1

Negative
Logic

Negative logic

(c) (d)

Negative logic

Negative logic

Negative logic
Bubble mismatch Bubble match

Bubble match

Figure A-20 The process of bubble matching.

479

logic circuits are combined through an AND gate that is connected to a positive
logic system. A logically equivalent system for negative logic is shown in Figure
A-20b. In the process of bubble matching, a bubble is placed on each active low
input or output as shown in Figure A-20c.

To simplify the process of analyzing the circuit, active low input bubbles need to
be matched with active low output bubbles. In Figure A-20c there are bubble
mismatches because there is only one bubble on each line. DeMorgan’s theorem
is used in converting the OR gate in Figure A-20c to the NAND gate with com-
plemented inputs in Figure A-20d, in which the bubble mismatches have been
fixed.

A.9 The Data Sheet
Logic gates and other logic components have a great deal of technical specifica-
tions that are relevant to the design and analysis of digital circuits. The data
sheet, or “spec sheet,” lists technical characteristics of a logic component. An
example of a data sheet is shown in Figure A-21. The data sheet starts with a title
for the component, which for this case is the SN7400 NAND gate. The descrip-
tion gives a functional description of the component in textual form.

The package section shows the pin layout and the pin assignments. There can be
several package types for the same component. The function table enumerates
the input-output behavior of the component from a functional perspective. The
symbols “H” and “L” stand for “high” and “low” voltages respectively, to avoid
confusion with the sense of positive or negative logic. The symbol “X” indicates
that the value at an input does not influence the output. The logic diagram
describes the logical behavior of the component, using positive logic for this case.
All four NAND gates are shown with their pin assignments.

The schematic shows the transistor level circuitry for each gate. In the text, we
treat this low level circuitry as an abstraction that is embodied in the logic gate
symbols.

The “absolute maximum ratings” section lists the range of environmental condi-
tions in which the component will safely operate. The supply voltage can go as
high as 7 V and the input voltage can go up to 5.5 V. The ambient temperature
should be between 0˚ C and 70˚ C during operation, but can vary between –65˚
C and 150˚ C when the component is not being used.

480

Despite the absolute maximum rating specifications, the recommended operat-
ing conditions should be used during operation. The recommended operating
conditions are characterized by minimum (MIN), normal (NOM), and maxi-
mum (MAX) ratings.

The electrical characteristics describe the behavior of the component under cer-
tain operating conditions. VOH and VOL are the minimum output high voltage
and the maximum output low voltage, respectively. IIH and IIL are the maximum

SN7400 QUADRUPLE 2-INPUT POSITIVE-NAND GATES

description

These devices contain four independent
2-input NAND gates.

package (top view)

1A
1B
1Y
2A
2B
2Y

GND

VCC

4B
4A
4Y
3B
3A
3Y

1

2

3

4

5

6

7

14

13

12

11

10

9

8

1A
1B 1Y

2A
2B 2Y

3A
3B 3Y

4A
4B 4Y

Y = A B

logic diagram (positive logic)

function table (each gate)

INPUTS
A B

OUTPUT
Y

H
L

X

H
X

L

L
H

H

VCC

schematic (each gate)

130 Ω1.6 kΩ4 kΩ

A

B

Y

GND

1 kΩ

recommended operating conditions

IOL Low-level output current

IOH High-level output current

VIL Low-level input voltage

VIH High-level input voltage

VCC Supply voltage

MIN

TA Operating free-air temperature

NOM MAX UNIT

4.75 5 5.25 V

2 V

0.8 V

– 0.4 mA

16 mA

0 70 ˚C

electrical characteristics over recommended operating free-air temperature range

ICCH VCC = MAX, VI = 0 V

IIL VCC = MAX, VI = 0.4 V

IIH VCC = MAX, VI = 2.4 V

VOL VCC = MIN, VIH = 2 V, IOL = 16 mA

VOH VCC = MIN, VIL = 0.8 V, IOH = – 0.4 mA

MIN

ICCL VCC = MAX, VI = 4.5 V

TYP MAX UNIT

2.4 3.4

0.4

V

V

40 µA

– 1.6 mA

8 mA

22 mA

0.2

4

12

absolute maximum ratings

Supply voltage, VCC
Input voltage:
Operating free-air temperature range:
Storage temperature range

7 V
5.5 V

0 ˚C to 70 ˚C
– 65 ˚C to 150 ˚C

switching characteristics, VCC = 5 V, TA = 25˚ C

tPHL

tPLH

MIN TYP MAX UNIT

11 22 ns

ns7 15

PARAMETER FROM (input) TO (output) TEST CONDITIONS

A or B Y
RL = 400 Ω
CL = 15 pF

Figure A-21 Simplified data sheet for 7400 NAND gate, adapted from Texas Instruments

TTL Databook [Texas Instruments, 1988].

481

currents into an input pin when the input is high or low, respectively. ICCH and
ICCL are the package’s power supply currents when all outputs are high or low,
respectively.

This data can be used in determining maximum fan-outs under the given condi-
tions. Fan-out is a measure of the number of inputs that a single output can
drive, for logic gates implemented in the same technology. That is, a logic gate
with a fan-out of 10 can drive the inputs of 10 other logic gates of the same type.
Similarly, fan-in is a measure of the number of inputs that a logic gate can accept
(simply, the number of input lines to that gate). The absolute value of IOH must
be greater than or equal to the sum of all IIH currents that are being driven, and
IOL must be greater than or equal to the sum of all IIL currents (absolute values)
that are being driven. The absolute value of IOH for a 7400 gate is .4 mA (or 400
µA), and so a 7400 gate output can thus drive ten 7400 inputs (IIH = 40 µA per
input).

The switching characteristics show the propagation delay to switch the output
from a low to a high voltage (tPLH) and the propagation delay to switch the out-
put from a high to a low voltage (tPHL). The maximum ratings show the worst
cases. A circuit can be safely designed using the typical case as the worst case, but
only if a test-and-select-the-best approach is used. That is, since tPLH varies
between 11 ns and 22 ns and tPHL varies between 7 ns and 15 ns from one pack-
aged component to the next, components can be individually tested to deter-
mine their true characteristics. Not all components of the same type behave
identically, even under the most stringent fabrication controls, and the differ-
ences can be reduced by testing and selecting the best components.

A.10 Digital Components
High level digital circuit designs are normally made using collections of logic
gates referred to as components, rather than using individual logic gates. This
allows a degree of circuit complexity to be abstracted away, and also simplifies the
process of modeling the behavior of circuits and characterizing their perfor-
mance. A few of the more common components are described in the sections
that follow.

A.10.1 LEVELS OF INTEGRATION

Up to this point, we have focused on the design of combinational logic units.
Since we have been working with individual logic gates, we have been working at

482

the level of small scale integration (SSI), in which there are 10 – 100 compo-
nents per chip. (“Components” has a different meaning in this context, referring
to transistors and other discrete elements.) Although we sometimes need to work
at this low level in practice, typically for high performance circuits, the advent of
microelectronics allows us to work at higher levels of integration. In medium
scale integration (MSI), approximately 100 – 1000 components appear in a sin-
gle chip. Large scale integration (LSI) deals with circuits that contain 1000 –
10,000 components per chip, and very large scale integration (VLSI) goes
higher still. There are no sharp breaks between the classes of integration, but the
distinctions are useful in comparing the relative complexity of circuits. In this
section we deal primarily with MSI components.

A.10.2 MULTIPLEXERS

A multiplexer (MUX) is a component that connects a number of inputs to a sin-
gle output. A block diagram and the corresponding truth table for a 4-to-1 MUX
are shown in Figure A-22. The output F takes on the value of the data input that

is selected by control lines A and B. For example, if AB = 00, then the value on
line D0 (a 0 or a 1) will appear at F. The corresponding AND-OR circuit is
shown in Figure A-23.

When we design circuits with MUXes, we normally use the “black box” form
shown in Figure A-22, rather than the more detailed form shown in Figure A-23.
In this way, we can abstract away detail when designing complex circuits.

Multiplexers can be used to implement Boolean functions. In Figure A-24, an
8-to-1 MUX implements the majority function. The data inputs are taken
directly from the truth table for the majority function, and the control inputs are

0
0
1
1

0
1
0
1

A B

D0

D1

D2

D3

FD0

A

D1

D2

D3

B

F

00
01

10
11

F = A B D
0

+ A B D
1

+ A B D
2

+ A B D
3

D
at

a
In

pu
ts

Control Inputs

Figure A-22 Block diagram and truth table for a 4-to-1 MUX.

483

assigned to the variables A, B, and C. The MUX implements the function by
passing a 1 from the input of each true minterm to the output. The 0 inputs
mark portions of the MUX that are not needed in implementing the function,
and as a result, a number of logic gates are underutilized. Although portions of
MUXes are almost always unused in implementing Boolean functions, multi-
plexers are widely used because their generality simplifies the design process, and
their modularity simplifies the implementation.

As another case, consider implementing a function of three variables using a
4-to-1 MUX. Figure A-25 shows a three-variable truth table and a 4-to-1 MUX

F

A B

D0

D1

D2

D3

Figure A-23 An AND-OR circuit implements a 4-to-1 MUX.

A C

F

000
001

010
011

B

100
101

110
111

0
0

0
1

0
1

1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B C

0
0
0
0
1
1
1
1

A

0
0
0
1
0
1
1
1

M

Figure A-24 An 8-to-1 multiplexer implements the majority function.

484

that implements function F. We allow data inputs to be taken from the set {0, 1,
C, }, and the groupings are obtained as shown in the truth table. When AB =
00, then F = 0 regardless of whether C = 0 or C = 1, and so a 0 is placed at the
corresponding 00 data input line on the MUX. When AB = 01, then F = 1
regardless of whether C = 0 or C = 1, and so a 1 is placed at the 01 data input.
When AB = 10, then F = C since F is 0 when C is 0 and F is 1 when C is 1, and
so C is placed at the 10 input. Finally, when AB = 11, then F = , and so is
placed at the 11 input. In this way, we can implement a three-variable function
using a two-variable MUX.

A.10.3 DEMULTIPLEXERS

A demultiplexer (DEMUX) is the converse of a MUX. A block diagram of a
1-to-4 DEMUX with control inputs A and B and the corresponding truth table
are shown in Figure A-26. A DEMUX sends its single data input D to one of its

A B

F

00

01
10

11

0

1
C

C

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B C

0
0
1
1
0
1
1
0

F

0
0
0
0
1
1
1
1

A

0

1

C

C

Figure A-25 A 4-to-1 MUX implements a three-variable function.

C

C C

F0

A

F1

F2

F3

B

00

01
10

11

D

F 0 = D A B

F 1 = D A B

F 2 = D A B

F 3 = D A B

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

A B

0
0
0
0
1
0
0
0

F0

0
0
0
0
0
1
0
0

F1

0
0
0
0
0
0
1
0

F2

0
0
0
0
0
0
0
1

F3

0
0
0
0
1
1
1
1

D

Figure A-26 Block diagram and truth table for a 1-to-4 DEMUX.

485

outputs Fi according to the settings of the control inputs. A circuit for a 1-to-4
DEMUX is shown in Figure A-27. An application for a DEMUX is to send data

from a single source to one of a number of destinations, such as from a call
request button for an elevator to the closest elevator car. The DEMUX is not
normally used in implementing ordinary Boolean functions, although there are
ways to do it (see problem A.17).

A.10.4 DECODERS

A decoder translates a logical encoding into a spatial location. Exactly one out-
put of a decoder is high (logical 1) at any time, which is determined by the set-
tings on the control inputs. A block diagram and a truth table for a 2-to-4
decoder with control inputs A and B are shown in Figure A-28. A corresponding

A B

F0

F1

F2

F3

D

Figure A-27 A circuit for a 1-to-4 DEMUX.

D0

A D1

D2

D3

B

00
01

10
11

0
0
1
1

0
1
0
1

A B

1
0
0
0

D0

0
1
0
0

D1

0
0
1
0

D2

0
0
0
1

D3

D3 = A BD1 = A B D2 = A BD0 = A B

Enable

Enable = 1

0
0
1
1

0
1
0
1

A B

0
0
0
0

D0

0
0
0
0

D1

0
0
0
0

D2

0
0
0
0

D3

Enable = 0

Figure A-28 Block diagram and truth table for a 2-to-4 decoder.

486

logic diagram that implements the decoder is shown in Figure A-29. A decoder

may be used to control other circuits, and at times it may be inappropriate to
enable any of the other circuits. For that reason, we add an enable line to the
decoder, which forces all outputs to 0 if a 0 is applied at its input. (Notice the
logical equivalence between the DEMUX with an input of 1 and the decoder.)

One application for a decoder is in translating memory addresses into physical
locations. Decoders can also be used in implementing Boolean functions. Since
each output line corresponds to a different minterm, a function can be imple-
mented by logically ORing the outputs that correspond to the true minterms in
the function. For example, in Figure A-30, a 3-to-8 decoder implements the

majority function. Unused outputs remain disconnected.

A

B

D0

D1

D2

D3

Enable
Figure A-29 An AND circuit for a 2-to-4 decoder.

A

C
M

000
001

010
011

B
100
101

110
111

Figure A-30 A 3-to-8 decoder implements the majority function.

487

A.10.5 PRIORITY ENCODERS

An encoder translates a set of inputs into a binary encoding, and can be thought
of as the converse of a decoder. A priority encoder is one type of an encoder, in
which an ordering is imposed on the inputs. A block diagram and a correspond-
ing truth table for a 4-to-2 priority encoder are shown in Figure A-31. A priority

scheme is imposed on the inputs in which Ai has higher priority than Ai+1. The
two-bit output takes on the value 00, 01, 10, or 11 depending on which inputs
are active (in the 1 state) and their relative priorities. When no inputs are active,
then the output defaults to giving priority to A0 (F0F1 = 00).

Priority encoders are used for arbitrating among a number of devices that com-
pete for the same resource, as when a number of users simultaneously attempt to
log on to a computer system. A circuit diagram for a 4-to-2 priority encoder is
shown in Figure A-32. (The circuit has been reduced using methods described in
Appendix B, but the input/output behavior can be verified without needing to
know the reduction method.)

A.10.6 PROGRAMMABLE LOGIC ARRAYS

A programmable logic array (PLA) is a component that consists of a customiz-
able AND matrix followed by a customizable OR matrix. A PLA with three
inputs and two outputs is shown in Figure A-33. The three inputs A, B, and C

0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
1
1
1
1
0
0
0
0
0
0
0
0

F0 F1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

A0

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

A1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

A2

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

A3

F0

F1

00
01

10
11

A0

A1

A2

A3

F0 = A0 A1 A3 + A0 A1 A2

F1 = A0 A2 A3 + A0 A1

Figure A-31 Block diagram and truth table for a 4-to-2 priority encoder.

488

and their complements are available at the inputs of each of eight AND gates
that generate eight product terms. The outputs of the AND gates are available at
the inputs of each of the OR gates that generate functions F0 and F1. A program-
mable fuse is placed at each crosspoint in the AND and OR matrices. The matri-
ces are customized for specific functions by disabling fuses. When a fuse is
disabled at an input to an AND gate, then the AND gate behaves as if the input
is tied to a 1. Similarly, a disabled input to an OR gate in a PLA behaves as if the
input is tied to a 0.

As an example of how a PLA is used, consider implementing the majority func-
tion on a 3×2 PLA (three input variables × two output functions). In order to
simplify the illustrations, the form shown in Figure A-34 is used, in which it is
understood that the single input line into each AND gate represents six input
lines, and the single input line into each OR gate represents eight input lines.
Darkened circles are placed at the crosspoints to indicate where connections are
made. In Figure A-34, the majority function is implemented using just half of
the PLA, which leaves the rest of the PLA available for another function.

PLAs are workhorse components that are used throughout digital circuits. An
advantage of using PLAs is that there are only a few inputs and a few outputs,
while there is a large number of logic gates between the inputs and outputs. It is
important to minimize the number of connections at the circuit edges in order to
modularize a system into discrete components that are designed and imple-
mented separately. A PLA is ideal for this purpose, and a number of automated
programs exist for designing PLAs from functional descriptions. In keeping with
this concept of modularity, we will sometimes represent a PLA as a black box as
shown in Figure A-35, and assume that we can safely leave the design of the
internals of the PLA to an automated program.

F0
A1

A2

A3

F1

A0

Figure A-32 Logic diagram for a 4-to-2 priority encoder.

489

F0

A B C

Fuses

F1

AND matrix

OR matrix

Figure A-33 A programmable logic array.

A
B
C

PLA
F0

F1

Figure A-35 Black box representation of a PLA.

490

EXAMPLE: A RIPPLE-CARRY ADDER

As an example of how PLAs are used in the design of a digital circuit, consider
designing a circuit that adds two binary numbers. Binary addition is performed
similar to the way we perform decimal addition by hand, as illustrated in Figure

F0

A B C

F1

(Majority)

A B C

A B C

A B C

A B C

(Unused)

Figure A-34 Simplified representation of a PLA.

Operand A
Operand B

0
0+

00

SumCarry
Out

0
1+

10

1
1+

01

Example:

Carry
Operand A

Operand B
Sum

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

+

Carry In 0 0

1
0+

10

0 0

0
0+

10

1

0
1+

01

1

1
0+

01

1

1
1+

11

1

Figure A-36 Example of addition for two unsigned binary numbers.

491

A-36. Two binary numbers A and B are added from right to left, creating a sum
and a carry in each bit position. Two input bits and a carry-in must be summed
at each bit position, so that a total of eight input combinations must be consid-
ered as shown in the truth table in Figure A-37.

The truth table in Figure A-37 describes an element known as a full adder,
which is shown schematically in the figure. A half adder, which could be used
for the rightmost bit position, adds two bits and produces a sum and a carry,
whereas a full adder adds two bits and a carry and produces a sum and a carry.
The half adder is not used here in order to keep the number of different compo-
nents to a minimum. Four full adders can be cascaded to form an adder large
enough to add the four-bit numbers used in the example of Figure A-36, as
shown in Figure A-38. The rightmost full adder has a carry-in (c0) of 0.

The reader will note that the value for a given sum bit cannot be computed until
the carry-out from the previous full adder has been computed. The circuit is
called a “ripple carry” adder because the correct values for the carry bits “ripple”
through the circuit from right to left. The reader may also observe that even
though the circuit looks “parallel,” in reality the sum bits are computed serially

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Bi Ci

0
0
0
0
1
1
1
1

Ai

0
1
1
0
1
0
0
1

Si

0
0
0
1
0
1
1
1

Ci+1

Full
adder

Bi Ai

Ci

Ci+1

Si

Figure A-37 Truth table for a full adder.

Full
adder

b0 a0

s0

Full
adder

b1 a1

s1

Full
adder

b2 a2

s2

Full
adder

b3 a3

c4

s3

0
c0c1c2c3

Figure A-38 A four-bit adder implemented with a cascade of full adders.

492

from right to left. This is a major disadvantage to the circuit. We discusss ways of
speeding up addition in Chapter 3, Arithmetic.

An approach to designing a full adder is to use a PLA, as shown in Figure A-39.

The PLA approach is very general, and computer-aided design (CAD) tools for
VLSI typically favor the use of PLAs over random logic or MUXes because of
their generality. CAD tools typically reduce the sizes of the PLAs (we will see a
few reduction techniques in Appendix B) and so the seemingly high gate count
for the PLA is not actually so high in practice. �

A.11 Sequential Logic
In the earlier part of this appendix we explored combinational logic units, in
which the outputs are completely determined by functions of the inputs. A
sequential logic unit, commonly referred to as a finite state machine (FSM),
takes an input and a current state, and produces an output and a new state. An
FSM is distinguished from a CLU in that the past history of the inputs to the

Sum

A B Cin

Cout

Figure A-39 PLA realization of a full adder.

493

FSM influences its state and output. This is important for implementing mem-
ory circuits as well as control units in a computer.

The classical model of a finite state machine is shown in Figure A-40. A CLU

takes inputs from lines i0 – ik which are external to the FSM, and also takes
inputs from state bits s0 – sn which are internal to the FSM. The CLU produces
output bits f0 – fm and new state bits. Delay elements maintain the current state
of the FSM, until a synchronization signal causes the Di values to be loaded into
the si, which appear at Qi as the new state bits.

A.11.1 THE S-R FLIP-FLOP

A flip-flop is an arrangement of logic gates that maintains a stable output even
after the inputs are made inactive. The output of a flip-flop is determined by
both the current inputs and the past history of inputs, and thus a combinational
logic unit is not powerful enough to capture this behavior. A flip-flop can be used
to store a single bit of information, and serves as a building block for computer
memory.

If either or both inputs of a two-input NOR gate is 1, then the output of the
NOR gate is 0, otherwise the output is 1. As we saw earlier in this appendix, the
time that it takes for a signal to propagate from the inputs of a logic gate to the
output is not instantaneous, and there is some delay ∆τ that represents the prop-

Synchronization
signal

Combinational
logic unit

. . .

. . .

Inputs Outputs

Delay elements (one per state bit)

. . .

D0Q0

DnQn

. . .

. . .
s0

sn

io

ik

fo

fm

State bits

Figure A-40 Classical model of a finite state machine.

494

agation delay through the gate. The delay is sometimes considered lumped at the
output of the gate for purposes of analysis, as illustrated in Figure A-41. The

lumped delay is not normally indicated in circuit diagrams but its presence is
implied.

The propagation time through the NOR gate affects the operation of a flip-flop.
Consider the set-reset (S-R) flip-flop shown in Figure A-42, which consists of

two cross-coupled NOR gates. If we apply a 1 to S, then goes to 0 after a delay
∆τ, which causes Q to go to 1 (assuming R is initially 0) after a delay 2∆τ. As a
result of the finite propagation time, there is a brief period of time ∆τ when both
the Q and outputs assume a value of 0, which is logically incorrect, but this
condition will be fixed when the master-slave configuration is discussed later. If
we now apply a 0 to S, then Q retains its state until some later time when R goes
to 1. The S-R flip-flop thus holds a single bit of information and serves as an ele-
mentary memory element.

There is more than one way to make an S-R flip-flop, and the use of cross-cou-
pled NOR gates is just one configuration. Two cross-coupled NAND gates can

A

B
∆τ A + B

Timing Behavior

A + B

A

B

∆τ

0

1

0

1

0

1

Figure A-41 A NOR gate with a lumped delay at its output.

S

R Q

Q

Timing Behavior

Q

S

R

∆τ

Q

2∆τ

∆τ

2∆τ

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

St Rt

0
0
0
0
1
1
1
1

Qt

0
0
1

(disallowed)
1
0
1

(disallowed)

Qi+1

Figure A-42 An S-R flip-flop.

Q

Q

495

also implement an S-R flip-flop, with S = R = 1 being the quiescent state. Making
use of DeMorgan’s theorem, we can convert the NOR gates of an S-R flip-flop
into AND gates as shown in Figure A-43. By “bubble pushing,” we change the

AND gates into NAND gates, and then reverse the sense of S and R to remove
the remaining input bubbles.

A.11.2 THE CLOCKED S-R FLIP-FLOP

Now consider that the inputs to the S-R flip-flop may originate from the outputs
of some other circuits, whose inputs may originate from the outputs of other cir-
cuits, forming a cascade of logic circuits. This mirrors the form of conventional
digital circuits. A problem with cascading circuits is that transitions may occur at
times that are not desired.

Consider the circuit shown in Figure A-44. If signals A, B, and C all change from

Q
S

R Q

Q
R

S Q

Q
S

R Q

S

R Q

Q

Figure A-43 A NOR implementation of an S-R flip-flop is converted into a NAND implemen-

tation.

S

R Q

Q
B

A

C

AB

Timing Behavior

Q

S

R

∆τ

Q

∆τ

2∆τ

A

B

C

AB
Glitch caused by
a hazard

Figure A-44 A circuit with a hazard.

496

the 0 state to the 1 state, then signal C may reach the XOR gate before A and B
propagate through the AND gate, which will momentarily produce a 1 output at
S, which will revert to 0 when the output of the AND gate settles and is XORed
with C. At this point it may be too late, however, since S may be in the 1 state
long enough to set the flip-flop, destroying the integrity of the stored bit.

When the final state of a flip-flop is sensitive to the relative arrival times of sig-
nals, the result may be a glitch, which is an unwanted state or output. A circuit
that can produce a glitch is said to have a hazard. The hazard may or may not
manifest itself as a glitch, depending on the operating conditions of the circuit at
a particular time.

In order to achieve synchronization in a controlled fashion, a clock signal is pro-
vided, to which every state-dependent circuit (such as a flip-flop) synchronizes
itself by accepting inputs only at discrete times. A clock circuit produces a con-
tinuous stream of 1’s and 0’s, as indicated by the waveform shown in Figure

A-45. The time required for the clock to rise, then fall, then begin to rise again is
called the cycle time. The square edges that are shown in the waveform represent
an ideal square wave. In practice, the edges are rounded because instantaneous
rise and fall times do not occur.

The clock rate is taken as the inverse of the cycle time. For a cycle time of 25
ns/cycle, the corresponding clock rate is 1/25 cycles/ns, which corresponds to
40,000,000 cycles per second, or 40 MHz (for 40 megahertz). A list of other
abbreviations that are commonly used to specify cycle times and clock rates is
shown in Table A.2.

We can make use of the clock signal to eliminate the hazard by creating a
clocked S-R flip-flop, which is shown in Figure A-46. The symbol CLK labels
the clock input. Now, S and R cannot change the state of the flip-flop until the

Cycle time = 25ns

A
m

pl
itu

de

Time

Figure A-45 A clock waveform.

497

clock is high. Thus, as long as S and R settle into stable states while the clock is
low, then when the clock makes a transition to 1, the stable value will be stored
in the flip-flop.

A.11.3 THE D FLIP-FLOP AND THE MASTER-SLAVE CONFIGURATION

A disadvantage of the S-R flip-flop is that in order to store a 1 or a 0, we need to
apply a 1 to a different input (S or R) depending on the value that we want to
store. An alternative configuration that allows either a 0 or a 1 to be applied at
the input is the D flip-flop which is shown in Figure A-47. The D flip-flop is
constructed by placing an inverter across the S and R inputs of an S-R flip-flop.
Now, when the clock goes high, the value on the D line is stored in the flip-flop.

The D flip-flop is commonly used in situations where there is feedback from the
output back to the input through some other circuitry, and this feedback can

m

µ

n

p

f

a

10–3

10–6

10–9

10–12

10–15

10–18

K

M

G

T

P

E

103

106

109

1012

1015

1018

Prefix Abbrev. Quantity

milli

micro

nano

pico

femto

atto

Kilo

Mega

Giga

Tera

Peta

Exa

Prefix Abbrev. Quantity

Table A.2 Standard scientific prefixes for cycle times and clock rates.

Q

Q

S

CLK

R

Timing Behavior

Q

S

R

∆τ

Q

2∆τ

CLK

Figure A-46 A clocked S-R flip-flop.

498

sometimes cause the flip-flop to change states more than once per clock cycle. In
order to ensure that the flip-flop changes state just once per clock pulse, we break
the feedback loop by constructing a master-slave flip-flop as shown in Figure

A-48. The master-slave flip-flop consists of two flip-flops arranged in tandem,
with an inverted clock used for the second flip-flop. The master flip-flop changes
when the clock is high, but the slave flip-flop does not change until the clock is
low, thus the clock must first go high and then go low before the input at D in
the master is clocked through to QS in the slave. The triangle shown in the sym-
bol for the master-slave flip-flop indicates that transitions at the output occur
only on a rising (0 to 1 transition) or falling (1 to 0 transition) edge of the clock.
Transitions at the output do not occur continuously during a high level of the
clock as for the clocked S-R flip-flop. For the configuration shown in Figure
A-48, the transition at the output occurs on the falling edge of the clock.

A level-triggered flip-flop changes state continuously while the clock is high (or
low, depending on how the flip-flop is designed). An edge-triggered flip-flop

Q

Q

D

CLK

Circuit

D

Q

Q

C

Symbol

Timing Behavior

Q

D

∆τ

Q

2∆τ

CLK

2∆τ

∆τ

Figure A-47 A clocked D flip-flop. The letter ‘C’ denotes the clock input in the symbol

form.

Symbol

D

Q

Q

Circuit

D

CLK

D QM

C

D

QS

QS

C

Master Slave

Timing Behavior

QS

D

∆τ

QS

2∆τ

CLK

∆τ

2∆τ

QM

3∆τ 2∆τ

Figure A-48 A master-slave flip-flop.

499

changes only on a high-to-low or low-to-high clock transition. Some textbooks
do not place a triangle at the clock input in order to distinguish between
level-triggered and edge-triggered flip-flops, and indicate one form or the other
based on their usage or in some other way. In practice the notation is held some-
what loosely. Here, we will use the triangle symbol and will also make the
flip-flop type clear from the way it is used.

A.11.4 J-K AND T FLIP-FLOPS

In addition to the S-R and D flip-flops, the J-K and T flip-flops are very com-
mon. The J-K flip-flop behaves similarly to an S-R flip-flop, except that it flips its
state when both inputs are set to 1. The T flip-flop (for “toggle”) alternates states,
as when the inputs to a J-K flip-flop are set to 1. Logic diagrams and symbols for
the clocked J-K and T flip-flops are shown in Figure A-49 and Figure A-50,

respectively.

A problem with the toggle mode operation for the J-K flip-flop is that when J
and K are both high when the clock is also high, the flip-flop may toggle more
than once before the clock goes low. This is another situation in which a mas-
ter-slave configuration is appropriate. A schematic diagram for a master-slave J-K

Q

Q
J

CLK

J

Q

Q

K

Circuit
Symbol

K

Figure A-49 Logic diagram and symbol for a basic J-K flip-flop.

J

Q

Q

K

Circuit

Q

Q

Symbol

1

T T

Figure A-50 Logic diagram and symbol for a T flip-flop.

500

flip-flop is shown in Figure A-51. The “endless toggle” problem is now fixed with

this configuration, but there is a new problem of “one’s catching.” If an input is
high for any time while the clock is high, and if the input is simply in a transition
mode before settling, the flip-flop will “see” the 1 as if it was meant to be a valid
input. The situation can be avoided if hazards are eliminated in the circuit that
provides the inputs.

We can solve the one’s catching problem by constructing edge triggered flip-flops
in which only the transition of the clock (low to high for positive edge triggered
and high to low for negative edge triggered) causes the inputs to be sampled, at
which point the inputs should be stable.

Figure A-52 shows a configuration for a negative edge triggered D flip-flop.
When the clock is high, the top and bottom latches output 0’s to the main (out-
put) S-R latch. The D input can change an arbitrary number of times while the
clock is high without affecting the state of the main latch. When the clock goes
low, only the settled values of the top and bottom latches affect the state of the
main latch. While the clock is low, if the D input changes, the main flip-flop is
not affected.

A.12 Design of Finite State Machines
Refer again to the classical model of an FSM shown in Figure A-40. The delay
elements can be implemented with master-slave flip-flops, and the synchroniza-
tion signal can be provided by the clock. In general, there should be a flip-flop on
each feedback line. Notice that we can label the flip-flops in any convenient way
as long as the meaning is clear. In Figure A-40, the positions of the inputs Di and
the outputs Qi have been interchanged with respect to the flip-flop figures in the
previous section.

Q

Q
J

CLK

J

Q

Q

K

Circuit
Symbol

K

Figure A-51 Logic diagram and symbol for a master-slave J-K flip-flop.

501

Consider a modulo(4) synchronous counter FSM, which counts from 00 to 11
and then repeats. A block diagram of a synchronous counter FSM is shown in
Figure A-53. The RESET (positive logic) function operates synchronously with

respect to the clock. The outputs appear as a sequence of values on lines q0 and
q1 at time steps corresponding to the clock. As the outputs are generated, a new
state s1s0 is generated that is fed back to the input.

Q

Q

CLK

D

R

S

Main latch

Stores D

Stores D

Figure A-52 Negative edge triggered D flip-flop.

3-bit
Synchronous

Counter

0 0 0 0 1 0 1 1 0 0RESET q0

4 3 2 1 04 3 2 1 0 Time (t)Time (t)

0 1 0 1 0

D

Q

Q

CLK

s0

s1

D

Q

Q

q1

s0

s1

Figure A-53 A modulo(4) counter.

502

We can consider designing the counter by enumerating all possible input condi-
tions and then creating four functions for the output q1q0 and the state s1s0. The
corresponding functions can then be used to create a combinational logic circuit
that implements the counter. Two flip-flops are used for the two state bits.

How do we know that two state bits are needed on the feedback path? The fact
is, we may not know in advance how many state bits are needed, and so we
would like to have a more general approach to designing a finite state machine.
For the counter, we can start by constructing a state transition diagram as
shown in Figure A-54, in which each state represents a count from 00 to 11, and

the directed arcs represent transitions between states. State A represents the case
in which the count is 00, and states B, C, and D represent counts 01, 10, and 11
respectively.

Assume the FSM is initially in state A. There are two possible input conditions: 0
or 1. If the input (RESET) line is 0 then the FSM advances to state B and out-
puts 01. If the RESET line is 1, then the FSM remains in state A and outputs 00.
Similarly, when the FSM is in state B, the FSM advances to state C and outputs
10 if the RESET line is 0, otherwise the FSM returns to state A and outputs 00.
Transitions from the remaining states are interpreted similarly.

A B1/00

0/01

1/00

Output 00
state

Output 01
state

RESET

q1

C D

Output 10
state

Output 11
state

q0

0/10
1/00

0/00

0/11

1/00

Figure A-54 State transition diagram for a modulo(4) counter.

503

Once we have created the state transition diagram, we can rewrite it in tabular
form as a state table as shown in Figure A-55. The present states are shown at the

left, and the input conditions are shown at the top. The entries in the table corre-
spond to next state/output pairs which are taken directly from the state transition
diagram in Figure A-54. The highlighted entry corresponds to the case in which
the present state is B and the input is 0. For this case, the next state is C and the
next output is 10.

After we have created the state table, we encode the states in binary. Since there
are four states, we need at least two bits to uniquely encode the states. We arbi-
trarily choose the encoding: A = 00, B = 01, C = 10, and D = 11, and replace
every occurrence of A, B, C, and D with their respective encodings as shown in
Figure A-56. In practice, the state encoding may affect the form of the resulting

circuit, but the circuit will be logically correct regardless of the encoding.

From the state table, we can extract truth tables for the next state and output
functions as shown in Figure A-57. The subscripts for the state variables indicate
timing relationships. st is the present state and st+1 is the next state. The sub-
scripts are commonly omitted since it is understood that the present signals
appear on the right side of the equation and the next signals appear on the left

Present state

Input RESET

0 1

A B/01 A/00
B C/10 A/00

Next state Output

C D/11 A/00
D A/00 A/00

Figure A-55 State table for a modulo(4) counter.

Present
state (St)

Input RESET

0 1

A:00 01/01 00/00
B:01 10/10 00/00

C:10 11/11 00/00
D:11 00/00 00/00

Figure A-56 State table with state assignments for a modulo(4) counter.

504

side of the equation. Notice that s0(t+1) = q0(t+1) and s1(t+1) = q1(t+1), so we
only need to implement s0(t+1) and s1(t+1) and tap the outputs for q0(t+1) and
q1(t+1).

Finally, we implement the next state and output functions using logic gates and
master-slave D flip-flops for the state variables as shown in Figure A-58.

EXAMPLE: A SEQUENCE DETECTOR

As another example, we would like to design a machine that outputs a 1 when
exactly two of the last three inputs are 1. For example, an input sequence of
011011100 produces an output sequence of 001111010. There is a one-bit serial

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

s1(t) s0(t)

0
0
0
0
1
1
1
1

RESET
r(t)

01
10
11
00
00
00
00
00

s1s0(t+1)

01
10
11
00
00
00
00
00

q1q0(t+1)

s1(t+1) = r(t)s1(t)s0(t) + r(t)s1(t)s0(t)

s0(t+1) = r(t)s1(t)s0(t) + r(t)s1(t)s0(t)

q1(t+1) = r(t)s1(t)s0(t) + r(t)s1(t)s0(t)

q0(t+1) = r(t)s1(t)s0(t) + r(t)s1(t)s0(t)

Figure A-57 Truth table for the next state and output functions for a modulo(4) counter.

CLK

QD

Q

s1

QD

Q

s0

RESET

q1

q0

Figure A-58 Logic design for a modulo(4) counter.

505

input line, and we can assume that initially no inputs have been seen. For this
problem, we will use D flip-flops and 8-to-1 MUXes.

We start by constructing a state transition diagram, as shown in Figure A-59.

There are eight possible three-bit sequences that our machine will observe: 000,
001, 010, 011, 100, 101, 110, and 111. State A is the initial state, in which we
assume that no inputs have yet been seen. In states B and C, we have seen only
one input, so we cannot output a 1 yet. In states D, E, F, and G we have only
seen two inputs, so we cannot output a 1 yet, even though we have seen two 1’s
at the input when we enter state G. The machine makes all subsequent transi-
tions among states D, E, F, and G. State D is visited when the last two inputs are
00. States E, F, and G are visited when the last two inputs are 01, 10, or 11,
respectively.

The next step is to create a state table as shown in Figure A-60, which is taken
directly from the state transition diagram. Next, we make a state assignment as
shown in Figure A-61a. We then use the state assignment to create a truth table
for the next state and output functions as shown in Figure Figure A-61b. The last
two entries in the table correspond to state 111, which cannot arise in practice,

A

B
0/0

1/0

C

D

E

F

G

0/0

1/0

0/0

1/0

0/0

1/0

1/0

1/1

0/01/1

0/0

0/1

Figure A-59 State transition diagram for sequence detector.

506

according to the state table in Figure A-61a. Therefore, the next state and output
entries do not matter, and are labeled as ‘d’ for don’t care.

Finally, we create the circuit, which is shown in Figure A-62. There is one
flip-flop for each state variable, so there are a total of three flip-flops. There are
three next state functions and one output function, so there are four MUXes.
Notice that the choice of s2, s1, and s0 for the MUX control inputs is arbitrary.
Any other grouping or ordering will also work.

X

0 1

A B/0 C/0

Present state

Input

B
C
D
E

D/0 E/0
F/0 G/0
D/0 E/0
F/0 G/1

F D/0 E/1
G F/1 G/0

Figure A-60 State table for sequence detector.

X
0 1

A: 000 001/0 010/0

Present state

Input

B: 001
C: 010
D: 011
E: 100

011/0 100/0
101/0 110/0
011/0 100/0
101/0 110/1

F: 101 011/0 100/1

S2S1S0 S2S1S0Z S2S1S0Z

G: 110 101/1 110/0

(a)

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

s0 x

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

s1

0
0
0
1
1
1
0
1
1
1
0
1
1
1
d
d

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

s2

(b)

0
1
1
0
0
1
1
0
0
1
1
0
0
1
d
d

1
0
1
0
1
0
1
0
1
0
1
0
1
0
d
d

0
0
0
0
0
0
0
0
0
1
0
1
1
0
d
d

zs0s1s2

Input and
state at
time t

Next state
and output at

time t+1

Figure A-61 State assignment and truth table for sequence detector.

507

EXAMPLE: A VENDING MACHINE CONTROLLER

For this problem, we will design a vending machine controller using D flip-flops
and a black box representation of a PLA (as in Figure A-35). The vending
machine accepts three U.S. coins: the nickel (5¢), the dime (10¢), and the quar-
ter (25¢). When the value of the inserted coins equals or exceeds 20¢, then the
machine dispenses the merchandise, returns any excess money, and waits for the
next transaction.

We begin by constructing a state transition diagram, as shown in Figure A-63. In

state A, no coins have yet been inserted, and so the money credited is 0¢. If a
nickel or dime is inserted when the machine is in state A, then the FSM makes a
transition to state B or state C, respectively. If a quarter is inserted, then the

QD

Q
S2

000

001

010

011

100

101

110

111

0

x

1

x

1

x

1

0

QD

Q
S1

000

001

010

011

100

101

110

111

x

0

QD

Q
S0

000

001

010

011

100

101

110

1110

000

001

010

011

100

101

110

111

0

0

0

0

x

0

Z

xx

CLK

x

xx

x

xx

x

xx

xx

xx

xx

xx

xx

xx

x

xx

Figure A-62 Logic diagram for sequence detector.

A B D

C

0 ¢ 5 ¢ 15 ¢

10 ¢

N/000

Q/101

Q/110

N = Nickel
D = Dime
Q = Quarter

N/100 D/110

Q/111

D/000

N/000

D/100
Q/111

D/000 N/000

A dime is
inserted

1/0 = Dispense/Do not
dispense merchandise

1/0 = Return/Do not return
a nickel in change

1/0 = Return/Do not
return a dime in change

Figure A-63 State transition diagram for vending machine controller.

508

money credited to the customer is 25¢. The controller dispenses the merchan-
dise, returns a nickel in change, and remains in state A. This is indicated by the
label “Q/110” on the state A self-loop. States B and C are then expanded, pro-
ducing state D which is also expanded, producing the complete FSM for the
vending machine controller.

Notice the behavior that is specified by the state transition diagram when a quar-
ter is inserted when the FSM is in state D. Rather than dispensing product,
returning 20¢, and returning to state A, the machine dispenses product, returns
15¢, and makes a transition to state B. The machine keeps the 5¢, and awaits the
insertion of more money! In this case, the authors allowed this behavior for the
sake of simplicity, as it keeps the number of states down.

From the FSM we construct the state table shown in Figure A-64a. We then

make an arbitrary state assignment and encode the symbols N, D, and Q in
binary as shown in Figure A-64b. Finally, we create a circuit diagram, which is
shown in Figure A-65a. There are two state bits, so there are two D flip-flops.
The PLA takes four inputs for the present-state bits and the x1x0 coin bits. The
PLA produces five outputs for the next-state bits and the dispense and return
nickel/return dime bits. (We can assume that the clock input is asserted only on
an event such as an inserted coin.)

Notice that we have not explicitly specified the design of the PLA itself in obtain-
ing the FSM circuit in Figure A-65a. At this level of complexity, it is common to
use a computer program to generate a truth table, and then feed the truth table
to a PLA design program. We could generate the truth table and PLA design by
hand, of course, as shown in Figure A-65b and Figure A-65c.

N
00 01

A B/000 C/000

P.S.

Input

B
C
D

C/000 D/000
D/000 A/100
A/100 A/110

(a)

D
10

A/110
A/101
A/111
B/111

Q N

00 01

A:00 01/000 10/000

P.S.

Input

10/000 11/000
11/000 00/100
00/100 00/110

(b)

D

10

00/110
00/101
00/111
01/111

Q

B:01
C:10
D:11

s1s0

x1x0 x1x0 x1x0

z2z1z0s1s0 /

Figure A-64 (a) State table for vending machine controller; (b) state assignment for vending ma-

chine controller.

509

A.13 Mealy vs. Moore Machines
The outputs of the FSM circuits we have studied so far are determined by the
present states and the inputs. The states are maintained in falling edge triggered
flip-flops, and so a state change can only occur on the falling edge of the clock.
Any changes that occur at the inputs have no effect on the state as long as the
clock is low. The inputs are fed directly through the output circuits, however,
with no intervening flip-flops. Thus a change to an input at any time can cause a
change in the output, regardless of whether the clock is high or low. In Figure
A-65, a change at either the x1 or x0 inputs will propagate through to the z2z1z0
outputs independent of the level of the clock. This organization is referred to as
the Mealy model of an FSM.

In the Mealy model, the outputs change as soon as the inputs change, and so
there is no delay introduced by the clock. In the Moore model of an FSM, the
outputs are embedded in the state bits, and so a change at the outputs occurs on
the clock pulse after a change at the inputs. Both models are used by circuit
designers, and either model may be encountered outside of this textbook. In this

s1 s0 x1 x0

s1 s0 z2 z1 z0

0

1

2

4

5

6

8

9

10

12

13

14

(c)

5 × 5
PLA

z1
z0

x1
x0

(a)

DQ
s0

DQ
s1

CLK

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

1
0
0
d
0
1
0
d
1
0
0
d
0
0
1
d

0
0
1
d
0
0
1
d
0
1
1
d
1
1
1
d

0
0
1
d
0
0
0
d
0
0
1
d
0
1
1
d

0
0
0
d
0
0
1
d
0
0
1
d
0
0
1
d

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

s1 s0 x1 x0

Present
state Coin

0
1
0
d
1
1
0
d
1
0
0
d
0
0
0
d

s1 s0 z2 z1 z0

N ext
state

D ispense
Return nickel

Base 10
equivalent

(b)

R eturn dim e

z2

Figure A-65 (a) FSM circuit, (b) truth table, and (c) PLA realization for vending

machine controller.

510

section we simply highlight the differences through an example.

An example of a Moore FSM is shown in Figure A-66. The FSM counts from 0

to 3 in binary and then repeats, similar to the modulo(4) counter shown in Fig-
ure A-58. The machine only counts when x = 1, otherwise the FSM maintains its
current state. Notice that the outputs are embedded in the state variables, and so
there is no direct path from the input to the outputs without an intervening
flip-flop.

The Mealy model might be considered to be more powerful than the Moore
model because in a single clock cycle, a change in the output of one FSM can
ripple to the input of another FSM, whose output then changes and ripples to
the next FSM, and so on. In the Moore model, lock-step synchronization is
strictly maintained, and so this ripple scenario does not occur. Spurious changes
in the output of an FSM thus have less influence on the rest of the circuit in the
Moore model. This simplifies circuit analysis and hardware debugging, and for
these situations, the Moore model may be preferred. In practice, both models are
used.

A.14 Registers
A single bit of information is stored in a D flip-flop. A group of N bits, making
up an N-bit word, can be stored in N D flip-flops organized as shown in Figure
A-67 for a four-bit word. We refer to such an arrangement of flip-flops as a “reg-
ister.” In this particular configuration, the data at inputs Di are loaded into the
register when the Write and Enable lines are high, synchronous with the clock.

QD

Q
S0

QD

Q
S1

CLK

0

1

00

01
10

11

00
01

10
11

x z0

z1

00 01

11 10

0 0

0 0

1

11

1

z0 z1 4-to-1
MUX

4-to-1
MUX

Figure A-66 A Moore binary counter FSM.

511

The contents of the register can be read at outputs Qi only if the Enable line is
high, since the tri-state buffers are in the electrically disconnected state when the
Enable line is low. We can simplify the illustration by just marking the inputs
and outputs as shown in Figure A-68.

A shift register copies the contents of each of its flip-flops to the next, while
accepting a new input at one end and “spilling” the contents at the other end,
which makes cascading possible. Consider the shift register shown in Figure
A-69. The register can shift to the left, shift to the right, accept a parallel load, or
remain unchanged, all synchronous with the clock. The parallel load and parallel
read capabilities allow the shift register to function as either a serial-to-parallel
converter or as a parallel-to-serial converter.

A.15 Counters
A counter is a different form of a register in which the output pattern sequences
through a range of binary numbers. Figure A-70 shows a configuration for a
modulo(8) counter that steps through the binary patterns: 000, 001, 010, 011,
100, 101, 110, 111 and then repeats. Three J-K flip-flops are placed in toggle
mode, and each clock input is ANDed with the Q output from the previous
stage, which successively halves the clock frequency. The result is a progression of

QD

D3

Write (WR)

Enable (EN)

Q3

QD

D2

Q2

QD

D1

Q1

QD

D0

Q0

CLK

Figure A-67 A four-bit register.

D3

Q3

D2

Q2

D1

Q1

D0

Q0

WR

EN

Figure A-68 Abstract representation of a four-bit register.

512

toggle flip-flops operating at rates that differ in powers of two, corresponding to

D3

Q3

D2

Q2

D1

Q1

D0

Q0

Shift right input
Shift right output

Shift right input
Shift left output

c0c1

Control Function
c0c1

0
0
1
1

0
1
0
1

No change
Shift left
Shift right
Parallel load

QD

D3

Enable (EN)

Q3

QD

D2

Q2

QD

D1

Q1

QD

D0

Q0

CLK

c0

c1

Shift right input

c0

c1

Shift right
output

Shift right
input

Shift left output

Figure A-69 Internal layout and block diagram for a left/right shifter with parallel

read/write capabilities.

Enable (EN)

QJ

Q2

CLK
K

1 QJ

Q1

K

1 QJ

Q0

K

1

RESET

Q2 Q1 Q0

ENABLE

MOD(8) COUNTER

RESET

Timing Behavior

Q0

CLK

Q1

Q2

Figure A-70 A modulo(8) counter.

513

the sequence of binary patterns from 000 to 111.

Notice that we have added an active low asynchronous RESET line to the
counter, which resets it to 000, independent of the states of the clock or enable
lines. Except for the flip-flop in the least significant position, the remaining
flip-flops change state according to changes in states from their neighbors to the
right rather than synchronous with respect to the clock. It is similar in function
to the modulo(4) counter in Figure A-58, but is more easily extended to large
sizes because it is not treated like an ordinary FSM for design purposes, in which
all states are enumerated. It is, nevertheless, an FSM.

� SUMMARY

In theory, any Boolean function can be represented as a truth table, which can
then be transformed into a two-level Boolean equation and implemented with
logic gates. In practice, collections of logic gates may be grouped together to form
MSI components, which contain on the order of a few to a few dozen logic gates.
MUXes and PLAs are two types of MSI components that are used for implement-
ing functions. Decoders are used for enabling a single output line based on the bit
pattern at the input, which translates a logical encoding into a spatial location.
There are several other types of MSI components as well. We find ourselves using
MSI components in abstracting away the gate level complexity of a digital circuit.
LSI and VLSI circuits abstract away the underlying circuit complexity at higher
levels still.

A finite state machine (FSM) differs from a combinational logic unit (CLU) in
that the outputs of a CLU at any time are strictly a function of the inputs at that
time whereas the outputs of an FSM are a function of its past history of inputs.

� Further Reading
Shannon’s contributions to switching algebra (Shannon, 1938; Shannon, 1949)
are based on the work of (Boole, 1854), and form the basis of switching theory as
we now know it. There is a vast number of contributions to Boolean algebra that
are too great to enumerate here. (Kohavi, 1978) is a good general reference for
CLUs and FSMs. A contribution by (Davidson, 1979) covers a method of
decomposing NAND based circuits, which is of interest because some computers

514

are composed entirely of NAND gates.

(Xilinx, 1992) covers the philosophy and practical aspects of the gate array
approach, and describes configurations of the Xilinx line of field programmable
gate arrays (FPGAs).

Some texts distinguish between a flip-flop and a latch. (Tanenbaum, 1999) dis-
tinguishes between the two by defining a flip-flop to be edge-triggered, whereas a
latch is level-triggered. This may be the correct definition, but in practice, the
terms are frequently interchanged and any distinction between the two is
obscured.

Boole, G., An Investigation of the Laws of Thought, Dover Publications, Inc., New
York, (1854).

Davidson, E. S., “An algorithm for NAND decomposition under network con-
straints,” IEEE Trans. Comp., C-18, (12), 1098, (1979).

Kohavi, Z., Switching and Finite Automata Theory, 2/e, McGraw-Hill, New York,
(1978).

Shannon, C. E., “A Symbolic Analysis of Relay and Switching Circuits,” Trans.
AIEE, 57, pp. 713-723, (1938).

Shannon, C. E., “The Synthesis of Two-Terminal Switching Circuits,” Bell Sys-
tem Technical Journal, 28, pp. 59-98, (1949).

Tanenbaum, A., Structured Computer Organization, 4/e, Prentice Hall, Engle-
wood Cliffs, New Jersey, (1999).

Xilinx, The Programmable Gate Array Data Book, Xilinx, Inc., 2100 Logic Drive,
San Jose, California, (1992).

� PROBLEMS
A.1 Figure A-13 shows an OR gate implemented with a NAND gate and

inverters, and Figure A-14 shows inverters implemented with NAND gates.
Show the logic diagram for an AND gate implemented entirely with NAND
gates.

515

A.2 Draw logic diagrams for each member of the computationally complete
set {AND, OR, NOT} using only the computationally complete set {NOR}.

A.3 Given the logic circuit shown below, construct a truth table that describes
its behavior.

A.4 Construct a truth table for a three-input XOR gate.

A.5 Compute the gate input count of the 4-to-2 priority encoder shown in
Figure A-32. Include the inverters in your count.

A.6 Design a circuit that implements function f below using AND, OR, and
NOT gates.

A.7 Design a circuit that implements function g below using AND, OR, and
NOT gates. Do not attempt to change the form of the equation.

A.8 Are functions f and g shown below equivalent? Show how you arrive at
your answer.

A.9 Write a Boolean equation that describes function F in the circuit shown
below. Put your answer in SOP form (without parentheses).

A.10 A four-bit comparator is a component that takes two four-bit words as
inputs and produces a single bit of output. The output is a 0 if the words are
identical, and is a 1 otherwise. Design a four-bit comparator with any of the

F

C

G

A

B

f A B C, ,() ABC ABC ABC+ +=

g A B C D E, , , ,() A BC BC+() B CD E+()+=

f A B C, ,() ABC ABC+= g A B C, ,() A C⊕()B=

C

F
A

B

516

logic gates you have seen in this appendix. Hint: Think of the four-bit com-
parator as four one-bit comparators combined in some fashion.

A.11 Redraw the circuit shown below so that the bubble matching is correct.
The overbars on the variable and function names indicate active low logic.

A.12 Use two 4-to-1 MUXes to implement the functions:

A.13 Use one 4-to-1 MUX to implement the majority function.

A.14 Use a 2-to-4 decoder and an OR gate to implement the XOR of two
inputs A and B.

A.15 Draw a logic diagram that uses a decoder and two OR gates to implement
functions F and G below. Be sure to label all lines in your diagram.

A.16 Design a circuit using only 2-to-1 multiplexers that implements the func-
tion of an 8-to-1 multiplexer. Show your design in the form of a logic dia-
gram, and label all of the lines.

A.17 Since any combinational circuit can be constructed using only two-input

F

x0

x1

x2

x3

x4

Active low

0
1
0
1

B

0
0
1
1

A

0
1
1
0

0
0
0
1

F1F0

F A B C, ,() ABC ABC ABC ABC+ + +=

G A B C, ,() ABC ABC+=

517

NAND gates, the two-input NAND is called a universal logic gate. The
two-input NOR is also a universal logic gate; however, AND and OR are not.
Since a two-input NAND can be constructed using only 4-to-1 MUXes (it
can be done with one 4-to-1 MUX), any combinational circuit can be con-
structed using only 4-to-1 MUXes. Consequently, the 4-to-1 MUX is also a
universal device. Show that the 1-to-2 DEMUX is a universal device by con-
structing a two-input NAND using only 1-to-2 DEMUXes. Draw a logic dia-
gram. Hint: Compose the NAND from an AND and an inverter each made
from 1-to-2 DEMUXes.

A.18 A seven segment display, like you might find in a calculator, is shown
below. The seven segments are labeled a through g. Design a circuit that takes
as input a four-bit binary number and produces as output the control signal
for just the b segment (not the letter ‘b’, which has the 1011 code). A 0 at the
output turns the segment off, and a 1 turns the segment on. Show the truth
table and an implementation using a single MUX, and no other logic compo-
nents. Label all of the lines of the MUX.

A.19 Implement function F shown in the truth table below using the 16-to-1

a

b cd

g

e f

0000 0001 0010 0011 0100 0101 0110 0111

1000 1001 1010 1011 1100 1101 1110 1111

518

MUX shown. Label all of the lines, including the unmarked control line.

A.20 A strict encoder takes 2N binary inputs, of which exactly one input is 1 at
any time and the remaining inputs are 0, and produces an N-bit coded binary
output that indicates which of the N inputs is high. For this problem, create a
truth table for a 4-to-2 strict encoder in which there are four inputs: A, B, C,
and D, and two outputs: X and Y. A and X are the most significant bits.

A.21 Consider a combinational logic circuit with three inputs a, b, and c, and
six outputs u, v, w, x, y, and z. The input is an unsigned number between 0
and 7, and the output is the square of the input. The most significant bit of
the input is a, and the most significant bit of the output is u. Create a truth
table for the six functions.

A.22 Consider the function f(a, b, c, d) that takes on the value 1 if and only if
the number of 1’s in b and c is greater than or equal to the number of 1’s in a
and d.

(a) Write the truth table for function f.

(b) Use an 8-to-1 multiplexer to implement function f.

A.23 Create a truth table for a single digit ternary (base 3) comparator. The ter-
nary inputs are A and B which are each a single ternary digit wide. The output
Z is 0 for A < B, 1 for A = B, and 2 for A > B. Using this truth table as a guide,
rewrite the truth table in binary using the assignment (0)3 → (00)2, (1)3 →

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B C

0
0
0
0
1
1
1
1

A

0
1
1
0
0
0
0
1

F

A C

F

0000
0001
0010
0011

B

0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

519

(01)2, and (2)3 → (10)2.

A.24 Prove the consensus theorem for three variables using perfect induction.

A.25 Use the properties of Boolean algebra to prove DeMorgan’s theorem alge-
braically.

A.26 Can an S-R flip-flop be constructed with two cross-coupled XOR gates?
Explain your answer.

A.27 Modify the state transition diagram in the Vending Machine example to
provide more realistic behavior (that is, it returns all excess money) when a
quarter is inserted in state D.

A.28 Create a state transition diagram for an FSM that sorts two binary words
A and B, most significant bit first, onto two binary outputs GE and LT. If A is
greater than or equal to B, then A appears on the GE line and B appears on the
LT line. If B is greater than A, then B appears on the GE line and A appears on
the LT line.

A.29 Design a circuit that produces a 1 at the Z output when the input X
changes from 0 to 1 or from 1 to 0, and produces a zero at all other times. For
the initial state, assume a 0 was last seen at the input. For example, if the input
sequence is 00110 (from left to right), then the output sequence is 00101.
Show the state transition diagram, the state table, state assignment, and the
final circuit using MUXes.

A.30 Design an FSM that outputs a 1 when the last three inputs are 011 or
110. Just show the state table. Do not draw a circuit.

A.31 Design a finite state machine that takes two binary words X and Y in serial
form, least significant bit (LSB) first, and produces a 1-bit output Z that is
true when X > Y and is 0 for X ≤ Y. When the machine starts, assume that X =
Y. That is, Z produces 0’s until X > Y. A sample input sequence and the corre-

520

sponding output sequence are shown below.

A.32 Create a state transition diagram for an FSM that sorts two ternary inputs,
most significant digit first, onto two ternary outputs GE and LT. If A is greater
than or equal to B, then A appears on the GE line and B appears on the LT
line, otherwise B appears on the GE line and A appears on the LT line. A sam-
ple input/output sequence is shown below. Use the ternary symbols 0, 1, and
2 when you label the arcs.

A.33 Create a state transition diagram for a machine that computes an even
parity bit z for its two-bit input x1x0. The machine outputs a 0 when all of the
previous two-bit inputs collectively have an even number of 1’s, and outputs a
1 otherwise. For the initial state, assume that the machine starts with even
parity.

A.34 Given the state transition diagram shown below,

(a) Create a state table.

(b) Design a circuit for the state machine described by your state table using
D flip-flop(s), a single decoder, and OR gates. For the state assignment, use
the bit pattern that corresponds to the position of each letter in the alphabet,
starting from 0. For example, A is at position 0, so the state assignment is 000;

Serial
comparator

X

Y

Z1 0 1 1 0

1 1 1 0 0
0 0 1 1 0

Input B: 0 2 1 2 0 2 1 1

Output LT: 0 2 1 1 2 0 1 2
Time: 0 1 2 3 4 5 6 7

Input A: 0 2 1 1 2 0 1 2

Output GE: 0 2 1 2 0 2 1 1

521

B is at position 1, so the state assignment is 001, and so on.

A.35 Redraw the circuit shown in Figure A-16 using AND and OR gates that
have fan-in = 2.

A.36 Suppose that you need to implement an N-input AND gate using only
three-input AND gates. What is the minimum number of gate delays required
to implement the N-input AND gate? A single AND gate has a gate delay of
1; two cascaded AND gates have a combined gate delay of 2, etc.

0/0

A

B C

D E

1/0

0/0 0/0

1/0 1/0

0/0
1/0

0/1
1/1

522

523

APPENDIX B: REDUCTION
OF DIGITAL LOGIC

B.1 Reduction of Combinational Logic and Sequential Logic

In Appendix A, we focused primarily on the functional correctness of digital
logic circuits. Only a small amount of consideration was given to the possibility
that there may be more than one way to design a circuit, with some designs being
better than others in terms of component count (that is, the numbers and sizes of
the logic gates.)

In this appendix, we take a systematic approach to reducing the numbers of com-
ponents in a design. We first look at reducing the sizes of combinational logic
expressions, which loosely correspond to the numbers and sizes of the logic gates
in an implementation of a digital circuit. We then look at reducing the numbers
of states in finite state machines (FSMs), and explore a few areas of FSM design
that impact the numbers and sizes of logic gates in implementations of FSMs.

B.2 Reduction of Two-Level Expressions

It many cases the canonical

sum-of-products

 (SOP) or

product-of-sums

 (POS)
forms are not minimal in terms of their number and size. Since a smaller Boolean
equation translates to a lower gate input count in the target circuit, reduction of
the equation is an important consideration when circuit complexity is an issue.

Three methods of reducing Boolean equations are described in the sections that
follow:

algebraic reduction

,

Karnaugh map (K-Map) reduction

, and

tabular
reduction

. The algebraic method forms the basis for the other two methods. It is
also the most abstract method, relying as it does on only the theorems of Boolean
algebra.

The K-map and tabular methods are in fact pencil-and-paper implementations

 B

524

of the algebraic method. We discuss them because they allow the student to visu-
alize the reduction process, and to thus have a better intuition for how the pro-
cess works. These manual processes can be used effectively to minimize functions
that have (about) six or fewer variables. For larger functions, a computer-adided
design (CAD) approach is generally more effective.

B.2.1

THE ALGEBRAIC METHOD

The algebraic method applies the properties of Boolean algebra that were intro-
duced in Section A.5 in a systematic manner to reduce expression size. Consider
the Boolean equation for the majority function, which is repeated below from
Appendix A:

(B.1)

The properties of Boolean algebra can be applied to reduce the equation to a
simpler form as shown in equations B.2 – B.4:

Distributive property

(B.2)

Complement property

(B.3)

Identity property

(B.4)

The corresponding circuit for Equation B.4 is shown in Figure B-1. In compari-
son with the majority circuit shown in Figure A-16, the gate count is reduced
from 8 to 6 and the gate input count is reduced from 19 to 13.

We can reduce Equation B.4 further. By applying the property of idempotence,
we obtain Equation B.5, in which we have reintroduced the minterm

ABC

.

Idempotence property

(B.5)

We can then apply the distributive, complement, and identity properties again
and obtain a simpler equation as shown below:

Distributive property

(B.6)

Complement property

(B.7)

F ABC ABC ABC ABC+ + +=

F ABC ABC AB C C+()+ +=

F ABC ABC AB 1()+ +=

F ABC ABC AB+ +=

F ABC ABC AB ABC+ + +=

F ABC AC B B+() AB+ +=

F ABC AC 1() AB+ +=

525

Identity property

(B.8)

Equation B.8 has a smaller gate input count of 11. We iterate this method one
more time and reduce the equation further as shown below:

Idempotence property

(B.9)

Distributive property

(B.10)

Complement property

(B.11)

Identity property

(B.12)

Equation B.12 is now in its minimal two-level form, and can be reduced no fur-
ther.

B.2.2

THE K-MAP METHOD

The K-map method is, in effect, a graphical technique that can be used to visual-
ize the minterms in a function along with variables that are common to them.
Variables that are common to more than one minterm are candidates for elimi-
nation, as discussed above. The basis of the K-map is the

Venn diagram

, which
was originally devised to visualize concepts in set theory.

F

A CB

Figure B-1 Reduced circuit for the majority function.

F ABC AC AB+ +=

F ABC AC AB ABC+ + +=

F BC A A+() AC AB+ +=

F BC 1() AC AB+ +=

F BC AC AB+ +=

526

The Venn diagram for binary variables consists of a rectangle that represents the
binary universe in SOP form. A Venn diagram for three variables

A

,

B

, and

C

 is
shown in Figure B-2. Within the universe is a circle for each variable. Within its

circle a variable has the value 1, and outside of its circle a variable has the value 0.
Intersections represent the minterms, as shown in the figure.

Adjacent shaded regions are candidates for reduction since they vary in exactly
one variable. In the figure, region

ABC

 can be combined with each of the three
adjacent regions to produce a reduced form of the majority function. The K-map
is just a topological, or relationship-preserving transformation of the Venn dia-
gram. As in the Venn diagram, in the K-map, minterms that differ in exactly one
variable are placed next to each other.

A K-map for the majority function is shown in Figure B-3. Each cell in the

K-map corresponds to an entry in the truth table for the function, and since
there are eight entries in the truth table, there are eight cells in the corresponding
K-map. A 1 is placed in each cell that corresponds to a true entry. A 0 is entered
in each remaining cell, but can be omitted from the K-map for clarity as it is
here. The labeling along the top and left sides is arranged in a

Gray code

, in
which exactly one variable changes between adjacent cells along each dimension.

ABC

ABC’ AB’CAB’C’

A’BC

A’BC’ A’B’C

A’B’C’
B

A

C

Figure B-2 A Venn diagram representation for 3 binary variables (left) and for the majority function

(right).

00 01 11 10

0

1

AB
C

1

11 1

Figure B-3 A K-map for the majority function.

527

Adjacent 1’s in the K-map satisfy the condition needed to apply the complement
property of Boolean algebra. Since there are adjacent 1’s in the K-map shown in
Figure B-3, a reduction is possible. Groupings of adjacent cells are made into
rectangles in sizes that correspond to powers of 2, such as 1, 2, 4 and 8. These
groups are referred to as

prime implicants

. As groups increase in size above a
1-group (a group with one member), more variables are eliminated from a Bool-
ean expression, and so the largest groups that can be obtained are used. In order
to maintain the adjacency property, the shapes of groups must always be rectan-
gular, and each group must contain a number of cells that corresponds to an
integral power of two.

We start the reduction process by creating groups for 1’s

that can be contained in
no larger group

, and progress to larger groups until all cells with a 1 are covered at
least once. The adjacency criterion is crucial, since we are looking for groups of
minterms that differ in such a way that a reduction can be applied by using the
complement and identity properties of Boolean algebra, as in Equation B.13:

(B.13)

For the majority function, three groups of size two are made as shown in Figure

B-4. Every cell with a 1 has at least one neighboring cell with a 1, and so there are
no 1-groups. We look next at 2-groups, and find that all of the 1-cells are covered
by 2-groups. One of the cells is included in all three groups, which is allowed in
the reduction process by the property of idempotence. The complement prop-
erty eliminates the variable that differs between cells, and the resulting mini-
mized equation is obtained (Equation B.14):

(B.14)

The

BC

 term is derived from the 2-group , which reduces to
 and then to

BC

. The

AC

 term is similarly derived from the 2-group
, and the

AB

 term is similarly derived from the 2-group

ABC ABC+ AB C C+() AB 1() AB= = =

00 01 11 10

0

1

AB
C

1

11 1

Figure B-4 Adjacency groupings for the majority function.

M BC AC AB+ +=

ABC ABC+()
BC A A+()
ABC ABC+()

528

. The corresponding circuit is shown in Figure B-5. The gate

count is reduced from 8 to 4 as compared with the circuit shown in Figure A-16,
and the gate input count is reduced from 19 to 9.

Looking more closely at the method of starting with 1-cells that can be included
in no larger subgroups, consider what would happen if we started with the largest
groups first. Figure B-6 shows both approaches applied to the same K-map. The

reduction on the left is obtained by working with 1’s that can be included in no
larger subgroup, which is the method we have been using. Groupings are made
in the order indicated by the numbers. A total of four groups are obtained, each
of size two. The reduction on the right is obtained by starting with the largest
groups first. Five groups are thus obtained, one of size four and four of size two.

ABC ABC+()

F

A B C

Figure B-5 Minimized AND-OR circuit for the majority function.

00 01 11

1

01

11

11

10
AB

1

CD

10

00

01 11

01

11

10
CD

10

00

00
AB

1

1

1

1

1

2

3

4

1

11

1

1

1

1

1

2

4

5
1

F = A B C + A C D +
 A B C + A C D

F = B D + A B C + A C D +
 A B C + A C D

3

Figure B-6 Minimal K-map grouping (left) and K-map grouping that is not minimal (right) of a

K-map.

529

Thus, the minimal equation is not obtained if we start with the largest groups
first. Both equations shown in Figure B-6 describe the same function, and a logi-
cally correct circuit will be obtained in either case, however, one circuit will not
be produced from a minimized equation.

As another example, consider the K-map shown in Figure B-7. The edges of the

K-map wrap around horizontally and vertically, and the four corners are logically
adjacent. The corresponding minimized equation is shown in the figure.

Don’t cares

Now consider the K-maps shown in Figure B-8. The

d

 entries denote

don’t cares

,
which can be treated as 0’s or as 1’s, at our convenience. A don’t care represents a
condition that cannot arise during operation. For example, if

X

=1 represents the
condition in which an elevator is on the ground floor, and

Y

=1 represents the
condition in which the elevator is on the top floor, then

X

 and

Y

 will not both be
1 at the same time, although they may both be 0 at the same time. Thus, a truth
table entry for an elevator function that corresponds to

X

 =

Y

 = 1 would be
marked as a don’t care.

In Figure B-8, a more complex function is shown in which two different results
are obtained from applying the same minimization process. The K-map on the
left treats the top right don’t care as a 1 and the bottom left don’t care as a 0. The
K-map on the right treats the top right don’t care as a 0 and the bottom left don’t
care as a 1. Both K-maps result in minimized Boolean equations of the same size,

00 01 11

1

1

1

01

11

1

1

1

1

1

10
AB

1

CD

00

10

F = B C D + B D + A B

Figure B-7 The corners of a K-map are logically adjacent.

530

and so it is possible to have more than one minimal expression for a Boolean
function. In practice, one equation may be preferred over another, possibly in
order to reduce the fan-out for one of the variables, or to take advantage of shar-
ing minterms with other functions.

Higher Dimensional Maps

Figure B-9 shows a K-map in five variables. Each cell is adjacent to five others,

and in order to maintain the inverse property for adjacent cells, the map on the
left overlays the map on the right, creating a three-dimensional structure. Group-
ings are now made in three dimensions as shown in the figure. Since the

00 01 11

1

01

11

11

10
AB

1

CD

10 d

00 d

F = B C D + B D

01 11

1

01

11

11

10

1

CD

10 d

00 d

00
AB

F = A B D + B D

1 1

Figure B-8 Two different minimized equations are produced from the same K-map.

01 11

001

011

10
CDE

010

000

00
AB

01 11

101

111

10
CDE

110

100

00
AB

1 1

1 1

1 11 1

1 1

11

F = A C D E + A B D E + B E

Figure B-9 A K-map in five variables.

531

three-dimensional structure is mapped onto a two-dimensional page, some visu-
alization is required on the part of the reader.

A six-variable K-map is shown in Figure B-10, in which the maps are overlaid

four deep, in the order: top-left, top-right, bottom-right, and bottom left.
K-maps can be extended to higher dimensions for seven or more variables, but
the visualization and the tedium tend to dominate the process. An algorithmic
approach for more than four variables that lends itself to a simple implementa-
tion on a computer is described in Section B.2.3.

Multilevel circuits

It should be emphasized that a K-map reduces the size of a two-level expression,
as measured by the number and sizes of the terms. This process does not neces-
sarily produce a minimal form for multilevel circuits. For example, Equation
B.14 is in its minimal two-level form, since only two levels of logic are used in its
representation: three ANDed collections of variables (product terms) that are

001 011

001

011

010
DEF

010

000

000
ABC

001 011

101

111

010
DEF

110

100

000
ABC

101 111

001

011

110
DEF

010

000

100
ABC

101 111

101

111

110
DEF

110

100

100
ABC

1

11

1

1

1 1

1

G = B C E F + A B D E

Figure B-10 A K-map in six variables.

532

ORed together. The corresponding logic diagram that is shown in Figure B-5 has
a gate-input count of 9. A three-level form can be created by factoring out one of
the variables algebraically, such as A, as shown in Equation B.15.

(B.15)

The corresponding logic diagram that is shown in Figure B-11 has a gate input

count of 8, and thus a less complex circuit is realized by using a multilevel
approach. There is now a greater delay between the inputs and the outputs, how-
ever, and so we might create another measure of circuit complexity: the

gate
delay. A two-level circuit has a gate delay of two because there are two logic gates
on the longest path from an input to an output. The circuit shown in Figure
B-11 has a gate delay of three.

Although there are techniques that aid the circuit designer in discovering
trade-offs between circuit depth and gate input count, the development of algo-
rithms that cover the space of possible alternatives in reasonable time is only a
partially solved problem.

Map-Entered Variables

A simplified form for representing a function on a K-map is possible by allowing
variables to be entered in the cells. For example, consider the four-variable
K-map shown in Figure B-12. Only eight cells are used even though there are
four variables, which would normally require 24 = 16 cells. The map-entered
variable D is treated as a 1 for the purpose of grouping, which for this case
results in a one-group since there are no adjacent 1’s to the D cell. The resulting

M BC A B C+()+=

M

A B C

Figure B-11 A three-level circuit implements the majority function with a gate-input count of 8.

533

reduced equation is shown in the figure. Notice that the variable D appears in the
minterm , since D can assume a value of 0 or 1 even though we treated D
as a 1 for the purpose of forming the one-group.

The general procedure for producing a reduced expression from a K-map with
map-entered variables is to first obtain an expression for the 1-cells while treating
the map-entered variables as 0’s. Minterms are then added for each variable while
treating 1’s as don’t cares since the 1’s have already been covered. The process
continues until all variables are covered.

Consider the map shown in Figure B-13, in which D, E, and are map-entered

variables, and d represents a don’t care. The 1’s are considered first, which pro-
duces the term BC. Variable D is considered next, which produces the term

. Variable E is considered next, which produces the term BE. Finally, vari-
able is considered, which produces the term . Notice that a
map-entered variable and its complement are considered separately, as for E in
this example. Equation B.16 shows the reduced form:

(B.16)

00 01 11 10

0

1

AB
C

11

D

F = B C + A B C D

Figure B-12 An example of a K-map with a map-entered variable D.

ABCD

00 01 11 10

0

1

AB
C

11

D d E E

Figure B-13 A K-map with two map-entered variables D and E.

E

ACD
E ABCE

F BC ACD BE ABCE+ + +=

534

B.2.3 THE TABULAR METHOD

An automated approach to reducing Boolean expressions is commonly used for
single and multiple output functions. The tabular method, also known as the
Quine-McCluskey method, successively forms Boolean cross products among
groups of terms that differ in one variable, and then uses the smallest set of
reduced terms to cover the functions. This process is easier than the map method
to implement on a computer, and an extension of the method allows terms to be
shared among functions.

Reduction of Single Functions

The truth table shown in Figure B-14 describes a function F in four variables A,

B, C, and D, and includes three don’t cares. The tabular reduction process begins
by grouping minterms for which F is nonzero according to the number of 1’s in
each minterm. Don’t care conditions are considered to be nonzero for this pro-
cess. Minterm 0000 contains no 1’s and is in its own group, as shown in Figure
B-15a. Minterms 0001, 0010, 0100, and 1000 all contain a single 1, but only
minterm 0001 has a nonzero entry and so it forms another group.

The next group has two 1’s in each minterm, and there are six possible minterms

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

C D

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

B

d
1
0
1
0
1
1
1
0
0
1
d
0
1
0
d

F

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

A

Figure B-14 A truth table representation of a function with don’t cares.

535

that can belong to this group. Only minterms 0011, 0101, 0110, and 1010 have
nonzero entries, and so they comprise this group. There are three nonzero entries
in the next group, which has three 1’s in each minterm. The nonzero minterms
are 0111, 1011, and 1110. Finally, there is one nonzero entry that contains four
1’s, and the corresponding minterm makes up the last group. For larger truth
tables, the process continues until all nonzero entries are covered. The groups are
organized so that adjacent groups differ in the number of 1’s by one, as shown in
Figure B-15a.

The next step in the reduction process is to form a consensus (the logical form of
a cross product) between each pair of adjacent groups for all terms that differ in
only one variable. The general form of the consensus theorem is restated from
Appendix A below:

(B.17)

The term YZ is redundant, since it is covered by the remaining terms, and so it

0
0
1
0
1
1
1
1
0
1

0
1
1
1
0
0
1
1
1
1

C D

0
0
0
1
1
0
1
0
1
1

B

0
0
0
0
0
1
0
1
1
1

A

√
√
√
√
√
√
√
√
√
√

0
_
0
1
1
_
0
1
1
1
1
_

_
1
1
1
1
1
1
_
_
1
1
1

C D

0
0
_
_
0
1
1
1
0
1
_
1

B

0
0
0
0
_
0
_
0
1
_
1
1

A

*
√
√
√
√
√
√
*
*
√
√
√

_
1
_

1
1
1

C D

_
_
1

B

0
_
_

A

*
*
*

Initial setup After first
reduction

After second
reduction

(a)

(b)

(c)

Figure B-15 The tabular reduction process.

XY XZ YZ+ + XY XZ+=

536

can be eliminated. Algebraically, we can prove the theorem as shown below:

The consensus theorem also has a dual form:

(B.18)

The idea of applying consensus in tabular reduction is to take advantage of the
inverse property of Boolean algebra, similar to the way we did for K-maps in the
previous section. For example, 0000 and 0001 differ in variable D, so 000_ is
listed at the top of the reduced table shown in Figure B-15b. The underscore
marks the position of the variable that has been eliminated, which is D for this
case. Minterms 0000 and 0001 in Figure B-15a are marked with checks to indi-
cate that they are now covered in the reduced table.

After every term in the first group is crossed with every term in the second group,
we then move on to form a consensus between terms in the second and third
groups. Note that it is possible that some terms cannot be combined into a
smaller term because they differ in more than one variable. For example, terms
0001 and 0011 combine into the smaller term 00_1 as shown in the top of the
second group in Figure B-15b, but terms 0001 and 0110 cannot be combined
because they differ in three variables.

Once a term is marked with a check, it can still be used in the reduction process
by the property of idempotence. The objective in this step of the process is to dis-
cover all of the possible reduced terms, so that we can find the smallest set of
terms that covers the function in a later step.

The process continues for the remaining groups. Any term that is not covered
after all consensus groupings are made is marked with an asterisk to indicate that
it is a prime implicant. After the first reduction is made for this example, all of
the minterms shown in Figure B-15a are covered so there are no prime impli-
cants at this point.

XY + XZ + YZ = XY + XZ + YZ(X + X)

= XY + XZ + XYZ + XYZ
= XY + XYZ + XZ + XYZ
= XY (1 + Z) + XZ(1 + Y)

= XY + XZ

X Y+() X Z+() Y Z+() X Y+() X Z+()=

537

Now that the first reduction is made, we can start on the next reduction. In order
for two reduced terms to be combined, they must again differ in exactly one vari-
able. The underscores must line up, and only one of the remaining variables can
differ. The first entry shown in Figure B-15b has an underscore in the rightmost
field, which does not coincide with any term in the next group, so an asterisk is
placed next to it indicating that it can be reduced no further and is therefore a
prime implicant. We continue by moving on to the second and third groups of
Figure B-15b. Terms 00_1 and 01_1 combine to form reduced term 0_._1 in the
table shown in Figure B-15c. The process continues until the second reduction is
completed, which is shown in Figure B-15c.

In constructing the reduced table shown in Figure B-15c, the prime implicants
from the previously constructed table (Figure B-15b) are not included. The pro-
cess continues for additional reductions until only prime implicants remain. For
this example, the process stops after the second reduction when the three terms
become prime implicants as shown in Figure B-15c.

Taken as a whole, the prime implicants form a set that completely covers the
function, although not necessarily minimally. In order to obtain a minimal cov-
ering set, a table of choice is constructed as shown in Figure B-16. Each prime

implicant has a row in the table of choice. The columns represent minterms in
the original function that must be covered. Don’t care conditions do not need to
be covered, and are not listed.

A check is placed in each box that corresponds to a prime implicant that covers a

0

0

1

0

_

_

0

1

0

_

_

1

0

1

1

_

1

_

_

_

_

1

1

1

0001 0011 0101 0110 0111 1010 1101

MintermsPrime
Implicants

√

√

√

√

√ √ √ √

√ √

√ √ √

*

*

*

Figure B-16 Table of choice.

538

minterm. For example, prime implicant 000_ covers minterm 0001, so a check is
placed in the corresponding box. Some prime implicants cover several minterms,
as for 0_ _1 which covers four minterms. After all boxes are considered, columns
that contain a single check are identified. A single check in a column means that
only one prime implicant covers the minterm, and the corresponding prime
implicant that covers the minterm is marked with an asterisk to indicate that it is
essential.

Essential prime implicants cannot be eliminated, and they must be included in
the reduced equation for the function. For this example, prime implicants 011_,
101_, and _1_1 are essential. An essential prime implicant may cover more than
one minterm, and so a reduced table of choice is created in which the essential
prime implicants and the minterms they cover are removed, as shown in Figure
B-17. The reduced table of choice may also have essential prime implicants, in

which case a second reduced table of choice is created, and the process continues
until the final reduced table of choice has only nonessential prime implicants.

The prime implicants that remain in the reduced table of choice form the eligi-
ble set, from which a minimal subset is obtained that covers the remaining min-
terms. As shown in Figure B-17, there are two sets of prime implicants that cover
the two remaining minterms. Since Set 2 has the fewest terms, we choose that set
and obtain a minimized equation for F, which is made up of essential prime
implicants and the eligible prime implicants in Set 2:

(B.19)

Instead of using visual inspection to obtain a covering set from the eligible set,
the process can be carried out algorithmically. The process starts by assigning a
variable to each of the prime implicants in the eligible set as shown in Figure

0

0

_

0

_

_

0

_

1

_

1

1

0001 0011

MintermsEligible
Set

√

√

Set 1

0 0 0 _

_ _ 1 1

Set 2

0 _ _ 1

X

Y

Z √

√

Figure B-17 Reduced table of choice.

F ABC ABC BD AD+ + +=

539

B-17. A logical expression is written for each column in the reduced table of
choice as shown below:

Column Logical Sums

 0001 (X + Y)

 0011 (Y + Z)

In order to find a set that completely covers the function, prime implicants are
grouped so that there is at least one check in each column. This means that the
following relation must hold, in which G represents the terms in the reduced
table of choice:

Applying the properties of Boolean algebra yields:

Each of the product terms in this equation represents a set of prime implicants
that covers the terms in the reduced table of choice. The smallest product term
(Y) represents the smallest set of prime implicants (0 _ _ 1) that covers the
remaining terms. The same final equation is produced as before:

(B.20)

Reduction of Multiple Functions

The tabular reduction method reduces a single Boolean function. When there is
more than one function that use the same variables, then it may be possible to
share terms, resulting in a smaller collective size of the equations. The method
described here forms an intersection among all possible combinations of shared
terms, and then selects the smallest set that covers all of the functions.

As an example, consider the truth table shown in Figure B-18 that represents
three functions in three variables. The notation mi denotes minterms according
to the indexing shown in the table.

The canonical (unreduced) form of the Boolean equations is:

G X Y+() Y Z+()=

G X Y+() Y Z+() XY XZ Y YZ+ + + XZ Y+= = =

F ABC ABC BD AD+ + +=

540

F0(A,B,C) = m0 + m3 + m7

F1(A,B,C) = m1 + m3 + m4 + m6 + m7

F2(A,B,C) = m2 + m3 + m6 + m7

An intersection is made for every combination of functions as shown below:

F0,1(A,B,C)= m3 + m7

F0,2(A,B,C)= m3 + m7

F1,2(A,B,C)= m3 + m6 + m7

F0,1,2(A,B,C)= m3 + m7

Using the tabular reduction method described in the previous section, the fol-
lowing prime implicants are obtained:

Function Prime Implicant

F0 000, _11
F1 0_1, 1_0, _11, 11_
F2 _1_
F0,1 _11
F0,2 _11
F1,2 _11, 11_

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B C

0
0
0
0
1
1
1
1

A

1
0
0
1
0
0
0
1

F0

0
1
0
1
1
0
1
1

F1

0
0
1
1
0
0
1
1

F2

m0

m1

m2

m3

m4

m5

m6

m7

Minterm

Figure B-18 A truth table for three functions in three variables.

541

F0,1,2 _11

The list of prime implicants is reduced by eliminating those prime implicants in
functions that are covered by higher order functions. For example, _11 appears
in F0,1,2, thus it does not need to be included in the remaining functions. Simi-
larly, 11_ appears in F1,2, and does not need to appear in F1 or in F2 (for this
case, it does not appear as a prime implicant in F2 anyway.) Continuing in this
manner, a reduced set of prime implicants is obtained:

Function Prime Implicant

F0 000
F1 0_1, 1_0
F2 _1_
F0,1 none
F0,2 none
F1,2 11_
F0,1,2 _11

A multiple output table of choice is then constructed as shown in Figure B-19.

The rows correspond to the prime implicants, and the columns correspond to
the minterms that must be covered for each function. Portions of rows are
blocked out where prime implicants from one function cannot be used to cover
another. For example, prime implicant 000 was obtained from function F0, and
therefore cannot be used to cover a minterm in F1 or F2, and so these regions are

0

0

1

_

1

_

0

_

_

1

1

1

0

1

0

_

_

1

Prime
Implicants

√

m0 m3 m7 m1 m3 m4 m6 m7 m2 m3 m6 m7

F0(A,B,C) F1(A,B,C) F2(A,B,C)Min-
terms

F0

F1

F1

F2

F1,2

F0,1,2

√ √

√ √

√ √ √ √

√ √

√√ √ √ √ √

*

*

*

*

*

√ √

Figure B-19 A multiple output table of choice.

542

blocked out. If, in fact, a prime implicant in F0 can be used to cover a minterm
in one of the remaining functions, then it will appear in a higher order function
such as F0,1 or F0,1,2.

The minimal form for the output equations is obtained in a manner similar to
the tabular reduction process. We start by finding all of the essential prime impli-
cants. For example, minterm m0 in function F0 is covered only by prime impli-
cant 000, and thus 000 is essential. The row containing 000 is then removed
from the table and all columns that contain a check mark in the row are also
deleted. The process continues until either all functions are covered or until only
nonessential prime implicants remain, in which case the smallest set of nonessen-
tial prime implicants that are needed to cover the remaining functions is
obtained using the method described in the previous section.

The essential prime implicants are marked with asterisks in Figure B-19. For this
case, only one nonessential prime implicant (11_) remains, but since all min-
terms are covered by the essential prime implicants, there is no need to construct
a reduced table. The corresponding reduced equations are:

F0(A,B,C)=

F1(A,B,C)=

F2(A,B,C)=

B.2.4 LOGIC REDUCTION: EFFECT ON SPEED AND PERFORMANCE

Up to this point, we have largely ignored physical characteristics that affect per-
formance, and have focused entirely on organizational issues such as circuit
depth and gate count. In this section, we explore a few practical considerations of
digital logic.

Switching speed: The propagation delay (latency) between the inputs and output
of a logic gate is a continuous effect, even though we considered propagation
delay to be negligible in the early part of Appendix A. A change at an input to a
logic gate is also a continuous effect. In Figure B-20, an input to a NOT gate has
a finite transition time, which is measured as the time between the 10% and
90% points on the waveform. This is referred to as the rise time for a rising signal
and the fall time for a falling signal.

ABC BC+

AC AC BC+ +

B

543

The propagation delay is the time between the 50% transitions on the input and
output waveforms. The propagation delay is influenced by a number of parame-
ters, and power is one parameter over which we have a good deal of control. As
power consumption increases, propagation delay decreases, up to a limit. A rule
of thumb is that the product of power consumption and the propagation delay
for a logic gate stays roughly the same. Although we generally want fast logic, we
do not want to operate with a high power dissipation because the consumed
power manifests itself as heat that must be removed to maintain a safe and reli-
able operating condition.

In the complementary metal-oxide semiconductor (CMOS) logic family, power
dissipation scales with speed. At a switching rate of 1 MHz, the power dissipa-
tion of a CMOS gate is about 1 mW. At this rate of power dissipation, 10,000
CMOS logic gates dissipate 10,000 gates × 1mW/gate = 10W, which is at the
limit of heat removal for a single integrated circuit using conventional
approaches (for a 1 cm2 chip).

Single CMOS chips can have on the order of 107 logic gates, however, and oper-
ate at rates up to several hundred MHz. This gate count and speed are achieved
partially by increasing the chip size, although this accounts for little more than a
factor of 10. The key to achieving such a high component count and switching
speed while managing power dissipation is to switch only a fraction of the logic
gates at any time, which luckily is the most typical operating mode for an inte-
grated circuit.

Circuit depth: The latency between the inputs and outputs of a circuit is governed

+5V

0V

+5V

0V

10%

90%

Transition Time

90%

10%

50%
(2.5V)

50%
(2.5V)

Propagation Delay

Transition Time

Time

A NOT gate
input changes
from 1 to 0

The NOT gate
output changes
from 0 to 1

(Fall Time)

(Latency)

(Rise Time)

Figure B-20 Propagation delay for a NOT gate (adapted from [Hamacher et al., 1990]).

544

by the number of logic gates on the longest path from any input to any output.
This is known as circuit depth. In general, a circuit with a small circuit depth
operates more quickly than a circuit with a large circuit depth. There are a num-
ber of ways to reduce circuit depth that involve increasing the complexity of
some other parameter. We look at one way of making this trade-off here.

In Appendix A, we used a MUX to implement the majority function. Now con-
sider using a four variable MUX to implement Equation B.21 shown below. The
equation is in two-level form, because only two levels of logic are used in its rep-
resentation: six AND terms that are ORed together. A single MUX can imple-
ment this function, which is shown in the left side of Figure B-21. The

corresponding circuit depth is two (that is, the gate-level configuration of the
inside of the MUX has two gate delays). If we factor out A and B then we obtain
the four-level Equation B.22, and the corresponding four-level circuit shown in
the right side of Figure B-21.

 (B.21)

 (B.22)

The gate input count of a 4-to-1 MUX is 18 as taken from Figure A-23 (includ-
ing inverters), so the gate input count of the decomposed MUX circuit is 3×18 =
54. A single 16-to-1 MUX has a gate input count of 100. The 4-to-1 MUX

A C

F

0000
0001
0010
0011

B

0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

D

1
0
0
1
0
1
1
0
0
1
0
0
0
0
0
1 A D

F

00
01
10
11

B C

00
01
10
11

B C

00
01
10
11

1
0
0
1

0
1
1
0

0

B C + B C

B C + B C

Figure B-21 A four-variable function implemented with a 16-to-1 MUX (left) and with 4-to-1

MUXes (right).

F A B C D, , ,() ABCD ABCD ABCD ABCD ABCD ABCD+ + + + +=

F A B C D, , ,() AB CD CD+() AB CD CD+() AB CD()
AB CD()

+ +
+

=

545

implementation has a circuit depth of four (not including inverters) while the
16-to-1 MUX implementation has a circuit depth of two. We have thus reduced
the overall circuit complexity at the expense of an increase in the circuit depth.

Although there are techniques that aid the circuit designer in discovering
trade-offs between circuit complexity and circuit depth, the development of
algorithms that cover the space of possible alternatives in reasonable time is only
a partially solved problem.

Fan-in vs. circuit depth: Suppose that we need a four-input OR gate as used in
Figure A-23, but only two-input OR gates are available. What should we do?
This is a common practical problem that is encountered in a variety of design sit-
uations. The associative property of Boolean algebra can be used to decompose
the OR gate that has a fan-in of four into a configuration of OR gates that each
have a fan-in of two as shown in Figure B-22. In general, the decomposition of

the four-input OR gate should be performed in balanced tree fashion in order to
reduce circuit depth. A degenerate tree can also be used as shown in Figure B-22,
which produces a functionally equivalent circuit with the same number of logic
gates as the balanced tree, but results in a maximum circuit depth.

A + B + C + D

A BCD

Associative law of Boolean algebra:

Initial high fan-in gate

Balanced tree

A B CD

(A + B) + (C + D)

Degenerate tree

A B C D

A + B + C + D = (A + B) + (C + D) ((A + B) + C) + D

Figure B-22 A logic gate with a fan-in of four is decomposed into logically equivalent configurations

of logic gates with fan-ins of two.

546

Although it is important to reduce circuit depth in order to decrease the latency
between the inputs and the outputs, one reason for preferring the degenerate tree
to the balanced tree is that the degenerate tree has a minimum cross sectional
diameter at each stage, which makes it easy to split the tree into pieces that are
spread over a number of separate circuits. This mirrors a practical situation
encountered in packaging digital circuits. The depth of the balanced tree is

 logic gates for an N-input gate mapped to logic gates with a fan-in of
F, and the depth of the degenerate tree is logic gates for an N-input gate
mapped to logic gates with a fan-in of F.

In theory, any binary function can be realized in two levels of logic gates given an
arbitrarily large stage of AND gates followed by an arbitrarily large stage of OR
gates, both having arbitrarily large fan-in and fan-out. For example, an entire
computer program can be compiled in just two gate levels if it is presented in
parallel to a Boolean circuit that has an AND stage followed by an OR stage that
is designed to implement this function. Such a circuit would be prohibitively
large, however, since every possible combination of inputs must be considered.

Fan-outs larger than about 10 are too costly to implement in many logic families
due to the sacrifice in performance, as it is similar to filling 10 or more leaky
buckets from a single faucet. Boolean algebra for two-level expressions is still
used to describe complex digital circuits with high fan-outs, however, and then
the two-level Boolean expressions are transformed into multilevel expressions
that conform to the fan-in and fan-out limitations of the technology. Optimal
fan-in and fan-out are argued to be e ≅ 2.7 (Mead and Conway, 1980) in terms
of transistor stepping size for bringing a signal from an integrated circuit (IC) to
a pin of the IC package. The derivation of that result is based on capacitance of
bonding pads, signal rise times, and other considerations. The result cannot be
applied to all aspects of computing since it does not take into account overall
performance, which may create local variations that violate the e rule dramati-
cally. Electronic digital circuits typically use fan-ins and fan-outs of between 2
and 10.

B.3 State Reduction
In Appendix A, we explored a method of designing an FSM without considering
that there may exist a functionally equivalent machine with fewer states. In this
section, we focus on reducing the number of states. We begin with a description
of an FSM that has some number of states, and then we hypothesize that a func-
tionally equivalent machine exists that contains a single state. We apply all com-

logF N()
N 1–
F 1–

547

binations of inputs to the hypothesized machine, and observe the outputs. If the
FSM produces a different output for the same input combination at different
times, then there are at least two states that are distinguishable, which are there-
fore not equivalent. The distinguishable states are placed in separate groups, and
the process continues until no further distinctions can be made. If any remaining
groups have more than one state, then those states are equivalent and a smaller
equivalent machine can be constructed in which each group is collapsed into a
single state.

As an example, consider state machine M0 described by the state table shown in
Figure B-23. We begin the reduction process by hypothesizing that all five states

can be reduced to a single state, obtaining partition P0 for a new machine M1:

P0 = (ABCDE)

We then apply a single input to the original machine M0 and observe the out-
puts. When M0 is in state A, and an input of 0 is applied, then the output is 0.
When the machine is in state A and an input of 1 is applied, then the output is 1.
States B and E behave similarly, but states C and D produce outputs of 1 and 0
for inputs of 0 and 1, respectively. Thus, we know that states A, B, and E can be
distinguished from states C and D, and we obtain a new partition P1:

P1 = (ABE) (CD)

After a single input is applied to M0, we know that the machine will be in either
the ABE group or the CD group. We now need to observe the behavior of the
machine from its new state. One way to do this is to enumerate the set of possi-
ble next states in a tree as shown in Figure B-24. The process of constructing the
tree begins by listing all of the states in the same partition. For machine M0, the

X

0 1

A C/0 E/1

Present state

Input

B

C

D

E

D/0 E/1

C/1 B/0

C/1 A/0

A/0 C/1

Figure B-23 Description of state machine M0 to be reduced.

548

initial partition (ABCDE) is shown at the root of the tree. After a 0 is applied at
the input to M0, the next state will be one of C, D, C, C, or A for an initial state
of A, B, C, D, or E, respectively. This is shown as the (CDA)(CC) partition in the
0 side of the tree, down one ply (one level) from the root. The output produced
by the (CDA) group is different from the output produced by the (CC) group,
and so their corresponding initial states are distinguishable. The corresponding
states that are distinguished are the groups (ABE) and (CD), which form the par-
tition (ABE)(CD) as shown.

Similarly, after a 1 is applied at the input to M0, the next state will be one of E, E,
B, A, or C for an initial state of A, B, C, D, or E, respectively. This is shown on
the right side of the tree. To form the next ply, we look at the (CDA) and (CC)
groups separately. When a 0 is applied at the input when M0 is in any of states C,
D, or A, then the outputs will be the same for states C and D (the output is a 1,
and the next states are C and C) but will be different for state A (the output is a
0, and the next state is C). This is shown as (CC)(C) on the 0,0 path from the
root.

Similarly, when a 0 is applied at the input when M0 is in either of states C or D,
then the outputs are the same, and the set of target states are (CC)(C)(CC) on the
0,0 path from the root as shown, which corresponds to a partition on the initial

(ABCDE)

(CDA)(CC)
(ABE)(CD)

(CC)(C)(CC)
(AB)(E)(CD)*

(BA)(E)(BB)
(AB)(E)(CD)

(DC)(A)(DD)
(AB)(E)(CD)

(EE)(C)(EE)
(AB)(E)(CD)*

(CC)(C)(CC) (AB)(E)(AA)
(AB)(E)(CD)

(CD)(A)(CC) (EE)(C)(EE)

(EEC)(BA)
(ABE)(CD)

(AA)(C)(DC)
(AB)(E)(CD)

(CC)(B)(EE)
(AB)(E)(CD)*

(CC)(C)(CC) (EE)(B)(AB)

0 1

0 10 1

0 10 1

0 1

0 1

Next states
Distinguished states

Figure B-24 A next state tree for M0.

549

states of (AB)(E)(CD) if we trace back to the root. Thus, at this point, A is indis-
tinguishable from B, and C is indistinguishable from D, but each parenthesized
group can be distinguished from each other if we apply the sequence 0,0 to M0
and observe the outputs, regardless of the initial state.

Continuing in this manner, the tree is expanded until no finer partitions can be
created. For example, when a partition contains a group of states that can no
longer be distinguished, as for (CC)(C)(CC), then an asterisk is placed adjacent
to the partition for the corresponding initial states and the tree is not expanded
further from that point. The tree shown in Figure B-24 is expanded beyond this
point only to illustrate various situations that can arise.

If a partition is created that is visited elsewhere in the tree, then a slash is drawn
through it and the tree is not expanded from that point. For purposes of compar-
ing similar partitions, (CD)(A)(CC) is considered to be the same as (CD)(A)(C),
and (AA)(C)(DC) is considered to be the same as (A)(C)(DC), which is the same
as (DC)(A)(C) and (CD)(A)(C). Thus the (CD)(A)(CC) and (AA)(C)(DC) parti-
tions are considered to be the same. After the tree is constructed, the partitions
with asterisks expose the indistinguishable states. Each group of parentheses in
an asterisk partition identifies a group of indistinguishable states. For machine
M0, states A and B are indistinguishable, and states C and D are indistinguish-
able. Thus, we can construct a functionally equivalent machine to M0 that con-
tains only three states, in which A and B are combined into a single state and C
and D are combined into a single state.

The process of constructing the next state tree is laborious because of its potential
size, but we use it here in order to understand a simpler method. Rather than
construct the entire tree, we can simply observe that once we have the first parti-
tion P1, the next partition can be constructing by looking at the next states for
each group and noting that if two states within a group have next states that are
in different groups, then they are distinguishable since the resulting outputs will
eventually differ. This can be shown by constructing the corresponding distin-
guishing tree. Starting with P1 for M0, we observe that states A and B have next
states C and D for an input of 0, and have a next state of E for an input of 1, and
so A and B are grouped together in the next partition. State E, however, has next
states of A and C for inputs of 0 and 1, respectively, which differ from the next
states for A and B, and thus state E is distinguishable from states A and B. Con-
tinuing for the (CD) group of P1, the next partition is obtained as shown below:

P2 = (AB) (CD) (E)

550

After applying the method for another iteration, the partition repeats, which is a
condition for stopping the process:

P3 = (AB) (CD) (E) √

No further distinctions can be made at this point, and the resulting machine M1
has three states in its reduced form. If we make the assignment A’ = AB, B’ =
CD, and C’ = E, in which the prime symbols mark the states for machine M1,
then a reduced state table can be created as shown in Figure B-25.

B.3.1 THE STATE ASSIGNMENT PROBLEM

It may be the case that different state assignments for the same machine result in
different implementations. For example, consider machine M2 shown in the left
side of Figure B-26. Two different state assignments are shown. State assignment

SA0 is a simple numerical ordering of A→00, B→01, C→10, and D→11. State
assignment SA1 is the same as SA0 except that the assignments for C and D are
interchanged. We consider an implementation of M2 using state assignment SA0
with AND, OR, and NOT gates, and apply K-map reduction to reduce the sizes
of the equations. Figure B-27 shows the results of reducing the next state func-

X

0 1

AB: A' B'/0 C'/1

Current state

Input

CD: B'

E: C'

B'/1 A'/0

A'/0 B'/1

Figure B-25 A reduced state table for machine M1.

P.S.

Input X

0 1

A B/1 A/1

B C/0 D/1

C C/0 D/0

D B/1 A/0

Machine M2

Input X

0 1

A: 00 01/1 00/1

B: 01 10/0 11/1

C: 10 10/0 11/0

D: 11 01/1 00/0

State assignment SA0

S0S1

Input X

0 1

A: 00 01/1 00/1

B: 01 11/0 10/1

C: 11 11/0 10/0

D: 10 01/1 00/0

State assignment SA1

S0S1

Figure B-26 Two state assignments for machine M2.

551

tions S0 and S1 and the output function Z. A corresponding circuit will have a
gate input count of 29 as measured by counting the number of variables and the
number of terms in the equations (note that one of the terms is shared, and is
counted just once). If we use state assignment SA1 instead, then we will obtain a
gate input count of 6 as shown in Figure B-28. (s0 and s1 do not contribute to the

gate input count because they do not feed into logic gates.)

State assignment SA1 is clearly better than SA0 in terms of gate input count, but
may not be better with regard to other criteria. For example, if an implementa-
tion is made with 8-to-1 MUXes, then the gate input count will be the same for
SA0 and SA1. A further consideration is that it is not an easy process to find the
best assignment for any one criterion. In fact, better gate input counts may be
possible by increasing the number of state bits for some cases.

01

11

1

10

X
0

00
S0S1

1 1

11

01

11

1

10

0

00 1

1

1

1

X

S0S1

01

11

1

10

0

00 1 1

1

1

X

S0S1

S0 = S0S1 + S0S1 Z = S0S1 + S0X

+ S0S1X

S1 = S0S1X + S0S1X

+ S0S1X + S0S1X

Figure B-27 Boolean equations for machine M2 using state assignment SA0.

01

11

1

10

X
0

00
S0S1

1 1

11

01

11

1

10

0

00 1

1

1

1

X

S0S1

01

11

1

10

00

X

1 1

1

1

S0S1
0

S1 = XS0 = S1 Z = S1X + S0X

Figure B-28 Boolean equations for machine M2 using state assignment SA1.

552

REDUCTION EXAMPLE: A SEQUENCE DETEC-
TOR

In this section, we tie together the reduction methods described in the previous
sections. The machine we would like to design outputs a 1 when exactly two of
the last three inputs are 1 (this machine appeared in an example in Appendix A).
An input sequence of 011011100 produces an output sequence of 001111010.
There is one serial input line, and we can assume that initially no inputs have
been seen.

We start by constructing a state transition diagram, as shown in Figure B-29.

There are eight possible three-bit sequences that our machine will observe: 000,
001, 010, 011, 100, 101, 110, and 111. State A is the initial state, in which we
assume that no inputs have yet been seen. In states B and C, we have seen only
one input, so we cannot yet output a 1. In states D, E, F, and G we have only
seen two inputs, so we cannot yet output a 1, even though we have seen two 1’s
at the input when we enter state G. The machine makes all subsequent transi-
tions among states D, E, F, and G. State D is visited when the last two inputs are
00. States E, F, and G are visited when the last two inputs are 01, 10, or 11,

A

B
0/0

1/0

C

D

E

F

G

0/0

1/0

0/0

1/0

0/0

1/0

1/0

1/1

0/01/1

0/0

0/1

Input: 0 1 1 0 1 1 1 0 0

Output: 0 0 1 1 1 1 0 1 0

Time: 0 1 2 3 4 5 6 7 8

Figure B-29 State transition diagram for sequence detector.

553

respectively.

The next step is to create a state table and reduce the number of states. The state
table shown in Figure B-30 is taken directly from the state transition diagram.

We then apply the state reduction technique by hypothesizing that all states are
equivalent, and then refining our hypothesis. The process is shown below:

P0 = (ABCDEFG)

P1 = (ABCD) (EF) (G)

P2 = (A) (BD) (C) (E) (F) (G)

P3 = (A) (BD) (C) (E) (F) (G) √

States B and D along the 0,0,0 path in the state transition diagram are equiva-
lent. We create a reduced table, using primed letters to denote the new states as
shown in Figure B-31.

Next, we make an arbitrary state assignment as shown in Figure B-32. We then
use the state assignment to create K-maps for the next state and output functions
as shown in Figure B-33. Notice that there are four don’t care conditions that
arise because the 110 and 111 state assignments are unused. Finally, we create the
gate-level circuit, which is shown in Figure B-34. �

X
0 1

A B/0 C/0

Present state

Input

B
C
D
E

D/0 E/0
F/0 G/0
D/0 E/0
F/0 G/1

F D/0 E/1
G F/1 G/0

Figure B-30 State table for sequence detector.

554

B.3.2 EXCITATION TABLES

In addition to the S-R and D flip-flops, the J-K and T flip-flops (see Appendix
A) are commonly used. The J-K flip-flop behaves similarly to an S-R flip-flop,
except that it flips its state when both inputs are set to 1. The T flip-flop (for
“toggle”) alternates states, as when the inputs to a J-K flip-flop are set to 1. Logic
diagrams and symbols for the J-K and T flip-flops are shown in Figure B-35 and

Figure B-36, respectively.

X
0 1

B'/0 C'/0

Present state

Input

B'/0 D'/0
E'/0 F'/0
E'/0 F'/1
B'/0 D'/1
E'/1 F'/0

A: A'
BD: B'

C: C'
E: D'
F: E'
G: F'

Figure B-31 Reduced state table for sequence detector.

X
0 1

A': 000 001/0 010/0

Present state

Input

B': 001
C': 010
D': 011
E': 100

001/0 011/0
100/0 101/0
100/0 101/1
001/0 011/1

F': 101 100/1 101/0

S2S1S0 S2S1S0Z S2S1S0Z

Figure B-32 State assignment for sequence detector.

Q

Q
J

CLK

J

Q

Q

K

Circuit
Symbol

K

Figure B-35 Logic diagram and symbol for a J-K flip-flop.

555

All of the flip-flops discussed up to this point as well as several variations are
available as separate components, and in the past designers would choose one
form or the other depending on characteristics such as cost, performance, avail-
ability, etc. These days, with the development of VLSI technology, the D flip-flop
is typically used throughout a circuit. High speed circuits making use of low den-
sity logic, however, such as gallium arsenide (GaAs), may still find an application
for the various forms. For situations such as this, we consider the problem of
choosing a flip-flop that minimizes the total number of components in a circuit,
in which a flip-flop is considered to be a single component.

01

11

10

00
S0X

1

1

1

1

01 11 10

d

d

d

d

1

1

1

1

00
S2S1

01

11

10

00
S0X

1

1

01 11 10

d

d

d

d

1

00
S2S1

01

11

10

00
S0X

1

1 1

10

d

d

d

d

00
S2S1

01

11

10

00
S0X

1

01 11 10

d

d

d

d

1

1

00
S2S1

01 11

S0 = S2S1X + S0X

+ S2S0 + S1X

S1 = S2S1X + S2S0X

Z = S2S0X + S1S0X + S2S0X

11

1

S2 = S2S0 + S1

Figure B-33 K-map reduction of next state and output functions for sequence detector.

J

Q

Q

K

Circuit

Q

Q

Symbol

1

T T

Figure B-36 Logic diagram and symbol for a T flip-flop.

556

The four flip-flops discussed up to this point can be described by excitation
tables, as shown in Figure B-37. Each table shows the settings that must be
applied at the inputs at time t in order to change the output at time t+1.

As an example of how excitation tables are used in the design of a finite state
machine, consider using a J-K flip-flop in the design of a serial adder. We start
with the serial adder shown in Figure B-38. State A represents the case in which
there is no carry from the previous time step, and state B represents the case in
which there is a carry from the previous time step.

We then create a truth table for the appropriate flip-flop. Figure B-39 shows a
truth table that specifies functions for D, S-R, T, and J-K flip-flops as well as the
output Z. We will only make use of the functions for the J-K flip-flop and the Z
output here.

The way we construct the truth table is by first observing what the current state

CLK

QD

Q
S0

Z

QD

Q
S1

QD

Q
S2

X

Figure B-34 Gate-level implementation of sequence detector.

557

0
0
1
1

0
1
0
1

Qt Qt+1 S

0
1
0
0

R

0
0
1
0

S-R
flip-flop

0
0
1
1

0
1
0
1

Qt Qt+1 D

0
1
0
1

D
flip-flop

0
0
1
1

0
1
0
1

Qt Qt+1 J

0
1
d
d

K

d
d
1
0

J-K
flip-flop

0
0
1
1

0
1
0
1

Qt Qt+1 T

0
1
1
0

T
flip-flop

Figure B-37 Excitation tables for four flip-flops.

Present state

Input XY

00 01 10 11

A A/0 A/1 A/1 B/0

B A/1 B/0 B/0 B/1

Next state Output

Present
state (St)

Input XY

00 01 10 11

A:0 0/0 0/1 0/1 1/0

B:1 0/1 1/0 1/0 1/1

Serial
Adder

0 1 1 0 0

0 1 1 1 0

1 1 0 1 0X

Y

Z

Cin Cout

4 3 2 1 04 3 2 1 0 Time (t)Time (t)

Figure B-38 State transition diagram, state table, and state assignment for a serial adder.

A B00/0

01/1

10/1

11/0

00/1

10/0

01/0

11/1

No carry
state

Carry state

xi yi

zi

558

St is, and then comparing it to what we want the next state to be. We then use
the excitation tables to set the flip-flop inputs accordingly. For example, in the
first line of the truth table shown in Figure B-39, when X=Y=0 and the current
state is 0, then the next state must be 0 as read from the state table of Figure
B-38. In order to achieve this for a J-K flip-flop, the J and K inputs must be 0
and d, respectively, as read from the J-K excitation table in Figure B-39. Con-
tinuing in this manner, the truth table is completed and the reduced Boolean
equations are obtained as shown below:

The corresponding circuit is shown in Figure B-40. Notice that the design has a
small gate input count (20), as compared with a gate input count of 25 for the
logically equivalent circuit shown in Figure B-41 which uses a D flip-flop.
Flip-flops are not included in the gate input count, although they do contribute
to circuit complexity.

EXCITATION TABLE EXAMPLE: A MAJORITY
CHECKER

For this example, we would like to design a circuit using T flip-flops and 8-to-1
MUXes that computes the majority function (see Figure A-15) for three inputs
that are presented to an FSM in serial fashion. The circuit outputs a 0 until the

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Y St

0
0
0
0
1
1
1
1

X

0
0
0
1
0
1
1
1

D

0
0
0
0
0
0
1
0

S

0
1
0
0
0
0
0
0

R

0
d
0
d
0
d
1
d

J

d
1
d
0
d
0
d
0

K

0
1
0
0
0
0
1
0

T

0
1
1
0
1
0
0
1

Z

Present
State (Set) (Reset)

Figure B-39 Truth table showing next-state functions for a serial adder for D, S-R, T, and J-K

flip-flops. Shaded functions are used in the example.

J XY=

K XY=

Z XYS XYS XYS XYS+ + +=

559

CLK
QJ

X

Y

Q

X
Y

Y

X

Z

S
KX

Y

Figure B-40 Logic design for a serial adder using a J-K flip-flop.

CLK

QD

X

Y

Q

X
Y

Y

X

Z

S

X

Y

Figure B-41 Logic design for a serial adder using a D flip-flop.

560

third input is seen, at which point a 0 or a 1 is produced at the output according
to whether there are more 0’s or 1’s at the input, respectively. For example, an
input of 011100101 produces an output of 001000001.

We start by creating a state transition diagram that enumerates all possible states
of the FSM. In Figure B-42, a state transition diagram is shown in which the
states are organized according to the number of inputs that have been seen. State
A is the initial state in which no inputs have yet been seen. The three inputs are
symbolized with the notation: _ _ _. After the first input is seen, the FSM makes
a transition to state B or state C for an input of 0 or 1, respectively. The input
history is symbolized with the notation: 0_ _ and 1_ _ for states B and C, respec-
tively. States D, E, F, and G enumerate all possible histories for two inputs, as
symbolized by the notation: 00_, 01_, 10_, and 11_, respectively.

The FSM outputs a 0 when making transitions to states B through G. On the
third input, the FSM returns to state A and outputs a 0 or a 1 according to the
majority function. A total of eight states are used in the FSM of Figure B-42,

which are summarized in the state table shown in Figure B-43a.

The eight state FSM can be reduced to a seven state FSM. The reduction process
is shown in Figure B-43b. States E and F can be combined, as shown in the
reduced table of Figure B-43c. We use the reduced state table in creating a state

A

0/0

B

C

D

E

F

G0/1

1/0

1/1

0/0

1/0

0/0

1/0

0/0

1/0

0/0 1/1

0/0 1/1

Input: 0 1 1 1 0 0 1 0 1

Output: 0 0 1 0 0 0 0 0 1

Time: 0 1 2 3 4 5 6 7 8

Input History _ _ _
0 _ _

1 _ _

0 0 _

0 1 _

1 0 _

1 1 _

Figure B-42 State transition diagram for a majority FSM.

561

assignment, which is shown in Figure B-44a for D flip-flops. We want to use T
flip-flops, and keeping the same state assignment, obtain the state table shown in
Figure B-44b. The T flip-flop version is obtained by comparing the current state

with the next state, and following the excitation mapping for a T flip-flop shown
in Figure B-37. The T flip-flop version has a 0 for the next state when the current
and next states are the same in the D flip-flop version, and has a 1 if the current
and next states differ in the D flip-flop version. There are three bits used for the
binary coding of each state, and so there are three next state functions (s0, s1, and
s2) and an output function Z. The corresponding circuit using T flip-flops is
shown in Figure B-45. Zeros are used for don’t care states 110 and 111. �

� SUMMARY

Circuits that are generated from unreduced expressions may become very large,

X
0 1

A B/0 C/0

P.S.

Input

B
C
D
E

D/0 E/0
F/0 G/0
A/0 A/0
A/0 A/1

F A/0 A/1
G A/1 A/1

(a)

X
0 1

B'/0 C'/0
D'/0 E'/0
E'/0 F'/0
A'/0 A'/0
A'/0 A'/1
A'/1 A'/

1

A: A'
B: B'
C: C'
D: D'

EF: E'
G: F'

(c)

P0 = (ABCDEFG)
P1 = (ABCD)(EF)(G)
P2 = (AD)(B)(C)(EF)(G)
P3 = (A)(B)(C)(D)(EF)(G)
P4 = (A)(B)(C)(D)(EF)(G) √

P.S.

Input

(b)

Figure B-43 (a) State table for majority FSM; (b) partitioning; (c) reduced state table.

X
0 1

A': 000 001/0 010/0

P.S.

Input

B': 001
C': 010
D': 011
E': 100

011/0 100/0
100/0 101/0
000/0 000/0
000/0 000/1

F': 101 000/1 000/1

S2S1S0 S2S1S0Z S2S1S0Z

X
0 1

A': 000 001/0 010/0

P.S.

Input

B': 001
C': 010
D': 011
E': 100

000/0 010/0
110/0 111/0
011/0 011/0
100/0 100/1

F': 101 101/1 101/1

S2S1S0 T2T1T0Z T2T1T0Z

(a) (b)

Figure B-44 (a) State assignment for reduced majority FSM using D flip-flops; and (b) using T

562

and so the expressions are reduced when possible into logically equivalent smaller
expressions. One method of reducing expressions is to perform algebraic manipula-
tion using the properties of Boolean algebra. This approach is powerful but
involves trial and error, and is tedious to carry out by hand. A simpler method is
to apply K-map minimization. This is a more visual technique, but becomes diffi-
cult to carry out for more than about six variables. The tabular method lends itself
to automation, and allows terms to be shared among functions.

An FSM can be in only one of a finite number of states at any time, but there are
infinitely many FSMs that have the same external behavior. The number of
flip-flops that are needed for an FSM may be reduced through the process of state
reduction, and the complexity of the combinational logic in the FSM may be
reduced by choosing an appropriate state assignment. The choice of flip-flop types
also influences the complexity of the resulting circuit. The D flip-flop is commonly
used for FSMs, but other flip-flops can be used such as the S-R, J-K, and T
flip-flops.

� FURTHER READING
(Booth, 1984) gives a good explanation of the Quine-McCluskey reduction pro-
cess. (Kohavi, 1978) provides a thorough treatment of combinational logic
reduction and state reduction. (Agrawal and Cheng, 1990) cover design for test-
ability based on state assignments.

Agrawal, V.D. and K. T. Cheng, “Finite State Machine Synthesis with Embedded
Test Function,” Journal of Electronic Testing: Theory and Applications, vol. 1, pp.
221–228, (1990).

Booth, T. L., Introduction to Computer Engineering: Hardware and Software

QD

Q
T
2

000

001

010

011

100

101

110

111

0

0

1

0

0

0

0

0

QD

Q
T
1

000

001

010

011

100

101

110

111

x

1

1

0

0

0

0

QD

Q
T
0

000

001

010

011

100

101

110

111

x

1

0

1

0

0

000

001

010

011

100

101

110

111

0

0

0

0

x

1

0

0

Z

x0

xx

CLK

x

Figure B-45 Logic circuit for majority FSM.

563

Design, 3/e, John Wiley & Sons, New York, (1984).

Kohavi, Z., Switching and Finite Automata Theory, 2/e, McGraw-Hill, New York,
(1978).

� PROBLEMS
B.1 Given the following functions, construct K-maps and find minimal

sum-of-products expressions for f and g.

f(A,B,C,D) = 1 when two or more inputs are 1, otherwise f(A,B,C,D) = 0.

g(A,B,C,D) = 1 when the number of inputs that are 1 is even (including the
case when no inputs are 1), otherwise g(A,B,C,D) = .

B.2 Use K-maps to simplify function f and its don’t care condition below. Per-
form the reduction for (a) the sum-of-products form and (b) the prod-
uct-of-sums form.

B.3 Given a logic circuit, is it possible to generate a truth table that contains
don’t cares? Explain your answer.

B.4 The following K-map is formed incorrectly. Show the reduced equation
that is produced by the incorrect map, and then form the K-map correctly and
derive the reduced equation from the correct map. Note that both K-maps
will produce functionally correct equations, but only the properly formed
K-map will produce a minimized two-level equation.

B.5 A 4-to-1 multiplexer can be represented by the truth table shown below.

f A B C D, , ,()

f A B C D, , ,() 2 8 10 11, , ,()∑ ∑ d 0 9,()+=

1

D

0

000
ABC

001 011 010 110 111 101 100

1

1

1

1

1

1

1

1

564

Use map-entered variables to produce a reduced SOP Boolean equation.

B.6 Use the tabular method to reduce the function:

B.7 Use the tabular method to reduce the following multiple output truth
table:

B.8 Reduce the equation for F shown below to its minimal two-level form,
and implement the function using a three-input, one-output PLA.

B.9 Use function decomposition to implement function f below with two

0
0
1
1

0
1
0
1

A B

D0

D1

D2

D3

F

f A B C D, , ,() 3 5 7 10 13 15, , , , ,()∑ a∑ d 2 6,()+=

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

B C

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

A

0
0
0
1
0
1
0
1
0
0
0
0
0
1
1
1

F0

0
0
0
0
0
1
0
1
0
0
1
0
0
1
1
1

F1

1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
1

F2

m0
m1
m2
m3
m4
m5
m6
m7
m8
m9
m10
m11
m12
m13
m14
m15

Minterm

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

D

F A B C, ,() ABC ABC ABC ABC+ + +=

565

4-to-1 MUXes. Parenthesize the equation so that C and D are in the inner-
most level as in Equation B.22. Make sure that every input to each MUX is
assigned to a value (0 or 1), to a variable, or to a function.

B.10 Reduce the following state table:

B.11 Reduce the following state table:

B.12 The following ternary state table may or may not reduce. Show the reduc-

f A B C D, , ,() ABCD ABCD ABCD AB+ + +=

X

0 1

A D/0 G/1

Present state

Input

B

C

D

E

C/0 G/0

A/0 D/1

B /0 C/1

A /1 E/0

F C/1 F/0

G E /1 G/1

XY

00 01

A A/0 B/0

Present state

Input

B

C

D

E

A/0 B/1

E/1 B/0

A/0 D/1

C/1 D/0

10

C/0

D/0

B/0

D/0

D/0

11

D/0

D/1

E/1

B/1

E/1

566

tion process (the partitions) and the reduced state table.

B.13 The following circuit has three master-slave J-K flip-flops. There is a single
input CLK and three outputs Q2, Q1, and Q0 that initially have the value 0.
Complete the timing diagram by showing the values for Q2, Q1, and Q0.
Assume that there are no delays through the flip-flops.

B.14 Use a T flip-flop to design a serial adder, using the approach described in
Section B.3.2.

B.15 In the following reduced state table, the state assignments have already
been made. Design the machine using D flip-flops, AND and OR gates. Use
K-maps to reduce the expressions for the next state and output functions. Be
careful to construct the K-maps correctly, since there are only three rows in

x

0 1

A B/0 E/2

Present state

Input

B
C
D
E

D/2 A/1
D/2 G/1
B/2 F/1
A/0 E/2

2

G/1
D/0
B/0
C/0
C/1

F C/0 E/2 F/1
G D/0 E/2 A/1

J

CLK

Q2 J J

K K K

1 Q1 Q0

CLK

Q2

Q1

Q0

567

the state table.

B.16 Draw a logic diagram that shows a J-K flip-flop can be created using a D
flip-flop.

X

0 1

A: 00 00/0 01/1

Present state

Input

B: 01

C: 10

10/1 00/1

01/1 10/0

YZ

568

SOLUTIONS TO PROBLEMS

569

SOLUTIONS TO CHAPTER 1 PROBLEMS

1.1

Computing power increases by a factor of 2 every 18 months, which generalizes to a factor of 2

x

every 18

x

 months. If we want to figure the time at which computing power increases by a factor of
100, we need to sove 2

x

 = 100, which reduces to

x

 = 6.644. We thus have 18

x

 = 18

×

(6.644 months) =
120 months, which is 10 years.

SOLUTIONS TO CHAPTER 2 PROBLEMS

2.1

(a) [+999.999, –999.999]

(b) .001 (Note that

error

 is 1/2 the precision, which would be .001/2 = .0005 for this problem.)

2.2

(a) 101111

(b) 111011

(c) 531

(d) 22.625

(e) 202.22

2.3

(a) 27

(b) 000101

(c) 1B

(d) 110111.111

(e) 1E.8

2.4

2

×

3

-1

 + 0

×

3

-2

 + 1

×

3

-3

 = 2/3 + 0 + 1/27 = 19/27

SOLUTIONS TO PROBLEMS

570

SOLUTIONS TO PROBLEMS

2.5

37.3

2.6

(17.5)

10

≅

 (122.11)

3

 = (17.4)

10

2.7

–8

2.8

0

2.9

0011 0000 0101

2.10

0110 1001 0101

2.11

One’s complement has two representations for zero, whereas two’s complement has one represen-
tation for zero, thus two’s complement can represent one more integer.

2.12

2.13

2.14

(a) -.02734375

(b) (14.3)

6

 = (10.5)

10

 = (A.8)

16

 = .A8

×

 16

1

 =

0 1000001 10101000 00000000 00000000

2.15

(a) decrease; (b) not change; (c) increase; (d) not change

2.16

(a) –.5; (b) decrease; (c) 2

–5

; (d) 2

–2

; (e) 33

Largest number

Smallest number

No. of distinct numbers

5-bit signed magnitude 5-bit excess 16

+15

–15

31

+15

–16

32

–1.0101 × 2-2

Floating point representationBase 2 scientific notation
Sign Exponent Fraction

+1.1 × 22

0

1

001

110

0000

1111

+1.0 × 2–2

–1.1111 × 23

0 101 1000

1 001 0101

SOLUTIONS TO PROBLEMS

571

2.17

(107.15)

10

 = 1101011.00100110011001100

 0 1000111 11010110 01001100 11001100

2.18

(a) +1.011

×

 2

4

(b) -1.0

×

 2

1

(c) -0

(d) -

∞

(e) +NaN

(f) +1.1001

×

 2

-126

(g) +1.01101

×

 2

-124

2.19

(a) 0 10000100 1011 0000 0000 0000 0000 000

(b) 0 00000000 0000 0000 0000 0000 0000 000

(c) 1 01111111110 0011 1000 0000 0000 0000

 0000 0000 0000 0000 0000 0000 0000 0000

(d) 1 11111111 1011 1000 0000 0000 0000 000

2.20

(a) (2 – 2

-23

)

×

 2

127

(b) 1.0

×

 2

-126

(c) 2

-23

×

 2

-126

 = 2

-149

(d) 2

-23

×

 2

-126

 = 2

-149

(e) 2

-23

×

 2

127

 = 2

104

(f) 2

×

 (127 – -126 + 1)

×

 1

×

 2

23

 + 1 = 254

×

 2

24

 + 1

2.21

The distance from zero to the first representable number is greater than the gap size for the same
exponent values.

2.22

If we remove the leftmost digit, there is no way to know which value from 1 to 15 should be
restored.

2.23

No, because there are no unused bit patterns.

2.24

No. The exponent determines the position of the radix point in the fixed point equivalent repre-
sentation of a number. This will almost always be different between the orginal and converted num-
bers, and so the value of the exponent will be different in general.

572

SOLUTIONS TO PROBLEMS

SOLUTIONS TO CHAPTER 3 PROBLEMS

3.1

3.2

- 1 1 0 0 <-- borrows
- 0 1 0 1
- 0 1 1 0

1 1 1 1 1 (No overflow)
^
|__ borrow is discarded in a two’s complement representation

3.3

Two’s complement One’s complement
+ 1 0 1 1.1 0 1 + 1 0 1 1.1 0 1
+ 0 1 1 1.0 1 1 + 0 1 1 1.0 1 1
_______________ _______________

+ 0 0 1 1.0 0 0 (no overflow) + 0 1 0 0.0 0 0 (no overflow)

Note that for the one’s complement solution, that the end-around carry is added into the 1’s posi-

 1 0 1 1 0
+ 1 0 1 1 1

 0 1 1 0 1

Overflow

 1 1 1 1 0
+ 1 1 1 0 1

 1 1 0 1 1

No overflow

 1 1 1 1 1
+ 0 1 1 1 1

 0 1 1 1 0

No overflow

SOLUTIONS TO PROBLEMS

573

tion.

3.4

3.5

C

0

0
0
0
0
0
0

0

A

0 0 0

1 0 1 0
0 1 0 1
0 0 1 0
1 1 0 0
0 1 1 0
0 0 1 1

0

Q

1 0 1

0 1 0 1
0 0 1 0
1 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0

Multiplicand (M):

1 0 1 0
Initial values

Add M to A
Shift
Shift

Shift
Add M to A

Shift

Product

C

0

0
0
1
0
0
0

A

0 0 0

1 1 1
0 1 1
0 1 0
1 0 1
0 1 0
0 1 0

Q

0 1 1

0 1 1
1 0 1
1 0 1
0 1 0
1 0 1
1 0 1

Multiplicand (M):

1 1 1
Initial values

Add M to A
Shift Right
Add M to A

Shift Right
Shift Right

Fix Decimal

Product

.

574

SOLUTIONS TO PROBLEMS

3.6

0

0
1

0
0

0

A

0 0 0

0 0 0 1
1 1 0 0

0 1 0 1
0 0 0 0

1

Q

0 1 0

0 1 0 0
0 1 0 0

0 0 0 0
0 0 0 0

Divisor (M):

0 1 0 1
Initial values

Shift left
Subtract M from A

Shift left
Subtract M from A

0 0 0 0 1 0 1 0 0 Restore A

0
1

0 0 1 0
1 1 0 1

1 0 0 0
1 0 0 0

Shift left
Subtract M from A

0 0 0 1 0 1 0 0 0 Restore A

0 0 0 0 1 0 1 0 0 Clear q0

0 0 0 1 0 1 0 0 0 Clear q0

0 0 0 0 0 0 0 0 1 Set q0
0
1

0 0 0 0
1 0 1 1

0 0 1 0
0 0 1 0

Shift left
Subtract M from A

0 0 0 0 0 0 0 1 0 Restore A
0 0 0 0 0 0 0 1 0 Clear q0

Remainder Quotient

0

SOLUTIONS TO PROBLEMS

575

3.7

3.8

c

4

 =

G

3

 +

P

3

G

2

 +

P

3

P

2

G

1

 +

P

3

P

2

P1G0 + P3P2P1P0

3.9 (a) The carry out of each CLA is generated in just three gate delays after the inputs settle. The
longest path through a CLA is five gate delays. The longest path through the 16-bit CLA/ripple adder
is 14 (nine to generate c12, plus five to generate s15).

(b) s0 is generated in just two gate delays.

(c) s12 is generated in 11 gate delays. It takes 3 gate delays to generate c4, which is needed to gen-
erate c 3 gate delays later, which is needed to generate c12 3 gate delays after that, for a total of 9 gate
delays before c12 can be used in the leftmost CLA. The s12 output is generated 2 gate delays after that,
for a total of 11 gate delays.

0

0
1

0
0

0

A

0 0 0

0 0 0 1
1 1 0 1

0 1 0 1
0 0 0 1

1

Q

0 1 0

0 1 0 0
0 1 0 0

0 0 0 0
0 0 0 0

Divisor (M):

0 1 0 0
Initial values

Shift left
Subtract M from A

Shift left
Subtract M from A

0 0 0 0 1 0 1 0 0 Restore A

0
1

0 0 1 0
1 1 1 0

1 0 0 0
1 0 0 0

Shift left
Subtract M from A

0 0 0 1 0 1 0 0 0 Restore A

0 0 0 0 1 0 1 0 0 Clear q0

0 0 0 1 0 1 0 0 0 Clear q0

0 0 0 0 1 0 0 0 1 Set q0
0
1

0 0 1 0
1 1 0 0

0 0 1 0
0 0 1 0

Shift left
Subtract M from A

0 0 0 1 0 0 0 1 0 Restore A
0 0 0 1 0 0 0 1 0 Clear q0

Quotient

0

0
0

0 1 0 0
0 0 0 0

0 1 0 0
0 1 0 0

Shift left
Subtract M from A

0 0 0 0 0 0 1 0 1 Set q0, fix decimal.

576 SOLUTIONS TO PROBLEMS

3.10

3.11

3.12 The carry bit generated by the ith full adder is: ci = Gi + PiGi-1 + ...+ PiP1G0. The Gi and Pi bits
are computed in one gate delay. The ci bit is computed in two additional gate delays. Once we have ci,
the sum outputs are computed in two more gate delays. There are 1 + 2 + 2 = 5 gate delays in any carry
lookahead adder regardless of the word width, assuming arbitrary fan-in and fan-out.

3.13 Refer to Figure 3-21. The OR gate for each ci has i inputs. The OR gate for c32 has 32 inputs.
No other logic gate has more inputs.

×

0
0

1 0 0 1
1 1 0 1

1
1

Multiplicand
Multiplier

+1 0 −1 +1 0 −1 Booth coded multiplier

Booth algorithm:
Scan multiplier from right to left.
use −1 for a 0 to 1 transition;
use −1 for the rightmost 1;
use +1 for a 1 to 0 transition;
use 0 for no change.

0 1 0 0 1 1 Multiplicand
+1 0 −1 +1 0 −1 Booth coded multiplier

1
0
0
0

0
0
0
0

1
1
0
0

1
1
1
0

0
0
0
0

1
0
1
1

1
1
1
1

1
0
0
0

1
0
1
0

1
0
1
1

1
0
1
0+

10000000010

Negative multiplicand
Multiplicand shifted left by 2
Negative multiplicand shifted left by 3
Multiplicand shifted left by 5

Product

×

0
0

1 0 0 1
1 1 0 1

1
1

Multiplicand
Multiplier

+1 0 −1 +1 0 −1 Booth coded multiplier

0 1 0 0 1 1 Multiplicand
+2 −1 −1

1
0
0

0
0
0

1
1
0

1
0
0

0
1
0

1
1
1

1
0
1

1
1
0

1
1
0

1
1
1

1
1
0+

10000000010

(−1 × 19 × 1)
(−1 × 19 × 4)
(+2 × 19 × 16)

Product

+2 −1 −1 Bit-pair recoded multiplier

Bit-pair recoded multiplier

1
1
0

0

SOLUTIONS TO PROBLEMS 577

3.14 (a)

(b) Assume that a MUX introduces two gate delays as presented in Chapter 3. The number of
gate delays for the carry lookahead approach is 8 (c4 is generated in three gate delays, and s7 is gener-
ated in five more gate delays). For the carry-select configuration, there are five gate delays for the
FBAs, and two gate delays for the MUX, resulting in a total of 5 + 2 = 7 gate delays.

3.15 3p

3.16 There is more than one solution. Here is one: The basic idea is to treat each 16-bit operand as if
it is made up of two 8-bit digits, and then perform the multiplication as we would normally do it by
hand. So, A0:15 = A8:15A0:7 = AHIALO and B0:15 = B8:15B0:7 = BHIBLO, and the problem can then be
represented as:

b0 a0b1 a1b2 a2b3 a3

c4

0
c0

Four-Bit Adder (FBA)

b4 a4

s4

b5 a5

s5

b6 a6

s6

b7 a7

s7

Four-Bit Adder (FBA)

c8

s0s1s2s3

578 SOLUTIONS TO PROBLEMS

3.17 Two iterations.

3.18

3.19

SOLUTIONS TO CHAPTER 4 PROBLEMS

4.1 24

4.2 Lowest: 0; Highest: 218 – 1

This is not a byte addressable architecture and so all addresses are in units of words, even though we

ALO

BLOBHI

AHI

×

ALOBLO ×

BLO ×

ALO×

×

AHI

BHI

BHI AHI

32-bit sum of partial products

+

+

+

+

8 bits

16-bit partial
products

32-bit product

Adder

Adder

Adder

Multipliers

0

0

BHI AHI BLOALO

8
8

8

8

16
16 16

16

8

8

16

8
8

16

bits 0:7

bits 8:15

bits 0:7bits 8:15

×BHI AHI ALO×BHI ALOBLO ×BLO × AHI

 0110 0100 0001
+ 0010 0101 1001

 1001 0000 0000

 0000 0001 0010 0011
+ 1001 1000 0010 0010

 1001 1001 0100 0101

SOLUTIONS TO PROBLEMS 579

might think of words in terms of 4-byte units.

4.3 (a) Cartridge #1: 216 bytes; cartridge#2: 219 – 217 bytes.

(b) [The following code is inserted where indicated in Problem 4.3.]

orncc %r4, %r0, %r4 ! Form 1's complement of old_y

addcc %r4, 1, %r4 ! Form 2's complement of old_y

addcc %r2, %r4, %r4 ! %r4 <- y - old_y

be loop

4.4

.begin

.org 2048

swap: ld [x], %r1

ld [y], %r2

st %r1, [y]

st %r2, [x]

jmpl %r15 + 4, %r0

x: 25

y: 50

.end

4.5 (a) The code adds 10 array elements stored at a and 10 array elements stored at b, and
places the result in the array that starts at c.

For this type of problem, study the logical flow starting from the first instruction. The first line loads
k=40 into %r1. The next line subtracts 4 from that, leaving 36 in %r1, and the next line stores that
back into k. If the result (+36 at this point) is negative, then bneg branches to X which returns to the
calling procedure via jmpl. Otherwise, the code that follows bneg executes, which adds correspond-
ing elements of arrays a and b, placing the results in array c.

580 SOLUTIONS TO PROBLEMS

4.6

(b) Note: There is more than one correct solution.

4.7 The code adds 10 array elements stored at a and 10 array elements stored at b, and places the

result in the array that starts at c.

4.8 All instructions are 32 bits wide. 10 of those bits need to be used for the opcode and destination
register, which leaves only 22 bits for the imm22 field.

4.9 The convention used in this example uses a “hardwired” data link area that begins at location
3000. This is a variation to passing the address of the data link area in a register, which is done in the
example shown in Figure 4-16.

4.10 The SPARC is big-endian, but the Pentium is little-endian. The file needs to be “byte-swapped”
before using it on the other architecture (or equivalently, the program needs to know the format of the
file and work with it as appropriate for the big/little-endian format.)

Opcode Src
Mode

Source Dst
Operand/Address

Dst
Mode

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

Opcode Src
Mode

Source Dst
Operand/Address

Dst
Mode

0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1

0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1

0 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0

(1)

0

232–1

Free area

%sp

Stack

a
b

(2) (3)

0

232–1

Free area

Stack

0

232–1

%sp
Free area

%sp
Stack

a
b
c

%r15
m

c

n

SOLUTIONS TO PROBLEMS 581

4.11

aload_0

invokespecial 3 // Same as: invokespecial <init>

return

4.12 Notice that the first line of the bytecode program in Figure 4-24 begins with the hexadecimal
word cafe at address 0 and babe at address 2. The text describes the “magic number 0xcafebabe”
used to identify a Java program. Since the most significant bits (cafe) of the 32-bit magic number are
stored at the lower address, the machine must be big-endian. (Note that on a little-endian machine the
number would display as bebafeca. Not nearly so interesting a word.)

4.13

main:
 mov 15,%r16
 mov 9,%r17
 st %r16,[%sp+68] ! 15 on stack
 st %r17,[%sp+72] ! 9 on stack
 call addtwoints
 nop
ld [%sp-4],%r9 ! result loaded from stack to %r9
! printf("ans is %d \n", result);
! printf expects value in %r9 and format string in %r8.
 sethi %hi(.L17),%r8
 or %r8,%lo(.L17),%r8
 call printf
 nop
 jmp %r31+8

 ...

addtwoints:
 ld [%fp+68],%r16 ! first parameter in %r16
 ld [%fp+72],%r17 ! second parameter in %10

 add %r16,%r17,%r16
 st %r16,[%fp-4] ! result on stack
 nop
 jmp %r31+8

4.14 a) 13 (instruction fetches) + 5 (stack pushes) + 4 (stack pops) + 3 (stack add) = 25 bytes.

582 SOLUTIONS TO PROBLEMS

b) [Placeholder for missing solution.]

4.15 It is doubtful that a bytecode program will ever run as fast as the equivalent program written in
the native language. Even if the program is run using a just-in-time (JIT) compiler, it still will use
stack-based operations, and will thus not be able to take advantage of the register-based operations of
the native machine.

4.16

3-address: 2-address 1-address
SUB B, C, A MOV B, A LOAD B
SUB D, E, Tmp SUB C, A SUB C
MPY A, Tmp, A MOV D, Tmp STO Tmp

SUB E, Tmp LOAD D
MPY Tmp, A SUB E

MPY Tmp
STO A

Size: 7×3=21 bytes 5×5 = 25 bytes 3×7 = 21 bytes.

Traffic: 3×4+3×3 = 21 wds. 5×3 + 2×2 7×2 + 7 = 21 wds.
+ 3×3 = 28 wds.

4.17

ld [B], %r1
ld [C], %r2
ld [D], %r3
ld [E], %r4
subcc %r1, %r2, %r2
subcc %r3, %r4, %r4
smul %r2, %r4, %r4
st %r4, [A]

Size: 8 32-bit words. Traffic: 8 + 4 +1 = 13 32-bit words. Note how the load-store, general register
architecture leads to less memory traffic than either of the architectures in the exercise above.

SOLUTIONS TO PROBLEMS 583

SOLUTIONS TO CHAPTER 5 PROBLEMS

5.1 The symbol table is shown below. The basic approach is to create an entry in the table for each
symbol that appears in the assembly language program. The symbols can appear in any order, and a
simple way to collect up all of the symbols is to simply read the program from top to bottom, and
from left to right within each line. The symbols will then be encountered in the order: x, main,
lab_4, k, foo, lab_5, and cons. Of these labels, x, main, lab_4, foo, and cons are defined
in the program. k and lab_5 are not defined and are marked with a U. Excluded from the symbol
table are mnemonics (like addcc), constants, pseudo-ops, and register names.

x has the value 4000 because .equ defines that. main is at location 2072, and so it has that value in
the symbol table. lab_4 is 8 bytes past main (because each instruction is exactly 4 bytes in size) and
so lab_4 is at location 2800, etc.

5.2 Notice that the rd field for the st instruction in the last line is used for the source register.

10001000 10000001 00100100 00000000

11001010 00000011 10000000 00000000

10011100 10000011 10111111 11111111

11001010 00100000 00110000 00000000

5.3 [Placeholder for missing solution.]

5.4

3072: 10001100 10000000 10000000 00000100

3076: 00001010 10000000 00000000 00000011

3080: 10001010 10000000 01000000 00000011

Symbol Value

main 2072

lab_4 2080

k U

foo 2088

x 4000

lab_5 U

cons 2104

584 SOLUTIONS TO PROBLEMS

3084: 10000001 11000011 11100000 00000100

3088: 10001010 10000000 01000000 00000011

3092: 00001010 10000000 00000000 00000011

3096: 10001010 10000001 01100000 00000001

3100: 10000001 11000011 11100000 00000100

3104: 10001010 10000001 01100000 00000001

3108: 00001111 00111111 11111111 11111111

3112: 10000000 10000001 11000000 00000111

3116: 10000001 11000011 11100000 00000100

3120: 00000000 00000000 00000000 00000000

3124: 00000000 00000000 00000000 00011001

3128: 11111111 11111111 11111111 11111111

3132: 11111111 11111111 11111111 11111111

3136: 00000000 00000000 00000000 00000000

3140: 00000000 00000000 00000000 00000000

5.5

b: addcc %r1, 1, %r1

orcc %r5, %r6, %r0

be a

srl %r6, 10, %r6

ba b

a: jmpl %r15 + 4, %r0

5.6

ld %r14, %r1

addcc %r14, 4, %r14 ! This line can be deleted

addcc %r14, -4, %r14 ! This line can be deleted

st % r2, %r14

SOLUTIONS TO PROBLEMS 585

5.7

.macro return

jmpl %r15 + 4, %r0

.endmacro

5.8

.

.

.

st %r1, [x]

st %r2, [x+4]

sethi .high22(x), %r5

addcc %r5, .low10(x), %r5

call add_2

ld [x+8], %r3

.

.

.

x: .dwb 3

5.9

.begin

.org 2048

add_128: ld [x+8], %r1 ! Load bits 32-63 of x

ld [x+12], %r2 ! Load bits 0 - 31 of x

ld [y+8], %r3 ! Load bits 32 - 63 of y

ld [y + 12], %r4 ! Load bits 0 -31 of y

call add_64 ! Add lower 64 bits

st %r5, [z + 8] ! Store bits 32 - 63 of result

st %r6, [z + 12] ! Store bits 0 - 31 of result

586 SOLUTIONS TO PROBLEMS

bcs lo_64_carry

addcc %r0, %r0, %r8 ! Clear carry

ba hi_words

lo_64_carry: addcc %r0, 1, %r8 ! Set carry

hi_words:ld [x], %r1 ! Load bits 96 - 127 of x

ld [x + 4], %r2 ! Load bits 64-95 of x

ld [y], %r3 ! Load bits 96 - 127 of y

ld [y + 4], %r4 ! Load bits 64 - 95 of y

call add_64 ! Add upper 64 bits

bcs set_carry

addcc %r6, %r8, %r6 ! Add in low carry

st %r5, [z] ! Store bits 96 - 127 of result

st %r6, [z + 4] ! Store bits 64 - 95 of result

jmpl %r15 + 4, %r0 ! Return

set_carry:addcc%r6, %r8, %r6 ! Add in low carry

st %r5, [z] ! Store bits 96 - 127 of result

st %r6, [z + 4] ! Store bits 64 - 95 of result

sethi #3FFFFF, %r8

addcc %r8, %r8, %r0 ! Restore carry bit

jmpl %r15 + 4, %r0 ! Return

x: .dwb 4

y: .dwb 4

z: .dwb 4

.end

5.10 Note: In the code below, arg2 must be a register (it cannot be an immediate).

.macro subcc arg1, arg2, arg3

orncc arg2, %r0, arg2

addcc arg2, 1, arg2

addcc arg1, arg2, arg3

SOLUTIONS TO PROBLEMS 587

.endmacro

Note that this coding has a side effect of complementing arg2.

5.11 All macro expansion happens at assembly time.

5.12 The approach allows an arbitrary register to be used as a stack, rather than just %r14. The dan-
ger is that an unwitting programmer might try to invoke the macro with a statement such as push X,
Y. That is, instantiating a stack at memory location Y. The pitfall is that this will result in an attempt to
define the assembly language statement addcc Y, -4, Y, which is illegal in ARC assembly lan-
guage.

SOLUTIONS TO CHAPTER 6 PROBLEMS

6.1

6.2 There is more than one solution, especially with respect to the choice of labels at the MUX

Z

Carry
Out

Output

Full
Adder

X Y

Carry In

Carry Out Sum

A

B

Carry
In

Data
Inputs

F0

F1

00

01

10

11

2-to-4 Decoder

Function
Select

0
0
1
1

0
1
0
1

Fo F1

ADD(A,B)
AND(A,B)
OR(A,B)
NOT(A)

Function

588 SOLUTIONS TO PROBLEMS

inputs. Here is one solution:

6.3

6.4 Register %r0 cannot be changed, and so there is no need for it to have a write enable line.

6.5 (a)

ALU0

y0 x0

z0

y1 x1

z1

y2 x2

z2

y3 x3

z3

ALU1ALU2ALU3
c0
c1

y4 x4

z4

ALU4

y5 x5

z5

ALU5

y6 x6

z6

ALU6

y7 x7

z7

ALU7

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

yi xi

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

c0

0
0
0
1
0
1
1
1
1
0
0
0
0
1
1
0

zi

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

c1

c0 xi

zi

000

001

010

011

yi

100

101

110

111

c1

0

0

c1

0

1

1

c1

A B
00/00

11/11
00/11

Not
halted

Halted

01/01
10/10

01/11
10/11
11/11

F0 F10 1 2 30 1 2 30 1 2 3
Write Enables A-bus enables B-bus enables

Time

0

1

2

0 1 0 0 0 1 0 0 0 0 0 0 1 1

1 0 0 0 1 0 0 0 0 1 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 1 0 0

SOLUTIONS TO PROBLEMS 589

(b)

6.6

6.7

6.8
1280: R[15] <- AND(R[pc], R[pc]); / Save %pc in %r15

1281: R[temp0] <- LSHIFT2(R[ir]); / Shift disp30 left two bits
1282: R[pc] <- ADD(R[pc], R[temp0]); / Jump to subroutine
 GOTO 0;

6.9 Either seven or eight microinstructions are executed, depending on the value of IR[13]:

IR[13] = 0: (Eight microinstructions) 0, 1, 1584, 1585, 1586, 1587, 1603, 2047.

IR[13] = 1: (Seven microinstructions) 0, 1, 1584, 1586, 1587, 1603, 2047.

6.10 (a) (11 microinstructions): 0, 1, 1088, 2, 3, 4, 5, 6, 7, 8, 12.

F0 F10 1 2 30 1 2 30 1 2 3
Write Enables A-bus enables B-bus enables

Time

0

1

2

0 0 1 0 1 0 0 0 0 0 0 0 1 0

1 0 0 0 0 1 0 0 0 0 0 0 1 1

1 0 0 0 1 0 0 0 0 0 1 0 0 1

1 0 0 0 1 0 0 0 0 0 0 0 1 1

0 0 1 0 0 0 1 0 0 0 0 0 1 1

0 0 1 0 0 0 1 0 0 1 0 0 0 1

0 0 1 0 0 0 1 0 0 0 0 0 1 1

1 0 0 0 1 0 0 0 0 0 1 0 0 1

1 0 0 0 1 0 0 0 0 0 0 0 1 1

3

4

5

6

7

8

r0 ⊕ r1 = r0r1 + r0r1 = r0r1 +r0 r1 = r0 r1 r0r1

r0 r1 r0r1

Save r0

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Compute

r0 r1 r0r1

r r0 1

r r0 1

r r0 1

r0

r r0 1

r1

R
D

W
RCA B JUMP ADDRALU COND

A
M
U
X

B
M
U
X

C
M
U
X

0000001 000101 0001000011101000001000000
0000010 000000 0000100110100000000000000

60
61

0
0

0
0

0
0

R[temp0] ← SEXT13(R[ir]);
R[temp0] ← ADD(R[rs1],R[temp0]); GOTO 1793;
R[temp0] ← ADD(R[rs1],R[rs2]); IF IR[13] THEN GOTO 1810;

590 SOLUTIONS TO PROBLEMS

(b) 0, 1, 2, 19

6.11

6.12 000000, or any bit pattern that is greater than 3710.

6.13 There is more than one solution. Here is one:

6.14
1612: IF IR[13] THEN GOTO 1614; / Is second source operand immediate?

1613: R[temp0] <- R[rs2]; / Get B operand in temp0
 GOTO 1615;
1614: R[temp1] <- SIMM13(R[ir]); / Get A operand in temp1
 GOTO 21;
1615: R[temp1] <- R[rs1]; GOTO 21;
21: R[temp2] ← NOR(R[temp0], R[temp0]); / Get complement of B in temp2
22: R[temp3] ← NOR(R[temp1], R[temp1]); / Get complement of A in temp3

A31

B31

A30

B30

A0

B0

. . .

A bus enable (from
a0 bit of A Decoder)

B bus enable (from
b0 bit of B Decoder)

. . .

Data outputs to B Bus

Data outputs to A Bus

0 0 0

ROM ContentsAddress

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

A B C D

V W X S

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0

0 1 1

1 0 0

0 1 1

1 0 0

0 1 1

1 0 0

0 1 1

0 1 1

0 1 1

0 1 1

0 1 1

0 1 1

0 1 1

0 1 1

0 1 1

SOLUTIONS TO PROBLEMS 591

23: R[temp1] ← NOR(R[temp1], R[temp2]); / temp1 gets AND(A, B')
24: R[temp2] ← NOR(R[temp0], R[temp3]); / temp2 gets AND(A’, B)
25: R[rd] ← ORCC(R[temp1],R[temp2]); GOTO 2047; / Extract rs2 operand

6.15

6.16 No.

6.17

Read (Peek at top of stack)

Data In

32

Data Out

Write

Clock

32

32

Top of Stack

32

Push

Pop

0

0

0

32

0

32

32

32

32

32

32

32

Cond
ALU A-Bus B-Bus C-Bus Jump Address Next Address

0

1

2

3

00 010 0 10 00 0 01 000 000 000 000 0 00 00 00 0 001

00 000 0 00 00 0 00 011 000 000 111 1 00 00 00 0 010

01 001 0 01 00 1 00 000 000 000 000 0 00 00 00 0 011

00 000 0 00 00 0 00 001 000 001 010 0 00 00 00 0 000

592 SOLUTIONS TO PROBLEMS

6.18 No. After adding 1 to 2047, the 11-bit address wraps around to 0.

6.19 (a) 137 bits

(b) (211 words × 137 bits) / (211 words × 41 bits) = 334%

6.20

6.21 temp0 should be multiplied by 4 (by shifting temp0 to the left by two bits) before adding
temp0 to the PC in line 12.

SOLUTIONS TO CHAPTER 7 PROBLEMS

7.1

zi

0
0
1
1
1
1
0
0

Carry
Out
0
0
0
0
0
0
1
1

zi

1
1
0
0
d
d
d
d

Carry
Out
0
0
1
1
d
d
d
d

ALU LUT1 ALU LUT0

X(A0)
0 1

A: 00 B/0 B/1

P.S.

Input

B: 01
C: 10
D: 11

C/1 D/1
A/1 B/0
A/0 A/0

A1 A2

SOLUTIONS TO PROBLEMS 593

7.2

7.3

7.4

00 00010000 00000100 00010100

F.S. A B Q
DataAddress

01 00010000 00000100 00001100
10 00010000 00000100 01000000
11 00010000 00000100 00000100

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

8×8 8×8 8×8 8×8

8

D31 ... D24

8

D23 ... D16

8

D15 ... D8

8

D7 ... D0

3
A0

A2

A1

WR
EN

Q31 ... Q24 Q23 ... Q16 Q15 ... Q8 Q7 ... Q0

8 8 8 8

4×4

4

D3 ... D0

A0

A2

A1

WR
EN

Q3 ... Q0

4

4×4

4×4

4×4

EN

EN

EN

00
01
10
11

A3

Enable

2-to-4
decoder

594 SOLUTIONS TO PROBLEMS

7.5

p

D4p-1 ... D3p

p

D3p-1 ... D2p

p

D2p-1 ... Dp

p

Dp-1 ... D0

log2n
Address

WR
EN

Q4p-1 ... Q3p Q3p-1 ... Q2p Q2p-1 ... Qp Qp-1 ... Q0

p p p p

(a)

(b)

n×p

p

Dp-1 ... D0

A0

A[log2n]

WR
EN

Qp-1 ... Q0

p

n×p

n×p

n×p

EN

EN

EN

00
01
10
11

Enable

2-to-4
decoder

n×p n×p n×p n×p

A[log2n] + 1

A[log2n] − 1

...

SOLUTIONS TO PROBLEMS 595

7.6

7.7 (a)

(b)

misses: 13 (on first loop iteration)

hits: 173 (first loop)

hits after first loop 9 × 186 = 1674

hits total = 173 + 1674 = 1847

accesses = hits + misses = 1860

hit ratio = 1847/1860 = 99.3%

a0

a1

d0

d1

d2

d3

d4

d5

d6

d7

a2

d8

d9

d10

d11

d12

d13

d14

d15

a3

7 7 4

Tag Slot Word

596 SOLUTIONS TO PROBLEMS

(c) Avg. access time = [(1847)(10 ns) + (13)(210 ns)]/1860

= 11.4 ns

7.8 (a) The number of blocks in main memory is 216/8 = 213. The tag field is 13 bits wide and the
word field is three bits wide.

(b) Addresses 20-45 lie in four different main memory blocks. When the program executes, there
will be four misses and 94 hits. Hit ratio = 94/98 = 95.9%.

(c) The total access time for the program is 4(1040 ns) + 94(40 ns) = 7920 ns. Average access
time = 7920/98 = 80.82 ns.

7.9 Associative = (8 × 32 + 29) × 214; Direct = (8 × 32 + 15) × 214

7.10 (a) The size of the cache is 214 slots × 25 words/block = 219 words, which is the minimum spac-
ing needed to suffer a miss on every cache access.

(b) Every cache access causes a miss, and so the effective access time is 1000 ns.

7.11 (a) LRU 0 2 4 5 2 4 3 11 2 10

Misses: ↑XX↑XX↑XX↑XXXXXXXX↑XX↑XXXX↑

(b) FIFO 0 2 4 5 2 4 3 11 2 10

Misses: ↑XX↑XX↑XX↑XXXXXXXX↑XX↑X↑XX↑

7.12 If the page table is swapped out to disk, then the next memory address will cause a fault because
the memory manager needs to know the physical location of that virtual address, and since the page
table is on disk, the memory manager does not know where to get the page that contains the page
table. An infinite sequence of page faults will occur. Using the LRU page replacement policy will pre-
vent this from happening since the page containing the page table will always be in memory, but this
will only work if the page table is small enough to fit into a single page (which it usually is not).

7.13 (a) 1024

(b) It is not in main memory.

13 3

Tag Word

SOLUTIONS TO PROBLEMS 597

(c) Page frame 2

7.14 (a) (N – M) / N

(b) (M – F) / M

(c) [(N – M)T1 + (M – F)T2 + FT3]/N

7.15 Virtual addresses tend to be large (typically 32 bits). If virtual addresses are cached, then the tag
fields will be correspondingly large as well as the hardware that looks at the tags. If physical addresses
are cached, then every memory reference will go through the page table. This slows down the cache,
but the tag fields are smaller, which simplifies the hardware.

If we cluster the virtual memory and cache memory into a single memory management unit (MMU),
then we can cache physical addresses and simultaneously search the cache and the page table, using the
lower order bits of the address (which are identical for physical and virtual addresses). If the page table
search is successful, then that means the corresponding cache block (if we found a block) is the block
we want. Thus, we can get the benefits of small size in caching physical addresses while not being
forced to access main memory to look at the page table, because the page table is now in hardware.
Stated more simply: this is the purpose of a translation lookaside buffer.

7.16 There are 232 bytes / 212 bytes/page = 220 pages. There is a page table entry for each page, and so
the size of the page table is 220 × 8 bytes = 223 bytes.

7.17 For the 2D case, each AND gate of the decoder needs a fan-in of 6, assuming the decoder has a
form similar to Figure 7-4. There are 26 AND gates and 6 inverters, giving a total gate input count of
26 × 6 + 6 = 390 for the 2D case. For the 2-1/2D case, there are two decoders, each with 23 AND
gates and 3 inverters, and a fan-in of 3 to the AND gates. The total gate input count is then 2 × (23 ×
3 + 3) = 54 for the 2-1/2D case.

7.18 log4(220) = 10

7.19 (a) 220

(b) 211

7.20 Words F1A0028 and DFA0502D

7.21 32

598 SOLUTIONS TO PROBLEMS

SOLUTIONS TO CHAPTER 8 PROBLEMS

8.1 The slowest bus along the path from the Audio device to the Pentium processors is the 16.7
MB/sec ISA bus. The minimum transfer time is thus 100 MB/(16.7 MB/sec) = 6 sec.

8.2 Otherwise, a pending interrupt would be serviced before the ISR has a chance to disable inter-
rupts.

8.3

8.4 4.

8.5 (a)

Width of storage area = 5 cm – 1 cm = 4 cm.

Number of tracks in storage = 4 cm × 10 mm/cm × 1/.1 tracks/mm = 400 tracks.

The innermost track has the smallest storage capacity, so all tracks will store no more data than
the innermost track. The number of bits stored on the innermost track is: 10,000 bits/cm × 2π × 1 cm
= 62,832 bits.

The storage per surface is: 62,832 bits/track × 400 tracks/surface = 25.13 × 106 bits/surface.

The storage on the disk is: 2 surfaces/disk × 25.13 × 106 bits/surface = 50.26 Mbits/disk.

(b) 62,832 bits/track × 1 track/rev × 3600 rev/min × 1/60 min/s = 3.77 Mbits/sec

8.6 In the worst case, the head will have to move between the two extreme tracks, at which point an
entire revolution must be made to line up the beginning of the sector with the position of the head.

Time

V
ol

ta
ge

1 0 0 1 1 1 0 1

ri = 1 cm

ro = 5 cm

ro − ri

ri
ro

SOLUTIONS TO PROBLEMS 599

The entire sector must then move under the head. The worst case access time for a sector is thus com-
posed of three parts:

8.7 (a) The time to read a track is the same as the rotational delay, which is:

1/3600 min/rev × 1 rev/track × 60,000 ms/min = 16.67 ms.

(b) The time to read a track is 16.67ms (from 8.5a). The time to read a cylinder is 19 × 16.67 ms
= 316.67 ms. The time to move the arm between cylinders is:

.25 mm × 1/7.5 s/m × 1000 ms/s × 1/1000 m/mm = 1/7.5 ms = .033 ms.

The storage per cylinder is 300/815 MB/cyl = .37 MB/cyl.

The time to transfer the buffer to the host is:

1/300 s/KB × .37 MB/cyl × 1024 KB/MB = 1.26 seconds/cylinder.

We are looking for the minimum time to transfer the entire disk to the host, and so we can
assume that after the buffer is emptied, that the head is exactly positioned at the starting sector of the
next cylinder. The entire transfer time is then (.317s/cyl + 1.26 s/cyl) × 815 cyl = 1285 s, or 21.4 min.
Notice that the head movement time does not contribute to the transfer time because it overlaps with
the 1.26 buffer transfer time.

8.8 A sector can be read into the buffer in .1 revolutions (rev). The disk must then continue for .9
rev in order to align the corresponding sector on the target surface with its head. The disk then contin-
ues through another .1 rev to write the sector, at which point the next sector to be read is lined up with
its head, which is true regardless of which track the next sector is on. The time to transfer each sector
is thus 1.1 rev. There are 10,000 sectors per surface, and so the time to copy one surface to another is:

10,000 sectors × 1.1 rev/sector × 1/3000 min/rev = 3.67 min.

8.9 The size of a record is:

15 ms/head movement × 127 head movements +

(1/3600 min/rev × 60,000 ms/min)(1 + 1/32) = 1922 ms

Seek time

Rotational delay Sector read time

600 SOLUTIONS TO PROBLEMS

2048 bytes × 1/6250 in/byte = .327 in.

There are x records and x – 1 inter-record gaps in 600 ft, and so we have the relation:

(.327 in)(x) + (.5 in) (x – 1) = 600 ft × 12 in/ft = 7200 in.

Solving for x, we have x = 8706 (whole) records, which translates to: 8706 records × 2048
bytes/record = 17.8 MB.

8.10 The number of bits written to the display each second is 1024 × 1024 × 60 = 62,914,560 bits/s.
The maximum time allowed to write each pixel is then: 1/62,914,560 s/bit × 109 ns/s = 15.9 ns.

8.11 The LUT size = 28 words × 24 bits/word = 6144 bits, and the RAM size is 219 words × 8
bits/word = 4,194,304. Without a LUT, the RAM size is 219 words × 24 bits/word = 12,582,912 bits.
The increase in RAM size is 8,388,608 bits, which is much larger than the size of the LUT.

8.12 (a) We no longer have random access to sectors, and must look at all intervening sectors before
reaching the target sector.

(b) Disk recovery would be easier if the MCB is badly damaged, because the sector lists are dis-
tributed throughout the disk. An extra block is needed at the beginning of each file for this, but now
the MCB can have a fixed size.

8.13 The problem is that the data was written with the heads in a particular alignment, and that the
head alignment was changed after the data was written. This means that the beginning of each track
no longer corresponds to the relative positioning of each track prior to realignment. The use of a tim-
ing track will not fix the problem, unless a separate timing track is used for each surface (which is not
the usual case).

SOLUTIONS TO CHAPTER 9 PROBLEMS

9.1 Hamming distance = 3.

SOLUTIONS TO PROBLEMS 601

9.2

9.3 (a) k + r + 1 ≤ 2r for k = 6. Simplifying yields: 7 + r ≤ 2r for which r = 4 is the smallest value that
satisfies the relation.

(b)

(c) 11

(d) 101111011001

9.4 k + r + 1 ≤ 2r for k = 1024. Simplifying yields 1025 + r ≤ 2r for which r = 11 is the smallest value
that satisfies the relation.

9.5

9.6 (a) 4096

(b) 8

9.7 First, we look for errors in the check bit computations for the SEC code. If all of the check bit
computations are correct, then there are no single bit errors nor any double bit errors. If any of the
SEC check bit computations are wrong, then there is either a single bit error or a double bit error.

The DED parity bit creates even parity over the entire word when there are no errors. If the DED par-
ity computation is in error, then there is an odd number of errors, which we can assume is a single bit

1 0 1 0 0 0 0 0 1 0 1

11 10 9 8 7 6 5 4 3 2 1

C2 C1C8 C4

ASCII ‘Q’ = 1010001

1 0 1 1 1 0 0 0 1 1

10 9 8 7 6 5 4 3 2 1

C2 C1C8 C4

Code

1
1
1
1
1
1

Character

1
1
1
1
1
1

1
1
1
1
1
1

0
0
0
0
0
0

0
0
0
1
1
0

1
1
1
0
0
1

0
1
1
0
0
0

1
0
1
0
1
1

V
W
X
Y
Z

Checksum

602 SOLUTIONS TO PROBLEMS

error for this problem. If the DED parity computation is even, and the SEC computation indicates
there is an error, then there must be at least a double bit error.

9.8 CRC = 101. The entire frame to be transmitted is 101100110 101.

9.9 32 bits

9.10 Class B

9.11 27 + 214 + 221

9.12 63 ns for bit-serial transfer, 32 ns for word-parallel. The word-parallel version requires 32 times
as much hardware, but only halves the transmission time, as a result of the time-of-flight delay
through the connection.

9.13 [Placeholder for solution.]

SOLUTIONS TO CHAPTER 10 PROBLEMS

10.1 CPIAVG = 1 + 5(.25)(.5) = 1.625 × 10 = 16.25 ns

Execution efficiency = 1/1.625 = 62%

10.2

No, for the ARC architecture, we cannot use %r0 immediately after the st because st needs two cycles
to finish execution. If we did reuse %r0 in the second line, then a nop (or some other instruction that
does not produce a register conflict) would have to be inserted between the st and sethi lines. How-
ever, for the SPARC architecture, the pipeline stalls when a conflict is detected, so nops are never actually
needed for delayed loads in the SPARC. The nop instruction is needed for delayed branches in the
SPARC, however.

10.3 [Placeholder for solution.]

10.4 [Placeholder for solution.]

SOLUTIONS TO PROBLEMS 603

10.5

10.6

10.7 n=p=6: complexity = 306. n=p=2: complexity = 180. n=p=4: complexity = 231. n=p=3: complex-
ity = 200.

10.8 15

SOLUTIONS TO APPENDIX A PROBLEMS

A.1

x2 y2xy

2xy

2

x2 + y2

x2 + 2xy + y2

* * *

x y

*+

+

S 1

0.05˙ 1 0.05–
100

-------------------+
------------------------------------ 16.8= =

16.8
100
---------- .168, or 16.8%=

A

B
AB

604 SOLUTIONS TO PROBLEMS

A.2

A.3

A.4

A.5 18.

A

B
A + B

OR

A

NOT

A

A

B
AB

AND

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B C

0
0
0
0
1
1
1
1

A

0
1
0
1
0
1
1
1

F

1
0
1
0
0
0
1
0

G

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B C

0
0
0
0
1
1
1
1

A

0
1
1
0
1
0
0
1

XOR

SOLUTIONS TO PROBLEMS 605

A.6

A.7

A.8 Not equivalent:

f(A,B,C)

A B C

A B C

A B C

A CB

g(A,B,C,D,E)

B C E D A

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B C

0
0
0
0
1
1
1
1

A

0
0
1
0
0
0
0
1

F

0
0
0
1
0
0
1
0

G

606 SOLUTIONS TO PROBLEMS

Alternatively, we can also disprove equivalence algebraically:

A.9

A.10

A.11

g A B C, ,() A C⊕()B=

a AC AC+()B=

a ABC ABC+=

a f≠ A B C, ,()

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B C

0
0
0
0
1
1
1
1

A

0
1
0
0
0
0
0
0

F

F(A,B,C) = ABC

a0b0a1b1a2b2a3b3

A = B

F

x0

x1

x2

x3

x4

SOLUTIONS TO PROBLEMS 607

A.12

A.13

A.14

A.15

A B

F0

00

01

10

11

0

0

1

1

A B

F1

00

01

10

11

0

1

0

0

A B

M

00

01

10

11

0

1

C

A

B

00

01

10

11

A ⊕ B

A

B

000

001

010

011

F(A,B,C)

100

101

110

111

C

G(A,B,C)

608 SOLUTIONS TO PROBLEMS

A.16

A.17

A.18

d0 0
1d1

d2 0
1d3

d4 0
1d5

d6 0
1d7

C

0
1

0
1

0
1

B A

F(A,B,C)

0
1

B

A

0
1

1
AB

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

C D

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

B

1
0
0
0
1
1
1
0
1
1
1
1
1
0
1
1

b

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

A

b

0001

0010

0011

0100

0101

0110

0111

0000

A B C D

1

0

0

0

1

1

1

0

1001

1010

1011

1100

1101

1110

1111

10001

1

1

1

1

0

1

1

SOLUTIONS TO PROBLEMS 609

A.19 There are a few solutions. Here is one:

A.20

F

0001

0010

0011

0100

0101

0110

0111

0000

A B C 0

0

1

1

0

1001

1010

1011

1100

1101

1110

1111

10000

0

0

1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

C D

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

B

d
0
0
d
1
d
d
d
1
d
d
d
d
d
d
d

X

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

A

d
0
1
d
0
d
d
d
1
d
d
d
d
d
d
d

Y

610 SOLUTIONS TO PROBLEMS

A.21

A.22

A.23

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

b c

0
0
0
0
1
1
1
1

a

0
0
0
0
0
0
1
1

u

0
0
0
0
1
1
0
1

v

0
0
0
1
0
1
0
0

w

0
0
1
0
0
0
1
0

x

0
0
0
0
0
0
0
0

y

0
1
0
1
0
1
0
1

z

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

c d

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

b

1
0
1
1
1
1
1
1
0
0
1
0
1
0
1
1

f

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

a

a b

f

c

001

010

011

100

101

110

111

000d

1

1

1

0

1

d

d

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

b1 b0

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

a0

0
0
0
d
1
0
0
d
1
1
0
d
d
d
d
d

z1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

a1

1
0
0
d
0
1
0
d
0
0
1
d
d
d
d
d

z0

0
0
0
1
1
1
2
2
2

0
1
2
0
1
2
0
1
2

A B

1
0
0
2
1
0
2
2
1

Z

SOLUTIONS TO PROBLEMS 611

A.24

A.25 [Note: This solution is for the wrong problem. This is a proof of DeMorgan’s theorem, not the
absorption theorem.]

A.26 No, an S-R flip-flop cannot be constructed this way. There is no way to force an output high or
low based only on S or R. While the combination of 11 on the inputs provides a quiescent state, the
result of applying 00 is undefined and 10 and 01 are unstable.

A.27 [Placeholder for missing solution.]

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

b c

0
0
0
0
1
1
1
1

a

0
1
0
1
0
0
1
1

0
1
0
1
0
0
1
1

ab + ac + bc ab + ac

y y+ 1=

x y y+ + 1=

1x y y+ + 1=

x x+() x y+() y+ 1=

x xy y+ + 1=

xy x y+()+ 1=

x y+() x y+()+ xy x y+()+=

x y+() xy=

612 SOLUTIONS TO PROBLEMS

A.28

A.29

01/10
00/00

10/01

01/01
00/00

10/10

X

Y

00/00
11/11

10/10

01/10
Z

A = B

A > B

A < B

A B GE LT

11/11

11/11

A

B

GE

LT

0/0 1/0

1/1

0/1

Previous
input is 0

Previous
input is 1

BA

A/0 B/1

A/1 B/0

A

B

0 1
x

P.S.

0/0 1/1

0/1 1/0

A:0

B:1

0 1
x

P.S.

CLK

QD

Q

x
S z

z = xst + xst

st+1 = xst + xst

SOLUTIONS TO PROBLEMS 613

A.30

A.31

A.32

A

B

C

D

E

0/0

0/0

1/0

0/0

1/0

0/0

0/1

1/0

1/1

1/0

No inputs seen yet

Meanings of States

A
B
C
D

E

Seen '0'
Seen '1'
Seen '01'
Seen '11'

X

0 1

A B/0 C/0

P.S.

Input

B
C
D
E

B/0 D/0
B/0 E/0
B/0 E/1
B/1 E/0

A

B

C

01/0

10/1

Meanings of States
X = YA

B
C

X < Y

X > Y

01/0 10/1

00/1
10/1
11/1

00/0
01/0
11/0

00/0
11/0

XY Z

00/00
01/10

00/00
01/01

X

Y

00/00
11/11

21/21

01/10
Z

A = B

A > B

A < B

A BGE LT

02/02

02/20

22/22

20/20
10/10

02/20
12/21

10/01
11/11

10/10
11/11
12/12

12/21

20/02
21/12

20/20
21/21
22/22

22/22

614 SOLUTIONS TO PROBLEMS

A.33

A.34

00/0
00/1

10/1

01/0

Even
parity

Odd
parity

11/0

10/0

BA

01/1

11/1

X
0 1

A B/0 C/0

P.S.

Input

B
C
D

D/0 E/0
E/0 D/0
A/0 A/0

X
0 1

A:000 001/0 010/0

P.S.

Input

B:001
C:010
D:011

011/0 100/0
100/0 011/0
000/0 000/0E A/1 A/1

E:100 000/1 000/1

s0 s1 s2

D Q

s0

D Q

s1

D Q

s2

CLK

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111
Z

X

SOLUTIONS TO PROBLEMS 615

A.35 There are a number of solutions. Here is one:

A.36 delays using a balanced tree.

SOLUTIONS TO APPENDIX B PROBLEMS

B.1

M

A B C

A B C

A B C

A B C

A B C

33Nlog

00 01 11

1

1

1

01

11

1

1

1

1

1

10
AB

1

CD

00

10

11

1

111

1

1

1

1

1

10
AB

1

CD

10

1

1 1

1

1

1

00 01

01

00

f (A,B,C,D) = AB + CD + BD +
AD + BC + AC

g(A,B,C,D) = ABCD + BD + CD +
AB + AD + AC+ BC

616 SOLUTIONS TO PROBLEMS

B.2

B.3 No. The don’t cares are used during the design process. Once the design
is fixed, the don’t cares assume values of either 0’s or 1’s.

B.4

B.5

01 11

1

01

11

d

11

11

0 011

0

0

0

0

0

10
AB

d

CD

10

d

0

0

d

0

00 01

01

001

10

1000
AB

CD

00

SOP Form: POS Form:f (A,B,C,D) = AB + BD f (A,B,C,D) = AD + B
f (A,B,C,D) = AD + B

= AD B
= A + D B

000
ABC

001 011 010 110 111 101 100

1

1

1

1

1

1

1

11

D

0
00

AB
01 11 10

1

1

1

1

1 1

01

CD

00

11

10

1 1

F(A,B,C,D) = BC + BC

F(A,B,C,D) = C

0
A

1

D0

1

B

0

D1

D2

D3

F = ABD0 + ABD1 + ABD2 + ABD3

SOLUTIONS TO PROBLEMS 617

B.6

All prime implicants are essential, so we do not construct a reduced table of
choice.

B.7

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

C D

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

B

0
0
d
1
0
1
d
1
0
0
1
0
0
1
0
1

F

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

A

1
1
0
1
1
1
0
1

0
1
1
0
0
1
1
1

C D

0
0
1
1
0
1
1
1

B

0
0
0
0
1
0
1
1

A

√
√
√
√
√
√
√
√

Initial setup

1
1
1
1
_
0
1
1
_

_
0
0
1
1
1
_
1
1

C D

0
_
0
_
1
1
1
1
1

B

0
0
_
0
0
_
0
_
1

A

√
√
*
√
√
√
√
√
√

After first
reduction

1
_

_
1

C D

_
1

B

0
_

A

*
*

After second
reduction

_

0

_

0

_

1

1

1

_

0

_

1

0011 0101 0111 1010 1101 1111

MintermsPrime
Implicants

√

√

√√√

√

√

*

*

*

f A B C D, , ,() BCD AC BD+ +=

_

_

1

_

1

1

0

_

1

1

1

0

1

0

_

Prime
Implicants

√

m3 m5 m7 m13 m14 m15 m5 m7 m10 m13 m14 m15 m0 m4 m10 m14 m15

F0(A,B,C,D) F1(A,B,C,D) F2(A,B,C,D)Min-
terms

F0

F2

F0,1

F1,2

F0,1,2

√ √

√

√

√ √

√ √

√√√√

0

0

_

1

1

*

*

*

*

*

√

√√ √ √ √

√

√ √

Function Prime Implicant

F0

F1

F2

F0,1

F0,2

F1,2

F0,1,2

0_11, 111_, _1_1
1_10, _1_1, 111_
0_00, 111_, 1_10
111_, _1_1
111_
111_, 1_10
111_

Function Prime Implicant

F0

F1

F2

F0,1

F0,2

F1,2

F0,1,2

0_11
none
0_00
_1_1
none
1_10
111_

Reduce by eliminating prime
implicants covered by higher

order functions

618 SOLUTIONS TO PROBLEMS

B.8

B.9

B.10

00 01 11

1 1

1

1

10
AB

C

0

1

F(A,B,C)

A B C

A CB

F(A, B, C) = ABC + AC + BC

A C

B C

C D

00

01

10

11

0

1

1

1

A B

F

00

01

10

11

0
1

0

F(A,B,C,D) = AB(CD + CD + CD) + AB

P0 = (ABCDEFG)

P1 = (AB)(CD)(EF)(G)

P2 = (AB)(CD)(E)(F)(G)

P3 = (AB)(CD)(E)(F)(G) √
A' B' C' D' E'

X
0 1

A' B'/0 E'/0

Present state

Current input

B'
C'
D'
E'

A'/0 B'/1
A'/1 C'/0
B'/1 D'/0
C'/1 E'/1

SOLUTIONS TO PROBLEMS 619

B.11

B.12

B.13

B.14

P0 = (ABCDE)

P1 = (A)(BD)(CE)

P2 = (A)(BD)(CE) √
A' B' C'

XY
00 01

A' A'/0 B'/0

Present state

Current input

B'
C'

A'/0 B'/1
C'/1 B'/0

10

C'/0
B'/0
B'/0

11

B'/0
B'/1
C'/1

P0 = (ABCDEFG)

P1 = (AEFG)(BCD)

P3 = (AFG)(E)(BCD) √
A' B' C'

X
0 1

A' C'/0 B'/2

Present state

Current input

B'
C'

A'/0 B'/2
C'/2 A'/1

2

A'/1
C'/1
C'/0

P2 = (AFG)(E)(BCD)

CLK

Q2

Q1

Q0

CLK

QT

Q
S

X

Y

Z

620 SOLUTIONS TO PROBLEMS

B.15

B.16

QD

Q
Y

X

CLK

QD

Q
Z

W

0

11

0

1

0

X

0
YZ

10

1

d

0 1

01

00

d

1

11

1

0

0

X

0
YZ

10

0

d

0 1

01

00

d

1

11

1

0

1

X

0
YZ

10

1

d

0 1

01

00

d

Yt+1 = XZ + XYt W = XYt + XYt + ZZt+1 = XYtZ + XYt

CLK

QD

Q
S

J
K

SOLUTIONS TO PROBLEMS 621

622 SOLUTIONS TO PROBLEMS

INDEX

623

Numerics

360, IBM

, 151

68000, Motorola

, 151, 454, 455

80486, Intel

, 113

8080, Intel

, 151

80x86, Intel

, 113, 151

A

A Hardware Programming Language

, 229

accumulator

, 133

action mapping

, 160

active
high

, 477

low

, 477

address

, 108

bus

, 6

space

, 108, 110

addressing modes
based

, 162

direct

, 135

immediate

, 135

indirect

, 135

register based

, 135, 136

register based indexed

, 135, 136

register indexed

, 135, 136

register indirect

, 135, 136

Adobe Postscript

, 352

Advanced Graphics Port

, 320

AGP

, 320

AHPL

, 229

algebraic reduction

, 523

alignment
hard

, 327

soft

, 327

AltiVec

, 185–193

ALU

, 265

as part of computer

, 5

AM, amplitude modulation

, 362

Amdahl’s law

, 433

amplitude modulation

, 362

analog circuits

, 462

Apple Computer
emulation of 68000

, 11

Apple Macintosh

, 113

arbiter, bus

, 317

ARC

, 114–127

addressing modes

, 131

INDEX

624

 INDEX

assembly language

, 118–120

data formats

, 122

instruction descriptions

, 123–127

instruction formats

, 120–122

instruction set

, 116–118

instructions

addcc

, 125

andcc

, 124

ba

, 127

bcs

, 126

be

, 126

bne

, 166

bneg

, 126

bvs

, 126

call

, 125

jmpl

, 125

ld

, 124

orcc

, 125

orncc

, 125

rett

, 227, 324

sethi

, 124

smul

, 157

srl

, 125

st

, 124

subcc

, 157

xorcc

, 250

memory

, 115

memory mapped I/O

, 115

arithmetic and logic unit, see ALU
arm, magnetic disk

, 333

array multiplier

, 86

ASCII

, 55

ASIC

, 238

assembler

, 9

assembly
after compilation

, 114

language
defined

, 9

vs.

 machine language

, 105

process

, 159, 168

associative
mapped cache

, 268

memory

, 269, 293

theorem

, 472

asynchronous
bus

, 313

I/O

, 311

transfer mode, ATM

, 395

B

B5000

, 151

Babbage, Charles

, 2, 151

backside bus

, 319

bandwidth

, 354, 387

barrel shifter

, 205

based addressing

, 162

Basic Rate Interface

, 394

BER, bit error rate

, 375

best fit

, 288

big-endian

, 108, 115

binary
code

, 9

coded decimal

, 37

compatibility

, 9

numbers

, 22

BISDN

, 394
bit

error rate, 375
pad, 347
pair recoding, 85

black box, 482
blocking in a network, 436
blocks

in associative memory, 268
memory, 261

bonding, in ISDN, 395
Boolean logic function, 464
Booth algorithm, 85
branch

predication, in IA-64 architecture, 430
processing unit, 424
table, 225

BRI, 394
bridge, 319, 374, 392
broadband-ISDN, 394
bubble

matching, 478
pushing, 495

bubblesort, 393
Burroughs B5000, 151
burst

error, 383
rate, disk transfer speed, 336

bus, 312
address, 6
arbiter, 317
arbitration, 226, 317
control, 6
cycle, 314
data, 6

INDEX 625

data-in, 6
data-out, 6
defined, 6
grant, 317
master, 313
protocol, 313
request line, 317
system, 6
topology, 371

busy-wait, 321
byte, 107
bytecode, 145

C
C language translation

arrays, 164
automatic variables, 162
global variables, 162
local variables, 162
program flow control, 166–168
static variables, 162
structs, 163

cache, 266–281
access time, 277
associative mapped, 268
blocks, 268
hit ratio, 277
lines, 268
memory, 266
multilevel, 279
performance, 275
write-allocate, 276
write-back, 276
write-no-allocate, 276
write-through, 276

calling convention, 136
CAM, 271, 293
canonical

form of a Boolean equation, 475
product-of-sums form, 476
sum-of-products form, 475

capacitor, 257
carrier sense multiple access, 373
carry lookahead adder, 81
carry-select adder, 102
cause-and-effect arrow, 316
CD, 343
CD ROM, 343

cell loss priority, in ATM packets, 397
cellular radio communications, 368
central processing unit, see CPU, 5
centralized arbitration, 317
channel, 386
checksum, 339
Chinese remainder theorem, 91
circuit depth, 544
circular buffer, 417
CISC

and RISC machines, 407–409
Intel Pentium ISA as, 187

clean rooms, 337
clock rate, 496
Clos network, 440
CLP, in ATM packets, 397
code generation, 160
collision detection, 373
Collossus, early computer, 3
column address strobe, CAS, 261
comb, magnetic disk, 333
combinational logic, 461

unit, CLU, 461
commutative property, of Boolean algebra, 471
compact disc, 343
compatibility, binary, 9
compilation, 159–168
compiler, 113

defined, 8
complement

one’s, 34, 464, 471
two’s, 34

components, digital, 481
computational completeness, 472
computer architecture levels, 1
computers, history of, 1
concurrent execution, of VHDL, 239
condition codes, 116
conditional branch instructions, in ARC, 118
consensus theorem, 472
constant

angular velocity, disk, 344
linear velocity, disk, 344
pool, in Java Virtual Machine, 146

content-addressable memory, 271, 293
control

bus, 6
section, 110, 200

626 INDEX

signals, 10
store, 211
unit

as part of computer, 5
defined, 10
hardwired, 200
microprogrammed, 200

CPU, 110
as part of computer, 5

Cray vector operations, 186
CRC, 382, 383
cross compilation, 161
crossbar, 436
crossinterleaved Reed Solomon error correcting code, 343
crosspoint

complexity, 436
switch, 436

CSMA/CD, 373
current window pointer, CWP, 416
cycle time, 496
cycle-stealing DMA, 325
cyclic redundancy checking, 382, 383
cylinder, magnetic disk, 335

D
daisy chain, 317
data

bus, 6
encoding, 21
link area, 137
representation, 21
section, of CPU, 110, 200
sheet, 479

datapath, 110, 200
deadlock, 373
decentralized arbitration, 317
decoder, 485
degenerate tree, 545
delayed

branch, 412
load, 412

demand paging, 285
DeMorgan’s theorem, 472
demultiplexer, 484
DEMUX, 484
dependence, among instructions, 424
dependency

analysis, 442

graph, 443
device drivers, 311
diameter of a network, 436
dibit, 363
die, 300
digital

circuits, 462
versatile disk, DVD, 343, 345

digitizing tablet, 347
direct

addressing mode, 135
memory access, 321, 324–325

dirty bit, 269
disassembler, 196
diskette, floppy, 338
distributive property, of Boolean algebra, 471
DLLs, 177
DMA, 321, 324, 325

cycle-stealing, 325
don’t care, 96
doubleword, 122
DRAM, 257
driver, in overlay management, 282
dual-port RAM, 296
dual-read RAM, 296
DVD, 343, 345
Dvorak keyboard, 347
dynamic

linking libraries, 177
RAM, 257

E
EBCDIC, 55
Eckert, J. Presper, 3
ECMA-23, 347
EDSAC, 4
EDVAC, 4, 151
EEPROM, 265
effective access time, 277
efficiency, 433, 434
electronic mail, 369
eligible set, 538
e-mail, 369
emulation, 11, 226
emulator, 11
encapsulation, 390
encoder, 487
encryption, early efforts, 3

INDEX 627

end-around carry, 72
ENIAC, 3
ENIGMA computer, 3
EPIC, explicitly parallel instruction computing, 429
EPROMs, 265
error

in fixed point numbers, 23
in floating point numbers, 44

error correction
SEC, 380
SECDED, 382

essential prime implicant, 538
event driven VHDL simulations, 239
excess representation, 36
excitation tables, 556
execution efficiency, 414

F
fan-in, 481
fan-out, 481
fat-tree, 451
FCS, 383
fetch-execute cycle, 111
field programmable gate array, 514
fields, in associative memory, 293
FIFO, 270
file, 338
finite

element analysis, 450
state machine, 492

firmware, 214
defined, 10

first fit, 288
first-in first-out, 270
fixed

head disk, 343
point numbers, 22–38

error, 23
precision, 23
range, 22

flash memory, 265
flip-flop, 493
floating point

numbers, 38–51
definition, 21
hidden bit, 40
mantissa, 39
precision, 38
range, 38

significand, 39
unit, 424

floppy disk, 337
flushed pipeline, 412
FM, 363
forward reference, 171, 172
FPGA, 514
fragmentation

disk, 338
memory, 288

frame
buffer, 353
check sequence, 383
in magnetic tape, 341

frequency modulation, 363
frontside bus, 319
FSM, 492
full adder, 491
function, 136

G
gate

count, 476
delay, 532
input count, 476

gateway, 374
generate, in carry lookahead, 82
generator polynomial, 383
generic flow control, in ATM networks, 397
Genesis, Sega, 453
GFC, in ATM packets, 397
glitch, 496
granularity, in parallel architectures, 447
Gray code, 526
group

carry lookahead adder, 91
generate, 92
propagate, 92

guard digit, 94
Gulliver’s Travels, 108

H
half adder, 491
handoff, 368
handshaking, 311
hardware description language, 228
hardwired control units, 200, 228

628 INDEX

Harvard architecture, 276
hazard, 496
HDL, 228
head

crash, 337
magnetic disk, 333

header error control, HEC, in ATM packets, 397
hidden bit, in floating point numbers, 40
high impedance, 470
history of computers, 1
hit

cache memory, 269
ratio, 277

home video game, 13
host bridge, 319
HP9100A calculator, 94
hub, 372, 392
Huntington’s postulates, 470

I
I/O address, 6
IA-64, 428–432
IBM

360, 7, 9, 151
370 vector operations, 186
701, 151
book about, 18

IC, 12, 312
idempotence, 471
identity, 471
immediate addressing mode, 135
impedance, 470
indefinite persistence, of magnetic media, 332
indirect addressing mode, 135
Industry Standard Architecture, ISA, 321
input unit, 4
instruction

dependence, 424
dispatch, 424
format, ARC, 120
register, IR, 111
set, 9, 113
set architecture, ISA, 12, 105
unit, IU, 424

integer unit, 424
integrated circuit, 12, 312
Integrated Services Digital Network, ISDN, 394
Intel

8080, 151
IA-64, Merced, 428–432
MMX, 185–193
Pentium, 187
Pentium II, 14
processor family, 9

interconnection network, 436
interleaving, 261, 338
International Standards Organization, 369
inter-record gap, tape, 341
interrupt

driven I/O, 321
service routine, ISR, 323
vector, 226

interrupts, 225–227
inter-sector gap, 335
inter-track gap, 335
inverter, 465
involution, 472
IPv4, 388
IPv6, 388
ISA, industry standard architecture, 321
ISA, instruction set architecture, 12

Chapter 4, 105
ISDN, 394
ISO, 369

J
Jacquard loom, 3
Java

class file, 146
virtual machine, 144–150

jitter, tape, 341
joystick, 350
just in time compiler, 149

K
Karnaugh map reduction, 523
keyboard, 12, 346

L
LAN, 368
lands, in compact disks, 343
large scale integration, 482
least

frequently used, LFU, 270
recently used, LRU, 270

INDEX 629

LED, 349
levels of machines, 7
lexical analysis, in compilation, 160
LFU, 270
light emitting diode, 349
lightpen, 349
link register, 119, 139
linkage editor, 177
linker, 177
linking, 159

loader, 180
little-endian, 108
LLC, 371
load module, 177
loader, 177, 180
loading, 159
load-store, 116
load-through, 275
local area network, LAN, 361, 368
locality principle, 266
location counter, 128, 170
logic gate, 11, 465
logical link control, 371
logical record, tape, 342
LRU, 270
LSB, least significant bit, 25
LSI, 482
LUT, lookup table

in ALU design, 205, 265

M
MAC, 371
machine

code, 9
language, 9, 105

Macintosh, 113
macros, assembly language, 159, 169, 183–185
magnetic disks, 332

zone-bit recording, 335
majority function, 240, 473
MAL, 214
Manchester encoding, 334
mantissa, of floating point number, 39
map-entered variable, 532
mapping specification, in compilers, 161
master control block, 339
master-slave, 494
Mauchley, John, 3

maxterm, 476
MCB, 339
media

access control, 371
storage, 332

medium scale integration, 482
memory

address, defined, 6
content-addressable, 271, 293
flash, 265
hierarchy, 255–256
location, 107
management unit, 180
map, 109
mapped I/O, 109

in ARC, 115
mapped video, 353
unit, defined, 5

Merced, 403, 428–432
methods, Java, 146
MFM, 334
microarchitecture, 199
micro-assembly language, 214
microcontroller, 212

defined, 10
microinstruction, 211
microprocessors, 11
microprogram, 10
microprogrammed control units, 200
microstrip technology, 298
MIMD, 435
minterm, 475
minuend, 69
MISD, 436
MMU, 180
MMX, 185–193

instructions, 185
mnemonic, instruction, 9, 116
modem, 361
modified frequency modulation, 334
modular number system, 67
modulation, in telecommunications, 362
moduli, 90
monitor, video, 12, 352
motherboard, 12, 13, 14, 312, 453
Motorola

68000, see 68000, Motorola
AltiVec, 185–193

630 INDEX

PowerPC, 187, 425–428
mouse, 348
moving head, 333
MSB, most significant bit, 25
MSI, 482
multicast, 389
multilevel cache, 279
multimode fiber, 366
multiple instruction stream

multiple data stream, 435
single data stream, 436

multiplexer, 482
multi-valued logic, 462
MUX, 482

N
nanostore, 227
narrowband-ISDN, 394
Neat Little LRU Algorithm, 280
negative logic, 477
network-to-network interface, in ATM packets, 397
Newton’s iteration, 88
nibble, 107
Nintendo, 453
NISDN, 394
NNI, 397
non-maskable interrupt, NMI, 324
non-return-to-zero, 334
non-volatile memory, 332
NRZ, 334
NTSC video standard, 354
number

conversion
between bases, 25
multiplication method, 27
remainder method, 26

representation
binary coded decimal, 37
excess, 36

representations
one’s complement, 34
signed magnitude, 33
two’s complement, 34

nybble, 107

O
object module, 177
octet, 107
odd parity, 377

offline routing algorithm, 438
one theorem, 471
one’s complement, 34
one-address instructions, 132, 133
one-hot encoding, 230
Open System Interconnection, 369
optical

disks, 343
mouse, 349

optimal replacement policy, 270
OSI, 369
output unit, computer, 5
overflow, 22, 68, 122
overlapping register windows, 403, 415, 416
overlays, 281

P
packet, 369
page

fault, 283
frames, 283
table, 284

paging, 282
PAL video standard, 354
parallel

processing, 403, 432
time, 433

parity bit, 376
parser, 160
partition graph, 282
partitions, in the CM-5, 451
Pascal, Blaise, 1
Pascaline, 1
payload

in data packets, 369
type identifier, in ATM packets, 397

PC, 119
PCI, 320
PCM, 363
PDP-4, 151
PDP-8, 151
PE, 432
Pentium, Intel, 187

II, 14
Peripheral Component Interconnect, 320
peripheral interrupt controller, PIC, 324
phase modulation, 363
physical record, tape, 342

INDEX 631

picture element, 353
pipelining, 403, 408

in SPARC, 129
pits, in compact disks, 343
pixel, 353
PLA, 487
platter, magnetic disk, 333
ply, 548
PM, 363
polling, 321
polynomial

code, 383
method, 25

port, 389
POS, 475, 523
positive logic, 477
Postscript, 352
PowerPC, 113, 187, 425–428
precision

in fixed point numbers, 23
in floating point numbers, 38

PRI, 395
Primary Rate Interface, 395
prime implicants, 527
principle of duality, 471
priority encoder, 487
procedure, 136
processing elements, 432
processor state register, 119
product terms, 474
product-of-sums, 475, 523
program counter, 111, 119
programmable

logic array, 487
sound generator, 454

programmed I/O, 321
PROM, 265

burner, 265, 455
propagate, in carry lookahead, 82
protection, 286
protocol stack, 369
pseudo-operations, pseudo-ops, 127–128
PSG, programmable sound generator, 454
PSR, 119
PTI, in ATM packets, 397
puck, 347
pulse code modulation, 363

Q
quadword, 122
Quine-McCluskey method, 534
QWERTY, 346

R
radio frequency, 298
radix

conversion, see number conversion
definition, 24

RAM, 257
Rambus, Inc., 298
random

access memory, RAM, 257
replacement policy, 270

range
in fixed point numbers, 22
in floating point numbers, 38

raster, 352
read-only memory, ROM, 11, 263
real estate, circuit area, 406
rearrangeably nonblocking, 440
re-compilation, 113
record, tape, 341
reduced

instruction set computer, 115
table of choice, 538

register, 510
assignment problem, 421
based addressing, 135, 136
based indexed addressing, 135, 136
file, 111, 416
indexed addressing, 135, 136
indirect addressing, 135, 136
transfer language, 229
window, 403

relocatability of programs, 176
relocating loader, 180
relocation, 179

dictionary, 176
repeater, 374
residue arithmetic, 90
resolver, 391
restoring division, 77
ring

in parallel processing, 433
network topology, 372

632 INDEX

ringing, 432
ripple-borrow subtractor, 69, 70
ripple-carry adder, 69
ROM, 11, 263
rotational latency, 336
router, 371, 393
row address strobe, RAS, 261
RTL, 229

S
S/360, 151
saturation arithmetic, 190
Scalable Processor Architecture, 114
SCP, 396
SCSI, 320, 337
SEC, single error correcting code, 380
SECDED encoding, 382
seek time, 336
Sega, 453

Genesis, 453, 455
segment, 286
segmentation, 286
self-routing network, 393
semantic

analysis, in compilation, 160
gap, 404

sequential logic, 461
set associative mapping, 273
set-direct mapping, 273
set-reset flip-flop, 494
shared bus, 267
shared-memory multiprocessor, 280
sign extension, in ARC, 121
signaling control point, 396
signed magnitude, 33
significand, of floating point number, 39
silicon compilation, 229
SIMD, 435

processors, 186
single

mode fiber, 367
single instruction stream

multiple data stream, 435
single data stream, 434

SISD, 434
slots, 268
Small Computer Systems Interface, 320, 337
small scale integration, 482

SMP, 319
socket, 388
Sony, 453
SOP, 474, 523
source code compatibility, 8
SPARC, 114

pipelining, 129
spatial locality, 266
spec sheet, 479
speculative loading, 431
speedup, 406, 433
spindle, 333
split cache, 276
SRAM, 257
SSI, 482
stack

frame, 136, 139
pointer, 119, 138

star topology, 372
static RAM, 257
Stega, 453, 454
STM, 395
stored program computer, 4
strictly nonblocking, 436
stylus, 347
subnetwork, 374
subroutine linkage, 136
subtraction, binary, 69
subtrahend, 69
sum-of-products, 474, 523
superscalar execution, 403
supervisor mode, 227
surface, magnetic disk, 333
Swift, Jonathan, 108
switch, 393
symbol table, 171, 172
symmetric multiprocessor, 319
synchronous

bus, 313
transfer mode, 395

syncing, magnetic disk, 340
syntactic analysis, in compilation, 160
synthesizer, 455
system bus, 6, 106

model, 5
systolic array, 436

INDEX 633

T
table of choice, 537
tabular reduction, 523
tag field, 268
tagged word, SPARC data format, 122
TDM, 395
temporal locality, 266
Texas Instruments, 454
three-address instructions, 132
threshold, for logic gate, 468
throughput, 433, 434
TI, Texas Instruments, 454
time division multiplexing, 395
TLB, 290
toggle, 554
touchscreen, 143, 349
trace, wire, 298, 313
trackball, 349
transfer time, 336
transistor, 11, 468
translation

lookaside buffer, 290
process, compilation, 114

transmission line, 298
trap, 11, 225–227, 324
tree decoder, 261, 291
truth table, 463
Turing, Alan, 3
two’s complement numbers, 34
two-address instructions, 132, 133
TYAN Computer, 14

U
UNI, in ATM packets, 397
Unicode, 55
UNIVAC, 151
Universal Serial Bus, 321
upward compatibility, 7
USB, 321
user-to-network interface, 397

V
valid bit, 269
VAX, 151
VCI, in ATM packets, 397
vector processors, 186
Venn diagram, 525

very high speed integrated circuit, VHSIC, 229
very large scale integration, 295, 482
very long instruction word, VLIW, 403
VHDL, 229, 237
VHSIC hardware description language, 229
virtual

channel identifier, 397
machine, 113
memory, 281
path identifier, in ATM packets, 397

VLIW, 428
VLIW, very long instruction word, 403, 428
VLSI, 295, 482
von Neumann model, 4, 453
VPI, in ATM packets, 397

W
weighted position code, 24
well-known ports, 389
wide area network, WAN, 361
Wilkes, Maurice, 4
Winchester disk, 337
window, register, in SPARC, 416
word, 107
working set, 285
write once read many, WORM, 344
write-allocate policy, cache, 276
write-back policy, cache, 276
write-no-allocate policy, cache, 276
write-through policy, cache, 276

X
Xeon, 319

Y
Yamaha, 454, 456

Z
zero theorem, 471
Zilog Z-80, 151, 454, 455
zone

disk drive, 335
Internet, 391

zone-bit recording, in magnetic disks, 335

634 INDEX

